Nitricity

Nitricity produces distributed nitrogen fertilizer using only air, water, and renewable electricity.

Nitricity in action | team

Nitricity in action | on-farm system

Nitricity in action | on-farm system

Nitricity report 2020 growing season

Solar + Agriculture

India is pushing 31 GW of solar to help farmers offset pumping and electrical needs

World's Largest Solarization of Agriculture Program Blooms: Q&A

By Vandana Gombar, BloombergNEF. This article first appeared on

Inherent Land Quality Assessment

Inherent Land Quality Assessment

U.S. Dept. of Agriculture Natural Resources Conservation Service Soil Survey Division World Soil Resources

Inherent Land Quality Assessment

Incumbent technology

 $N_2 + 3H_2 \rightleftharpoons 2NH_3$

Pattabathula, Venkat, and Jim Richardson. "Introduction to Ammonia Production." *Back to Basics*, 2016, 7.

Incumbent technology - distribution

 $N_2 + 3H_2 \rightleftharpoons 2NH_3$

Pattabathula, Venkat, and Jim Richardson. "Introduction to Ammonia Production." *Back to Basics*, 2016, 7.

Galloway, James N., and Ellis B. Cowling. "Reactive Nitrogen and The World: 200 Years of Change." *AMBIO* 31, no. 2 (March 2002): 64–71.

Incumbent technology - distribution

 $N_2 + 3H_2 \rightleftharpoons 2NH_3$

Pattabathula, Venkat, and Jim Richardson. "Introduction to Ammonia Production." *Back to Basics*, 2016, 7.

Galloway, James N., and Ellis B. Cowling. "Reactive Nitrogen and The World: 200 Years of Change." *AMBIO* 31, no. 2 (March 2002): 64–71.

N₂O emissions

CALIFORNIA AGRICULTURE • VOLUME 71, NUMBER 3

N₂O emitted from microbial activity in both ammonia oxidation (nitrification) and nitrate reduction (denitrification)

Excess N increases emissions

Low oxygen increases denitrification

High frequency application has been shown to reduce N₂O

Appendix

Problems that require breakthrough solutions

Production 1.4% of global CO₂ **Distribution** 0.07% of global CO₂ **Application** <u>6.1%</u> of global CO₂eq

Centralized, extreme CapEx

Farmers pay 3x-5x gate cost

Ineffective nutrient management

14

Problems that require breakthrough solutions

Production 1.4% of global CO₂ **Distribution** 0.07% of global CO₂

Application <u>6.1%</u> of global CO₂eq

Centralized, extreme CapEx Farmers pay 3x-5x gate cost

High \$/acre

Ineffective nutrient management

Potential for Electrification

Solar cell area required for NH₃ synthesis (blue) is strongly dependent on efficiency.

approach	Cell potenti al [V]	Faradaic effecien cy	kWh/kg NH ₃
Haber-bosch + water splitting ¹	NA	NA	18.3
Electrochemical limit	1.23	100	6.9
Low FE electrochemical	1.23	1	690
High overpotential	4	100	22.4

¹Cussler, Edward et. al. "Ammonia Synthesis at Low Pressure." *JoVE* no. 126 (August 23, 2017): e55691.

$$N_2 + 6H^+ + 6e^- \rightleftharpoons 2NH_3$$

 $N_2 + 6H^+ + 6e^- \rightleftharpoons 2NH_3$

 $N_2 + 6H^+ + 6e^- \rightleftharpoons 2NH_3$

 $N_2 + 6H^+ + 6e^- \rightleftharpoons 2NH_3$

Basic Definitions

Faradaic Efficiency = $\frac{Charge \ to \ NH_3}{Total \ Charge}$

The Voltage Determines the Driving Force

The Voltage Determines the Driving Force

The Voltage Determines the Driving Force

Simplified Mechanism of Ammonia Synthesis

Simplified Version of the Energetic Landscape

Limiting Potential Applied

The Hydrogen evolution reaction presents a fundamental challenge

DFT Gives us a Starting Point

DFT Gives us a Starting Point

Even the Most Exciting Cases Don't Work in Water

Jay Schwalbe, unpublished data Andersen et. al. nature 1, 2019 Even the Most Exciting Candidates Don't Work in Water

Jay Schwalbe, unpublished data Andersen et. al. nature 1, 2019 Model Development

$$r_H = k_H \theta_H \tilde{c}_{H^+} \tilde{c}_{e^-} \cong k_H \tilde{c}_{H^+} \tilde{c}_{e^-}$$

H H H H I I I I Catalyst Surface

 H^+

e

Model Development

e

Model Development

$$r_{H} = k_{H}\theta_{H}\tilde{c}_{H} + \tilde{c}_{e} - \cong k_{H}\tilde{c}_{H} + \tilde{c}_{e} -$$

$$r_{N} = k_{N}\theta_{N_{2}}\tilde{c}_{H} + \tilde{c}_{e} - \cong k_{N}\frac{K_{N}}{K_{H}}\tilde{c}_{N_{2}}$$

$$\frac{r_{N}}{r_{H}} = \frac{k_{N}}{k_{H}} * \frac{K_{N}}{K_{H}} * \frac{\tilde{c}_{N_{2}}}{\tilde{c}_{H} + \tilde{c}_{e} -}$$

