

www.calwave.energy

Marcus@calwave.energy

Fulltime team since 2014

Marcus Lehmann, MBA CEO, 2014

Dan Petcovic, MS, P.E. COO, joined 2018

Thomas Boerner, PhDc Technical Lead, 2014

Nigel Kojimoto, MS Lead Mechanical Design, 2014

Bryan Murray, BS Power Electronics, 2014

Josiah Clark, BS Mechanical Design, 2019

CalWave's Timeline

2005 2009 2011

More than half of all global emissions are now covered by a form of net-zero target

January 2020
34% with at least a net-zero discussion

December 2020 54% with at least a net-zero discussion

At the beginning of 2020, one-third of global emissions were covered by some form of net-zero target

Most of that total was only 'under discussion' – having been raised by governments as a policy target.

By the end of 2020, more than half of global emissions were covered

The amount of emissions covered by a final, legislated target and in legislative process both doubled, while the amount covered by a stated government position increased four times.

China, the EU, Japan and South Korea are all part of the 'net-zero club'

However, these bold ambitions are still lacking in policy specifics in many cases.

California targets

100% renewables by 2045.

But how?

Integrating renewable energy is an ongoing concern in high-penetration markets like Chile

Average wind and solar hourly generation and daily average power price, Diego de Almagro

Wind and solar generation has grown from near-zero in 2013 to meeting 15% of Chile's power demand in 2020

Chile's wind and solar fleet generated well over one terawatt-hour of power in 2020.

Infrastructure upgrades have been essential to integrating renewables

Chile has completed a number of major transmission upgrades, integrated its two main power grids, and introduced a flexibility strategy as well.

These upgrades have dramatically reduced curtailment, and kept power prices from falling to zero

Average curtailment in 2020 stayed below 2%. and power prices stayed about \$40 per megawatt-hour even during peak generation.

From 40 - 50% renewables only, requires

10 GW Storage

For 100%

Renewables, cost are

\$2.5 Trillion

for battery storage at current cost

MIT Technology Review

https://www.technologyreview.com/s/611683/the-25-trillion-reason-we-cant-rely-on-batteries-to-clean-up-the-grid/

Motivation & Opportunity

~50X Denser

Consistent

Predictable

Ocean based solution to tackle climate change:

Motivation & Opportunity

Emissions of selected electricity supply technologies in gCo2eq/kWh.

Source: IPPC, 2018.

Options	Direct emissions	Infrastructure & supply chain emissions	Lifecycle emissions (incl. albedo effect)	
	Min/Median/Max		Min/Median/Max	
Currently Commercially Available Technologies				
Geothermal	0	45	6.0/38/79	
Hydropower	0	19	1.0/24/2200	
Nuclear	0	18	3.7/12/110	
Concentrated Solar Power	0	29	8.8/27/63	
Solar PV—rooftop	0	42	26/41/60	
Solar PV—utility	0	66	18/48/180	
Wind onshore	0	15	7.0/11/56	
Wind offshore	0	17	8.0/12/35	
Pre-commercial Technologies	,			
CCS—Coal—Oxyfuel	14/76/110	17	100/160/200	
CCS—Coal—PC	95/120/140	28	190/220/250	
CCS—Coal—IGCC	100/120/150	9.9	170/200/230	
CCS—Gas—Combined Cycle	30/57/98	8.9	94/170/340	
Ocean	0	17	5.6/17/28	

Six Ocean Energy Resources

Ocean Energy Technology	Worldwide Theoretical Power Potential [tWh/year]
Wave Power	29,500
Tidal Power	1,200
Marine Current Power	50,000
Ocean Thermal Power	44,000
Salinity Gradient Power	1,650

Source:

Renewable energy policy network for the 21st century: RENEWABLES 2012 GLOBAL STATUS REPORT, 2012. Ocean Energy Systems: An International Vision for Ocean Energy, 2012.

Tidal Energy – Resource

Ocean Surface Currents – Resource

Wave Energy Global Ressource

Wave energy potential in the US

2020 was a record year for offshore wind financings

Offshore wind capacity financed by year

2020 was a record year for offshore wind capacity financed

More than 15 gigawatts was financed, up more than 50% from 2019, the previous record, and 15 times the volume in 2012.

Most new capacity was project financed

More than 10 gigawatts of capacity was project financed. From 2013 through 2017, most capacity was financed on corporate balance sheets.

A single financing, the 2.4 gigawatt Dogger Bank development zone, dominated the second half of 2020

The 2.4 gigawatt project is the largest offshore wind project in the world, and the largest financing to date for the sector, at \$8 billion.

US LCOE of offshore wind

Figure 3. Levelized cost of energy for potential offshore wind projects from 2015 to 2030 over the U.S. technical resource area

Source: Beiter et al. (2016)

Note: Fixed-bottom and floating scenarios are represented by exponential curve fits through the modeled LCOE values in 2015, 2022, and 2027.

