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Solid-State Circuits Council

= Established in May 1966, the Council preceded the Solid-State
Circuits Society

» Founded to sponsor the Journal of Solid-State Circuits (JSSC)
and the International Solid-State Circuits Conference (ISSCC)

— ISSCC was first held in 1954, sponsored by the Philadelphia
Section of the IRE and the University of Pennsylvania

— But prior to the formation of the Council, there was no
archival record dedicated to electronic circuit design

Bruce A. Wooley -2- Stanford University



Solid-State Circuits Council

Bruce A. Wooley

Initially sponsored by four IEEE Societies: Circuit Theory,
Computer, Electron Devices, Microwave Theory & Techniques
(later added COM, CHMT and LEOS

First issue of the JSSC was published in September 1966.
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IEEE Solid-State Circuits Society

= Established January 1, 1997

= Santa Clara Valley Chapter

— Jonathan David was instrumental in forming the chapter and
served as it’s first chair

— First meeting was held in March 1997

« Speaker was Ken Kundert

« But not yet enough signatures to formally establish the chapter
— Second meeting April 1998

« Speaker was Tom Lee

— Chapter was officially established on May 6, 1997
* One of the first two SSCS chapters; the other was Yugoslavia

= Now 75 chapters worldwide

— SCV is the largest (>2,000 members out of ~10,000 Society
members)
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Oversampling A/D Conversion

Basic concept:

Exchange resolution in time for that in amplitude through the
use of oversampling, feedback and digital filtering

fs fn
x(t) x(kT) Oversampling y(kT) Decimation L

— Modulator [ ™ Filter

w(kMT)

fs = 1/T = sampling rate
fy = 1/MT = Nyquist rate

M = oversampling ratio
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Oversampling

Bruce A. Wooley

Increasing the sampling rate (f5) of an A/D converter relaxes the
antialiasing filter requirements

x(f)

Antialiasing

Increasing fg also reduces the in-band quantization noise (Ng);
but only gain 3 dB in resolution per octave increase

N, Sall

>

Can combine feedback with oversampling to improve the
resolution gained by oversampling
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In the Beginning

= Combining feedback with oversampling to achieve an
increase in resolution began with delta modulation

Quantizer 1-bit
code

x—{@ 1 y o~ .- ——| DA |l> >V

q

D/A

Integrator
= Driven by telecom applications — the digital encoding of
voice signals

» A delta modulator encodes the rate of change of its input
signal; typically use a 1-bit quantizer with small step size

Bruce A. Wooley Stanford University



Delta Modulation

Seminal paper (from Philips Research):

F. de Jager, “Delta Modulation: A Method of PCM Transmission Using
the One Unit Code,” Philips Research Reports, vol. 7, 1952.
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Envisioned applications included:

— Per-channel encoding of analog signals for digital switching
and transmission in voiceband telephone systems

— Speech coding

Bruce A. Wooley
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Initial Delta Modulation Patents — Deloraine

= E. M. Deloraine, et al., “Communication System Utilizing Constant Amplitude
Pulses of Opposite Polarities” (French patent issued in 1946, U.S. patent

filed in 1947).
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Initial Delta Modulation Patents - Cutler

= C. C. Cutler, "Differential Quantization of Communication Signals," U.S.
Patent 2,605,361 (filed June 29, 1950, issued July 29, 1952).

— Describes differential PCM & delta-modulation (1-bit DPCM)
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An “Early” A Modulator Circuit

H. R. Schindler, “Delta Modulation,” IEEE Spectrum, Oct. 1970.

FIGURE 4. A—Circuitry for the basic delta-modulation
encoder. B—Circuitry for the decoder.
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A Modulation in Digital Switching

H. S. McDonald, “Pulse Code Modulation and Differential Pulse Code

Modulation Encoders” U.S. Patent 3,526,855 (filed Mar. 18, 1968, issued
Sept. 1, 1970).
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FIG, /

An early application of delta modulation to voice encoding for digital
electronic switching in telephony

Motivation, for both switching and transmission, was to enable the per-
channel encoding of voice signals, in order to eliminate PAM busses
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Digital Channel Bank

Message
signal

T1 line

Bruce A. Wooley

Low-pass
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A Modulation Challenges

= Slope overload

\SLOPE OVERLOAD

= DAC mismatch between modulator and demodulator

Quantizer

x— @ f

1-bit
code

q

<

D/A

> - —| D/A lf/ >

Mismatch error accumulates in

Integrator

demodulator output

= Spurious pattern noise (“lwersen noise”)

