Designing VLSI Interconnects with Monolithically Integrated Silicon-Photonics

Vladimir Stojanović MIT

SSCS DL series – Santa Clara, CA, November, 2012

Acknowledgments

- Rajeev Ram, Henry Smith, Hanqing Li (MIT), Milos Popović (Boulder), Krste Asanović (UC Berkeley)
- Jason Orcutt, Jeffrey Shainline, Christopher Batten, Ajay Joshi, Anatoly Khilo
- Karan Mehta, Mark Wade, Erman Timurdogan, Stevan Urosevic, Jie Sun, Cheryl Sorace, Josh Wang
- Michael Georgas, Jonathan Leu, Benjamin Moss, Chen Sun
- Yong-Jin Kwon, Scott Beamer, Yunsup Lee, Andrew Waterman, Miquel Planas
- DARPA, NSF and FCRP IFC
- IBM Trusted Foundry, Solid-State Circuits Society

Chip design is going through a change

- Already have more devices than can use at once
- Limited by power density and bandwidth

Oracle T5 Nvidia Fermi 16 cores, 128 Threads 540 CUDA cores

IBM Power 7 8 cores, 32 threads

Intel Knights Corner 50 cores, 200 Threads

"The Processor is the new Transistor" [Rowen]

Bandwidth, pin count and power scaling

Memory interface scaling problems: Energy-cost and bandwidth density

Energy cost [p]/bit]

Power and pins required for 10TFlop/s

Monolithic Si-Photonics for core-to-core and core-to-DRAM networks

Bandwidth density – need dense WDM Energy-efficiency – need monolithic integration

Integrated photonic interconnects

Monolithic CMOS photonic integration

Thin BOX SOI CMOS Electronics

Bulk CMOS Electronics

Si and polySi waveguide formation

Single channel link tradeoffs

Resonance sensitivity

- Process and temperature shift resonances
- Direct thermal tuning cost prohibitive

Georgas CICC 2011, Sun NOCS 2012

Smarter wavelength tuning

Need to optimize carefully

- Laser energy increases with data-rate
 - -Limited Rx sensitivity

-Modulation more expensive -> lower extinction ratio

- Tuning costs decrease with data-rate
- Moderate data rates most energy-efficient

assuming 32nm CMOS

Georgas CICC 2011

Laser

Buffer

lock

DWDM link efficiency optimization

Optimize for min energy-cost

Bandwidth density dominated by circuit and photonics area (not coupler pitch)

- 10x better than electrical bump limited
- 200x better than electrical package pin limit

Photonic memory interface – leveraging optical bandwidth density

Important Concepts

- Power/message switching (only to active DRAM chip in DRAM cube/super DIMM)

- Vertical die-to-die coupling (minimizes cabling - 8 dies per DRAM cube)

- -Command distributed electrically (broadcast)
- Data photonic (single writer multiple readers)

Enables energy-efficient throughput and capacity scaling per memory channel

Beamer ISCA 2010

Laser Power Guiding Effectiveness

Enables capacity scaling per channel and significant savings in laser energy Beamer ISCA 2010

Optimizing DRAM with photonics

Design Space Exploration of Networks Tool

DSENT – A Tool Connecting Emerging Photonics with Electronics for Opto-Electronic Networks Modeling

Significant integration activity, but hybrid and older processes ...

[Luxtera/Oracle/Kotura]

[Intel]

[IBM]

[Watts/Sandia/MIT] [Lipson/Cornell]

[Kimerling/MIT]

[HP]

EOS Platform for Monolithic CMOS photonic integration 2011

65 nm bulk CMOS Texas Instruments **Create integration platform to accelerate technology development and adoption**

EOS Platform: EOS8 fabricated in IBM12SOI

Orcutt et al, Optics Express, 2012

3 x 3 mm die

45nm Thin Box SOI Technology (used for Power 7 and Cell processors)