$$Water has too many protons!
H^{+} H^{+} H^{+} H^{+}$$

$$H^{+} H^{+} H^{+} H^{+}$$

$$H^{+} H^{+} H^{+} H^{+}$$

$$H^{+} H^{+} H^{+} H^{+} H^{+} H^{+}$$

$$H^{+} H^{+} H$$

Proposed Strategies

$$r_{H} = k_{H}\theta_{H}\tilde{c}_{H} + \tilde{c}_{e} - \cong k_{H}\tilde{c}_{H} + \tilde{c}_{e} -$$

$$r_{N} = k_{N}\theta_{N_{2}}\tilde{c}_{H} + \tilde{c}_{e} - \cong k_{N}\frac{K_{N}}{K_{H}}\tilde{c}_{N_{2}}$$

$$\frac{r_{N}}{r_{H}} = \frac{k_{N}}{k_{H}} * \frac{K_{N}}{K_{H}} * \frac{\tilde{c}_{N_{2}}}{\tilde{c}_{H} + \tilde{c}_{e} -}$$

) () 😽 N₂ and dilute H₂O in Non-aqueous lΒ a polar, aprotic solvent N₂ solution đ **>> %** Electron tunneling Wire from ^C counter-electrode nsulato Ö 'n 8 b Aqueous Aqueous N₂ solution N₂ solution

Proposed Strategies

$$r_{H} = k_{H}\theta_{H}\tilde{c}_{H} + \tilde{c}_{e} - \cong k_{H}\tilde{c}_{H} + \tilde{c}_{e} -$$

$$r_{N} = k_{N}\theta_{N_{2}}\tilde{c}_{H} + \tilde{c}_{e} - \cong k_{N}\frac{K_{N}}{K_{H}}\tilde{c}_{N_{2}}$$

$$\frac{r_{N}}{r_{H}} = \frac{k_{N}}{k_{H}} * \frac{K_{N}}{K_{H}} * \frac{\tilde{c}_{N_{2}}}{\tilde{c}_{H} + \tilde{c}_{e} -}$$

$$P^{V Cell}$$

$$V^{V Cell}$$

$$V^{V Cell}$$

$$V^{V re from}$$

$$V^{V re to}$$

$$Catalyst$$

$$A$$

$$V^{V re to}$$

$$Catalyst$$

$$A$$

$$V^{V re to}$$

$$V^{V re}$$

$$V^{V re}$$

$$V^{V re}$$

Experimental Measurements of Ammonia Synthesis

Ammonia rates are observed to be low

"A Physical Catalyst for the Electrolysis of Nitrogen to Ammonia." *Science Advances* 4, no. 4 (April 2018): e1700336.

"Ammonia Electrosynthesis with High Selectivity under Ambient Conditions via a Li+ Incorporation Strategy." *Journal of the American Chemical Society* 139, no. 29 (July 26, 2017): 9771–74.

"Electro-Synthesis of Ammonia from Nitrogen at Ambient Temperature and Pressure in Ionic Liquids." *Energy & Environmental Science* 10, no. 12 (2017): 2516–20.

"Electrochemical Synthesis of Ammonia from Water and Nitrogen in Ethylenediamine under Ambient Temperature and Pressure." *J. Electrochem. Soc.* 163 (2016).

Ammonia rates are observed to be low

$$0.1\frac{\mu mol}{cm^2 hr} * 1cm^2 * 4hrs * \frac{1}{.01 l} = 40\mu M$$

 $40 \ \mu M \approx 1 ppm$

Low enough to be in the range of common contamination

$$0.1 \frac{\mu mol}{cm^2 hr} * 1 cm^2 * 4 hrs * \frac{1}{.01 l} = 40 \mu M$$
$$40 \mu M \approx 1 ppm$$

Left: >5ppm ~ 275uM contamination from adhesive on vial top

Ammonia detection is possible with a number of techniques - Colorimetric

0 μM 55 μM 165 μM

Searle, Phillip L. "The Berthelot or Indophenol Reaction and Its Use in the Analytical Chemistry of Nitrogen. A Review." *Analyst* 109, no. 5 (January 1, 1984): 549–68.

Ammonia detection is possible with a number of techniques -Colorimetric

$0 \mu M$ 55 μM 165 μM

Searle, Phillip L. "The Berthelot or Indophenol Reaction and Its Use in the Analytical Chemistry of Nitrogen. A Review." *Analyst* 109, no. 5 (January 1, 1984): 549–68.

Thanks, Chenshuang Zhou!

Ammonia detection is possible with a number of techniques -Colorimetric

Ammonia detection is possible with a number of techniques - NMR

Ammonia detection is possible with a number of techniques - NMR

Schematic of Electrochemical Experiment

Schematic of Electrochemical Experiment

no. 5 (May 1, 1993): 851-54.

Schematic of Electrochemical Experiement

Schematic of Electrochemical Experiement

NMR Has Less Baseline Variation

.28 7.24 7.20 7.16 7.12 7.08 7.04 7.00 6.96 6.92 6.88 6.84 6.80 6.76 6.72 6.68 6.64 f1 (ppm)

¹⁵N labelling experiments

Contamination in ${}^{15}N_2$

"The Contamination of Commercial 15N2 Gas Stocks with 15N–Labeled Nitrate and Ammonium and Consequences for Nitrogen Fixation Measurements." *PLoS ONE* 9, no. 10 (October 17, 2014): e110335.

Gas must be purified and quantitative agreement achieved

Gas purification and recycling set-up at DTU

Gas must be purified and quantitative agreement achieved

Gas purification and recycling set-up at DTU

Gas must be purified and quantitative agreement achieved

Questions?

Plan.