Bruce A. Wooley
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An Alternative — Noise Shaping

In delta modulators feedback is combined with oversampling
for prediction

But feedback can also be used for noise shaping via
sigma-delta (= delta-sigma) modulation

Noise shaping modulators are more robust and easier to
implement than predictive modulators

Seminal papers ( from Univ. of Tokyo):

Bruce A. Wooley

H. Inose, Y. Yasuda and J. Murakami, “A Telemetering System by
Code Modulation — A-Z Modulation,” /IRE Trans. Space Electronics
and Telemetry, Sept. 1962.

H. Inose and Y. Yasuda, “A Unity Bit Coding Method by Negative
Feedback,” IEEE Proceedings, Nov. 1963.

-15 - Stanford University



Sigma-Delta (or Delta-Sigma) Modulation

EQ(Z)
Integ rator

X(z) Y(z) V(z)
=] L
1347 Demodulator

Modulator
Sqlf)
Y(2) =z X@) + (1- z7Eq(2)
2 Ng
Ne(f) = [2sin(af /f5)] "Nq (f)
~f/2 ~f, | 1, fo/2
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2A Modulator Response

Bruce A. Wooley
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Initial Patent on Noise Shaping Modulators

Using oversampling and feedback to shape the spectrum of
quantization noise first appeared as an error feedback

oversampling modulator:

C. Cutler, “Transmission Systems Employing Quantization,”
U.S. Patent 2,927,962 (filed Apr. 26, 1954, issued Mar. 8, 1960).
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Error Feedback = XA Modulation

Bruce A. Wooley

Move the delay to the forward path

DELAY

€n

Xy —O—n
—A
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Separate feedback from input and output of quantizer

Integrator

DELAY

€n
1
\i
=O—T ¥,

-

an
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Limits of 1st-order A Modulation

» |deally a 9dB/octave increase in dynamic range with an increase
in oversampling ratio (fs/fy)
= |Improvement much less than ideal owing to pattern noise

(“Iwersen” noise), i.e., spurious tones that result from
correlation between the quantization error and the input

J. E. lwersen, “Calculated Quantizing Noise of Single-Integration
Delta-Modulation coders,” Bell Syst. Tech. J., Sept. 1969.
= Alternative oversampling approaches:
— Multi-level quantization
— Modulators based on interpolation

— Higher order modulators
« Single quantizer with multiple loops or single loop with multi-
order filtering
« Cascaded (multi-stage) A modulators (MASH)

Bruce A. Wooley -20 - Stanford University



‘“lwerson” Noise in A Modulators

Bruce A. Wooley

X(kT) =0 (midrange input; full scale = £ A/2)

y(kT):

=

S

.

=> No low-frequency component

X(KT) = (0.001)A/2

__L ....r

- 1000 T -

y(KT):

=> Frequency component in baseband

MSE (dB)

i ik H Jll I

DC Input Level X/A

. ..fui L} I

:
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Multi-level A Modulation for PCM

Jim Candy introduced a circuit for generating PCM using a ZA
modulator with multi-level quantization in the following classic paper:

J. C. Candy, "A Use of Limit Cycle Oscillations to Obtain Robust Analog-
to-Digital Converters," IEEE Trans. Commun., Dec. 1974.

CYCLE SAMPKE
CLOCK CLOCK

INTEGRATOR

ANALOG DIGITAL
INPUT SIGNAL

DIGITAL
ACCUMULATOR

CYCLE
DELAY |

QUANTIZER

q(t)

QUANTIZED
ANALOG SIGNAL

This circuit includes a simple accumulator for decimation
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Decimation Filtering

= Decimation is the process of resampling a digitally encoded
signal at a lower rate, typically the Nyquist rate

— D. Goodman and M. Carey, “Digital Filters for Decimation
and Interpolation,” IEEE Trans. ASSP, Nov. 1963.

= At the output of a ZA modulator, a digital decimation filter
preceding resampling

— suppresses out-of-band quantization noise that would be
imaged into baseband by resampling

— provides antialias filtering of out-of-band signals and noise

» Decimation, and interpolation, filters are now commonly
implemented as FIR, rather than IIR, filters

— but this was too “expensive” ( = 7,000 gates) in the 1970’s

Bruce A. Wooley -23- Stanford University



An Earlier Noise-Shaping Coder for Video

Candy’s first work on noise shaping was also for encoding video :

R. C. Brainard and J. C. Candy, “Direct-Feedback Coders: Design and
Performance with Television Signals,” Proc. IEEE, May 1969.

