

Utility Experience with Traveling Wave Fault Locating on Lower Voltage Transmission Lines

Robert James and Scott Hayes Pacific Gas and Electric Company

PG&E at a glance

- Customers: 5.4 Million electric , 4.4 Million natural gas
- Service Area: 70K square-mile
- Electric Lines 106K miles of Distribution, 18K miles of Transmission
- 1 Million Transformers
- Last Operating Nuclear Generator in CA.
- 67 Hydroelectric Powerhouses
- 924 Automated Self Healing Circuits (FLISR)
- 5.4 Million Electric SmartMeters
- 35,000 Protective Relays

- Traveling Waves An Introduction
- Single Ended Traveling Wave Fault Location (TWFL)
- TWFL for Complex Line Topologies
- Results : Not Valid \rightarrow Experience \rightarrow Very Accurate
- Conclusion Education, Software, Experience

- Traveling Waves are Created by Switching and Fault Initiation
- Documented by LV Bewley in Papers in 1929, 1931 and a 1933 Book. Primary interest was effects of lightning
- Traveling Waves move at near the Speed of Light
- Useful for Fault Locating and now Tripping Relays
- Many Papers on Applications on EHV lines
- How Fast are Traveling Waves in Overhead Lines?
 - ~ 0.98 times the speed of light
 - 663 million miles per hour
 - 186 miles in 1 millisecond

Traveling Waves

• More Faults/Customers on Lower Voltage Transmission Lines.

- Complex Topologies make Impedance Based Fault Locations difficult.
- PG&E Transmission Line Standard Uses Relays with this option
- Experiences with Traveling Wave Fault Location on Lower Voltages

TW Reflections - Open

TW Reflections - Short

Single-Ended Local TW Reflections

Single-Ended Remote TW Reflections

Fault near Local Terminal (1/3 Line)

Fault near Remote Terminal (2/3 Line)

Example: Humboldt-Trinity 115kV Line

Line Length = 68.9 miles

Example: Humboldt-Trinity 115kV Line

Humboldt-Trinity 115kV Line Remote Reflection

Humboldt-Trinity 115kV Line Local Reflection

TW for Complex Line Topologies

Bridgeville-Garberville 60kV Line

Bridgeville-Garberville 60kV Line

Bridgeville-Garberville 60kV Line Energization

 $d = \frac{0.974 \cdot (186282 \text{ mi/s}) \cdot (223.4 \times 10^{-6} \text{ s})}{2} = 20.27 \text{ mi}$

20.27 mi corresponds to pole 001/008

Field report: Tree removed between poles 001/008 & 001/009

Results

Humboldt-Trinity 115kV Line							
Single-ended	<u>Estimat</u>	ed Location	Field Found Actual				
TWFL	from TW event		Fault Location				
Date	Miles	Structure #	Miles	Structure #			
9/10/2015	50.86	96/4	50.69	96/4			
3/5/2016	45.47	91/0	45.36	90/10			
1/2/2017	41.26	86/7	40.98	86/4			

Error due to CT lead length: + 0.19 miles

Adjusting for offset, average error is: +/- 0.06 miles or +/- 300 ft!

Bridgeville-Garberville 60kV Line						
Single-ended	Estimat	ed Location	Field Found Actual			
TWFL	from TW event		Fault Location			
Date	Miles	Structure #	Miles	Structure #		
1/2/2017	16.84	16/10	16.71	16/8		
2/5/2017	16.55	16/6	16.53	16/6		
4/6/2017	15.92	15/9	15.84	15/8		
4/8/2017	7.37	7/6	7.38	7/6		
11/6/2017	20.27	1/8	20.26	1/8		
2/19/2018	6.03	6/1	5.88	5/18		

Error due to CT lead length: + 0.06 miles

Correction Factors

- CT lead length
- Line modeling errors
- Conductor sag
- Elevation changes
- Factored into relative speed of light constant c_r

Conclusion

- Single Ended TWFL is Complicated
- Can be Extremely Accurate +/- 1 pole
- Requires Training
- Requires New Software
- Requires Experience
- TWFL on Complex Lines has Gaps

Questions