Map of U.S. Offshore Wind Lease and Call Areas

US offshore wind pipeline ~>25 GW, mostly US east coast

Most Offshore Wind Deployment Has Been on Fixed-bottom Support Structures

Leading Offshore
Wind Countries
(Installed Capacity)

United Kingdom	8508 MW
Germany	7441 MW
China	6007 MW
Denmark	1925 MW
Belgium	1556 MW
Netherlands	1136 MW
Sweden	196 MW

Floating offshore wind

Beginning of Wind Power

Main functions of a wind turbine

Main function 1: High Annual Energy Production

Main function 2:

Device Load Management/Shut down

Main functions of a WEC

Main function 1:

Significant Wave Height

Main function 2:

Device Load Management/Shut down

Secondary functions of a marine energy system

TRL Status of ocean energy – 2015 (outdated)

2020 statistics

Tidal energy hits

60 GWh

power production milestone.

2020 INSTALLATIONS 865 KW

36.3 MW

700 kW

23.3 MW

Tidal Energy – Commercial projects

2020 AK

Bottom Piled
Atlantis
17.5 GWh
2020 Japan 500kW

Floating
Orbital Marine Power
3 GWh in 2016
R&D 2 MW since 2018
Construction in 2020

(WEC) Classification – Orientation

Active demonstrations

2.9 GW

92% of this (2.6 GW) will be in European waters.

by 2030.

These deployments will drive down the cost.

Cost reduction drivers will be the same as other renewables.

2016 Annex IV State of the Science Report

ENVIRONMENTAL EFFECTS OF MARINE ENERGY DEVELOPMENT AROUND THE WORLD

Andrea Copping
Pacific Northwest National Laboratory

Perceived Risks of MRE Development

- 1. Collision risk: tidal, current, offshore wind
- 2. Underwater noise
- 3. Electromagnetic fields (EMFs)
- 4. Physical changes/energy removal
- 5. Changes in habitats/artificial reefs
- 6. Entanglement (ecological risk, fishing gear)

Entanglement and Debris

- ► Mooring line entanglement of marine mammals, sea turtles
- Also hanging up lost fishing gear

Ecological Effects of Entanglement

March 7, 2021 41

March 7, 2021 42

Calwave awarded

out of 92 teams!

Surface devices

Bottom devices

Wave Technology Status Quo

No survivability.

Low efficiency.

CalWave Power Technologies

Surface devices

Bottom devices

Effective Shut Down

Scripps Ocean Pilot Q2/2021

Demo unit suitable for blue economy applications (e.g. SAAB AUV)

Project partners:

Our Digital Twin allows Advanced Optimization

(Validated) Digital Twin

Replicate real-world site-specific offshore conditions in a controlled environment

- 1. Continuously runs in parallel to deployment operation
- Fed by sensor and metocean data from deployed device offshore
- 3. Allows for advanced controls development & assessment
- 4. Allows for Neuronal Network training without in field risks

Drivetrain on test bench with digital twin

CalWave lined up for PacWave – 20MW test site

Location: Oregon

Depth: 60-80 m

Capacity: 20 utility-scale WECs

2021 Legislation Updates:

\$137M annually over Fiscal
Years 2021-2025 for marine
energy, DOE WPTO included
in recent stimulus bill

http://pacwaveenergy.org/

Exploring Coastal and Offshore Markets (Different Sets of Partners)

Outlook: Utility scale wind and wave farm layout

https://www.nrel.gov/docs/fy15osti/63267.

Ideal layout of combined offshore wind and wave farm – wave shelters wind and reduces total CAPEX and OPEX for both!

Wind turbine CAPEX

Wave converter similar components

→ Comparable manufacturing requirements –
 A tower manufacture can produce a wave converter hull

Lifecycle of an Offshore Wind Floating

Wave farm similar CAPEX

Wave farm

similar OPEX

Offshore hydrogen

CALWAVE

Please subscribe for ESG Report:

Join us on our mission!

www.calwave.energy Marcus@calwave.energy

Business Model - Power & Data as a Service.

- Remote power and data as a service 24/7-365
- Lease and sale options

xNode Specs	Value
Continuous power	1-5 kW
Storage	15 – 50 kWh
Sensors baseline	Weather, radar, light, video
Sensors flexible	Sonar, CO2, others

x150 Specs	Value
Power rating	100 kW (scalable 600kW)
Capacity factor	~60%
Visual and Survival	Fully submerged

INITIAL MARKET ENTRANCE

Offshore drones [1-10 kW]

Islands and disaster relief [10-250 kW]

European Wave Energy Test Sites (>300 MW capacity permitted)

Performance of a wave power farm

CalWave output profile (lowest average & peak ~50-60% of capacity)

Power offshore

Technology

Battery-Powered Ships Next Up in Battle to Tackle Emissions

By Masumi Suga August 6, 2019, 3:05 AM PDT