LOW-
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Interpolating Modulator

Candy next introduced the idea of an interpolating modulator for
per-channel companded voiceband A/D conversion:

J. Candy, W. Ninke and B. Wooley, “A Per-Channel A/D Converter
Having 15-Segment u-255 Companding,” IEEE Trans. Commun., Jan.

1976.
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Testing an Interpolating Modulator

c

Digital Encoding for Local Telephone Service cLock CEL —E'-E:LSV—-’ .
Analcg-to-digital and digital-to-analog converters are €4 2 L
essential elements for connecting digital switches and S 5 o o MONAL
digital transmission links with existing analog telephone ANALOG 3 THRESHOT . 5
equipment. In 1974 Bell Labs researchers developed et ¥ \
new types of converters that generate a very simple X a v
code. This code may be useful for local transmission or "t AR O+ b
switching, and cen be easily converted to D3 format w w [__ R 7
for connection with existing digital facilities. Indeed. the N 3%
new coders and decoders may some day prove inex- — i i e
pensive enough to incorporate into a telephone set. ¢ T bl e
Such a step would hasten growth toward an all-digital L w P s
Bell Sysiem network, with its advantages of simple, re- a )
liable digital hardware replacing analog equipment. tnfon

{— . g
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Bell Labs’ researchers Bruce Wooley (left) and Jim Candy
in Holmde/ study signal waveforms while exploring new -0  -60 -50 -40 .30 -20 10 )
digital encoding tachniques. INPUT AMPLITUDE , 4B
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Voiceband Codec with Digital Filtering

Voiceband codec combined with decimation and interpolation filters:

J. Candy, B. Wooley and O. Benjamin, “A Voiceband Codec with Digital
Filtering,” IEEE Trans. Commun., June 1981.
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Low-Pass Filter for Final 4x Decimation

INPUT

Bruce A. Wooley
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Integrated Voiceband Encoder

An early integrated interpolating modulator for digitizing voiceband
signals:

J. Henry and B. Wooley “An Integrated PCM Encoder Using
Interpolation,” ISSCC Dig. Tech. Papers, Feb. 1978.
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Integrated Interpolative Encoder Response

Quantization signal and SNDR of integrated voiceband encoder
based on interpolation:
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Commercial Application of Oversampling

» First large-scale commercial application of oversampling was an
interpolating modulator used by AMD in a Subscriber Line Audio
Processing Circuit (SLAC) and an FSK Modem

— Am7901, Am7905 and Am7910

Analog In

Shift
Control
Logic

DAC

Digital Out

Comparator
+

Ciock at Fs

Reference

R. Apfel, et al., “A Single-Chip Frequency-Shift Keyed Modem Implemented
Using Digital Signal Processing,” IEEE J. Solid-State Circuits, Dec 1984.
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Another Application

Rudy van de Plassche looked for applications in instrumentation and
control as an alternative to dual-slope conversion:

R. van de Plassche, “A Sigma-Delta Modulator as an A/D Converter,”
IEEE Trans. Circuits and Sys., July 1978.
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2"9.Order ZA Modulation

In 1985 Candy described the use of double integration to achieve
second-order noise differencing:

J. Candy, “A Use of Double Integration in Sigma-Delta Modulation,”
IEEE Trans. Commun., Mar. 1985.
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Single-Quantizer Oversampling Modulators

E(z)

X(z) — AQ) ——() - Y@

F(z) |

Y(z) = Hy(2)X(z) + He(2)E(2)

where

A(z) 1
@)= AF T P i ArFe
and
Az)= X2 ) L 1o He2)
He(z) Hy(2)
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Noise-Differencing >A Modulators

11

2L (4 2L+1
Y(z)=z"X(z)+(1-z")\'E(z) = S (ﬁ) Sq

B = (2L+1)

LP Filter
e |

Noise Shaping

fg fiy fs/2
Frequency
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Noise Differencing Modulators

= Y(z) =z'X(2) + (1- z V)L E(2)
= Can implement with a single quantizer and L nested loops

= Limit cycle instability for L > 2

= ForL=2
z—1
A(z) = — and F(z)=2-z"
(1-z7)
Integrator 1 Integrator 2 Integrator L E