3M Transistors

400 Pads

ARM Standard Cells and custom link circuits

EOS8 performance summary

Fiber-to-chip grating couplers with 3.5 dB insertion loss

Waveguides under 4dB/cm propagation loss

10 dB extinction optical modulators

8 channel wavelength division multiplexing filter bank with <-20 dB cross talk

>20 GHz SiGe photodetectors

All integrated with electronic circuits

Full integration of photonics into VLSI tools

Platform Organization

Chips fully packaged

Best waveguide losses ever reported in a sub-100nm production CMOS line

- Body-Si waveguides
 3-4dB/cm loss
- Poly waveguides
 50dB/cm loss

- Body-Si ring Q factor
 - 227k @ 1280nm
 - 112k @ 1550nm

Exceptional dimensional control in 45nm node

- 8-wavelength filterbank results
 - Filter channels fabricated in order
 - Less than 1nm variation
- Excellent channel isolation (>20dB at 250GHz spacing) 28

Integrated thermal tuning circuits

- 10mW required to retune all 8 rings
 - Negligible overhead of tuning circuits (thermal BW < 500kHz)
 - Tuning efficiency 130uW/K (32.4mW/2π) fully substrate released chips

Low-power current-sensing optical receiver

Georgas ESSCIRC 2011, JSSC 2012

Optical modulator design

2

-16

-20

 $10 \mu m$

1534.0

1534.4

1534.8 Wavelength [nm]

Shainline, Popovic

10µm

1535.2

1535.6

- Extinction ratio 19dB
- 45GHz 3dB optical bw ullet

at 1280nm

- Extinction ratio 9dB
- 60GHz 3dB optical bw

Optical modulator – electrical tests

- Carrier-lifetime 2-3ns
- Diffusion time constant affected by
 - Recombination time
 - Drift conditions

First dynamic electro-optic test in 45nm SOI

Memory interface scaling problems: **Energy-cost and bandwidth density**

Energy cost [p]/bit]

Power and pins required for 10TFlop/s

Uncooled laser sources for system efficiency

Laser Source Options (Uncooled)

- Multi-λ PIC
- FP Comb Source
- Binned DFB Bars
- Injection-Locked FP

$\lambda = 1.2$ -1.3 μm Target

- Lower Laser Threshold
- Higher Published Efficiency
- Uncooled MQW Operation
- Quantum Dot Gain Media
- Larger Resonator FSR
- Smaller Optical Components

Laser reliability – Si-photonics needs fewer lasers than VCSEL links

 $FIT = \frac{\# Failures}{\# Devices} \cdot \frac{1 \times 10^9 Hours}{Hours of Operation}$

Mean Time Between $\frac{1 \times 10^9 \text{ Hours}}{FIT}$

VCSEL Laser Reliability Concerns

- Finisar 10Gb study = 2.3 FIT
- Linear data rate increases cause super-linear reliability reductions
- 100 Tbps = 10,000 VCSELs
- MTBF = 2.3 years
- Intel MoBo MTBF = 19-24 years (2009-2011 Server Data)

IBM's Blue Waters required 1M VCSELs: Expected MTBF = 18 days

Silicon Photonics Reliability Overview

- Laser power is split for many links
- CW laser operation eliminates overdrive reliability degradation
- CyOptics 1310nm uncooled DFBs <15 FIT (200B field hour 0°C-85°C) including direct-mod. operation
- 100 Tbps = 64 DFBs (1 laser per λ)
- MTBF @ 15 FIT/laser = 120 Years λ =0.98µm Pump Laser Reliability

Packaging

- CPU package
 - Flip-chip <5um C4 tolerance o.k. for coupling
- DRAM package
 - Die on board
 - Connector-to-fiber alignment <2um

Summary

- Silicon-photonics can push both critical dimensions
 - Energy-efficiency monolithic integration
 - Bandwidth Density dense WDM
- Need to optimize across layers
 - Connect devices to circuits, and links to networks
- Building early technology development platforms
 - Feedback to device and circuit designers
 - Accelerated adoption
- EOS Platform designed for multi-project wafer runs
 - Best end-of-line passives in sub-100nm process (3-4dB/cm loss)
 - 50 fJ/b receivers with uA sensitivities
 - Record-high tuning efficiency with undercut ~ 25uW/K
 - First modulation demonstrated in 45nm process