+ 1 + 1 + 21 + AT
X @’1 -1 @’1“ ------ @’12‘1 21y
~Z -~z -
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2"9.Order Noise Differencing

A(z)
+ o~  t + + A
+

Transfer —=
Function
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2"9.Order Noise Differencing
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A Switched-Capacitor 2"9-Order Modulator

------------------------------------------

B. Boser and B. Wooley, “Design of a CMOS Second-Order Sigma-
Delta Modulator,” ISSCC Dig. Tech. Papers, Feb. 1988.
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Iwerson Noise in A Modulators

-50 - First-Order A Modulator
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Decimation & Interpolation for Digital Audio

B. Brandt and B. Wooley, “A Low-Power, Area-Efficient Digital Filter for
Decimation and Interpolation,” Symp. VLSI Circuits, May 1993.
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nth-order Single-Quantizer Modulators

* Noise-differencing modulators of order greater than 2 are prone
to limit-cycle instability

» (Can stabilize higher order, single-quantizer modulators through
filter design, non-linear stabilization and/or multi-bit quantization

W. Lee and C. Sodini, “A Topology for Higher Order Interpolative
Coders ,” ISCAS Proc., May 1987.
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2A Modulation for Digital Audio

Third-order noise shaping with multi-bit quantization:

R. Adams, “Design and Implementation of an Audio 18-bit Analog-to-
Digital Converter Using Oversampling Techniques,” J. Audio Eng.
Soc., Mar. 1986.
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Single Quantizer w/ Distributed Feedback

A high-order, single-bit A modulator employing “distributed
feedback” and non-linear stabilization:

P. Ferguson, A. Ganesan and R. Adams, “One Bit Higher Order Sigma-
Delta A/D Converters,” ISCAS Proc., May 1990.
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Cascaded (Multi-Stage) Noise-Shaping
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Multi-stage Noise Shaping (MASH)

An early paper on multi-stage (MASH) modulators for stable high-
order noise shaping (for digital audio signals):

Y. Matsuya, et al., “A 16b Oversampling A/D Conversion Technology
using Triple Integration Noise Shaping,” ISSCC Dig. Tech. Papers,

Feb. 1987.
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A Cascaded Modulator for ISDN

An early cascade of first-order A modulators for ISDN bandwidths:

M. Rebeschini, et al., “A 16-Bit 160 kHz CMOS A/D Converter Using
Sigma-Delta Modulation,” ISCAS Proc., May 1990.
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Matching Error in 1-1-1 Cascade
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Spectrum of 1-1-1 Cascade w/ Mismatch

Spectral Power (dB)
2
|

5 10 15 20 25
Frequency (kHz)

Bruce A. Wooley -49 - Stanford University



Third-Order (2-1) Cascaded Modulator

Bruce A. Wooley
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2-1 Cascaded XA Modulator

First description of a two-stage 2-1 cascaded modulator:

L. Longo and M. Copeland, “A 13 bit ISDN-band Oversampled ADC
using Two-Stage Third Order Noise Shaping,” Proc. CICC, Jan. 1988.
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Matching Error in 2-1 Cascade
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Spectrum of 2-1 Cascade w/ Mismatch
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Tone Cancellation in 2-1 Cascade
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Cascaded ZA Modulator for Digital Audio

L. Williams and B. Wooley, “A Third-Order Sigma-Delta Modulator with

Extended Dynamic Range,” IEEE J. Solid-State Circuits, Mar. 1994.
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2-1 Cascaded >AM Performance
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Low-Power 1.8-V A Modulator

S. Rabii and B. Wooley, “A 1.8-V Digital Audio Sigma-Delta Modulator in
0.8-um CMOS,” IEEE J. Solid-State Circuits, June1997.
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A Low-VoItage Cascaded ZA Modulator

H. Park, et al., “A 0.7-V 870-uW Digital Audio CMOS Sigma-Delta
Modulator,” IEEE J. Solid-State Circuits, Apr. 20009.
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Modulator Implementation
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First Integrator Op Amp

Bruce A. Wooley
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Single Comparator Tracking Quantizer
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= No comparator offset mismatch problem
= Smaller area and reduced integrator loading

= But timing constraints are difficult when combined with input
feedforward
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Modulator Performance

Supply Voltage 0.7V
Sampling Rate 5 MHz
References 0V,0.7V
Signal Bandwidth 25 kHz
Dynamic Range 100 dB
Peak SNR 100 dB
Peak SNDR 95 dB
Power: Analog 680 uW
Digital 190 uW
Area
(excluding decoupling capacitors, 2.16 mm?
pads & output drivers)
Technology 0.18-um CMOS

Bruce A. Wooley
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ADC Figure of Merit

FoM = Power — Note the 2N

2 « BW « 22N

where N is the peak SNDR in equivalent bits

Williams 0.226 fJ/step

Rabii 0.024 fJ/step

Park 0.0083 fJ/step
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Kester ADI Tutorials

ANALOG MT-022
DEVICES TUTORIAL

ADC Architectures lll: Sigma-Delta ADC Basics
by Walt Kester
INTRODUCTION

The sigma-delta (Z-A) ADC is the converter of choice for modem voiceband, audio, and high-
resolution precision industrial measurement applications. The highly digital architecture is
ideally suited for modem fine-line CMOS processes, thereby allowing easy addition of digital
functionality without significantly increasing the cost. Because of its widespread use, it is
important to understand the fundamental principles behind this converter architecture.

Due to the length of the topic, the discussion of Z-A ADCs requires two tutorials, MT-022 and
MT-023. This first tutorial (MT-022) first discusses the history of Z-A and the fundamental
concepts of oversampling, quantization noise shaping, digital filtering, and decimation Tutorial
MT-023 discusses more advanced topics related to I-A, including idle tones, mult-bit Z-A
ADCs, multistage noise shapmg I-A ADCs (MASH), bandpass Z-A ADCs, as well as some
example applications.

HISTORICAL PERSPECTIVE

The Z-A ADC architecture had its origins in the early development phases of pulse code
dulation (PCM) sy specifically, those related to transmission techniques called delta

modulation and differential PCM. (An excellent discussion of both the lnsmry and concepts of

the Z-A ADC can be found by Max Hauser in Reference 1). Delta modulation was first i

at the ITT Laboratories in France by E. M. Deloraine, S. Van Mierlo, and B. Degjavitch in 1946

(References 2, 3).

The pmmple was "rediscovered" several years later at the Phillips Laboratories in Holland,

whose eng s published the first ive smdies both of the single-bit and mmiti-bit concepts
ml957md1953(Referexes4 5). In 1950, C. C. Cutler of Bell Telephone Labs in the U.S.
filed an important patent on differential PCM which covered the same essential concepts
(Reference 6).

The driving force behind delta dulation and diffi 1 PCM was to achieve higher
transmission efficiency by transmitting the changes (delta) in value between consecutive samples
rather than the actual samples themselves.

In delta modulation, the analog signal is quantized by a one-bit ADC (a comparator) as shown in
Figure 1A. The comparator output is converted back to an analog signal with a 1-bit DAC, and
subtracted from the input after passing through an integrator. The shape of the analog sigmal is
transmitted as follows: a "1" indicates that a positive excursion has occurred since the last
sample, and a "0" indicates that a negative excursion has occurred since the last sample.
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3 oFvices
DEVICES TUTORIAL

ADC Architectures IV: Sigma-Delta ADC Advanced Concepts
and Applications

by Walt Kester

INTRODUCTION

Tutorial MT-022 discussed the basics of Z-A ADCs. In this tutorial, we will look at some of the

more advanced concepts including idle tones, mula-bit Z-A, MASH, bandpass Z-A, as well as
some example applications.

IDLE TONE CONSIDERATIONS

In our discussion of Z-A ADCs up to this point, we have made the assumption that the
quantization noise produced by the I-A modulator (see Figure 1) is random and uncorrelated
with the input signal. Unfortunately, this is not entirely the case, especially for the first-order

modulator. Consider the case where we are ing 16 les of the modul outputin a 4-
bit Z-A ADC.
CLOCK
K1, ? %
A
O - DIGITAL N-BITS
__F FILTER /
AND /
- % |pECMATOR
T
LATCHED
COMPARATOR
(1-81T ADC)
18,
o 1-BIT DATA Kig
18I STREAM
DAC I
~Vrer
SIGMA-DELTA MODULATOR

Figure 1: First-Order Sigma-Delta ADC

Figure 2 shows the bit pattern for two input siznal conditions: an input signal having the value
8/16, and an input signal having the value 9/16. In the case of the 9/16 siznal, the modulator
output bit pattern has an extra "1" every 16th output. This will produce energy at Kf/16, which
translates into an unwanted tone. If the oversampling ratio (K) is less than 8, this tone will fall
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