Interleaved Direct Bandpass Sampling for Software Defined Radio/Radar Receivers

Bernard C. Levy Department of Electrical and Computer Engineering University of California, Davis Joint work with Anthony Van Selow and Mansoor S. Wahab

February 24, 2016

Outline

- Receiver Architectures
- Bandpass Sampling Problem
- Interleaved ADC Sampling Model
- Complex Envelope Computation
- Computer Simulations
- Interleaved ADC Calibration
- Conclusions

1

Receiver Architectures

• Consider modulated signal

$$x_{c}(t) = \Re\{c_{c}(t)e^{j\Omega_{c}t}\}$$
$$= a_{c}(t)\cos(\Omega_{c}t) - b_{c}(t)\sin(\Omega_{c}t)$$

of $x_c(t)$, where Ω_c = carrier frequency and $c_c(t) = a_c(t) + jb_c(t) =$ complex envelope with bandwidth B/2.

- We seek to compute the sampled sequences $a(n) = a_c(nT'_s)$ and $b(n) = b_c(nT'_s)$ of the in phase and quadrature signal components, where $\Omega'_s > B$.
- Classical heterodyne and homodyne receiver architectures require analog filters and mixers.

Receiver Architectures (cont'd)

Heterodyne Receiver Architecture

Department of Electrical and Computer Engineering University of California at Davis

SCV joint IEEE IT-SPS Talk

Receiver Architectures (cont'd)

Homodyne Receiver

Receiver Architectures (ct'd

Direct Interleaved Sampling Receiver

Uses a high quality tunable MEMS filter H_S , 2 wideband S/Hs (available from Inphi), but no mixer or phase shifter and fewer analog filters.

- Receiver Architectures
- Bandpass Sampling Problem
- Interleaved ADC Sampling Model
- Complex Envelope Computation
- Computer Simulations
- Interleaved ADC Calibration
- Conclusions

SCV joint IEEE IT-SPS Talk

Bandpass Sampling Problem

• Consider a bandpass signal whose spectral support is $[-\Omega_H, -\Omega_L]$ and $[\Omega_L, \Omega_H]$, with occupied bandwidth $B = \Omega_H - \Omega_L$.

Bandpass Sampling Problem (cont'd)

- Due to overlap of copies X₊(j(Ω − kΩ_s)) and X₋(j(Ω − ℓΩ_s)) of the positive and negative components of the spectrum (with k, ℓ integer), it is not always possible to reconstruct x_c(t) from its samples x(n) = x_c(nT_s) if Ω_s > 2B.
- Stronger conditions need to be satisfied. Let $k_M = \lfloor \Omega_H / B \rfloor$. Then Ω_s must satisfy

$$\frac{2\Omega_H}{kB} \le \frac{\Omega_s}{B} \le \frac{2\Omega_L}{(k-1)B}$$

with k integer such that $1 \le k \le k_M$.

Bandpass sampling (cont'd)

Bandpass Sampling (cont'd)

Kohlenberg (1953), Coulson (1995), Lin and Vadyanathan (1998) recognized that x_c(t) can be recovered from the samples x₁(n) = x_c(nT'_s) and x₂(n) = x_c((n - d)T'_s) of two interleaved ADCs, as long as the overall sampling rate Ω_s = 2Ω'_s > 2B. But some offsets, such as d = 1/2, are forbidden.

- Receiver Architectures
- Bandpass Sampling Problem
- Interleaved ADC Sampling Model
- Complex Envelope Computation
- Computer Simulations
- Interleaved ADC Calibration
- Conclusions

SCV joint IEEE IT-SPS Talk

Interleaved ADC Sampling Model

• Consider the representation

$$x_c(t) = \Re\{c_c(t)e^{j\Omega_c t}\}\$$

of $x_c(t)$, where Ω_c = carrier frequency and $c_c(t) = a_c(t) + jb_c(t) =$ complex envelope with bandwidth B/2.

• Unlike Kohlenberg and others who considered the problem of recovering $x_c(t)$ from its interleaved samples, we seek to evaluate the sampled complex envelope $c(n) = c_c(nT_s)$ from the interleaved samples, i.e. we jointly sample and demodulate.

Interleaved ADC Sampling Model (cont'd)

• Let $\ell = \operatorname{round}(\Omega_c / \Omega'_s)$ and

so that $-\pi \leq \omega_b < \pi$.

$$\omega_b = \left(\frac{\Omega_c}{\Omega'_s} - \ell\right) 2\pi \;,$$

$$\begin{array}{c|c} & & \ell \text{-th image} \\ & & \text{zone} \\ & & & \\ \hline \end{array} \\ \hline & & & \\ \hline \hline & & & \\ \hline \end{array} \\ \hline & & & \\ \hline \hline \\ \hline & & & \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array}$$

Interleaved ADC Sampling Model (cont'd)

With $\Omega'_s > B$, if $c(n) = c_c(nT'_s)$ = sampled envelope, we have

$$x_1(n) = \Re\{c(n)e^{j\Omega_c T'_s n}\} = \Re\{c(n)e^{j\omega_b n}\}$$

and

$$x_2(n) = \Re\{(f * c)(n)e^{j\Omega_c T'_s(n-d)}\}$$
$$= \Re\{(f * c)(n)e^{j\omega_b(n-d)}e^{-j2\pi\ell d}\}$$

where f(n) = impulse response of the fractional delay filter $F(e^{j\omega}) = e^{-j\omega d}$ for $-\pi < \omega \le \pi$. Let

$$G(e^{j\omega}) = \begin{cases} e^{-j2\pi(\ell+1)} & -\pi \le \omega < -\pi + \omega_b \\ e^{-j2\pi\ell d} & -\pi + \omega_b \le \omega < \pi \end{cases}$$

for $\omega_b \geq 0$, and

SCV joint IEEE IT-SPS Talk

Interleaved ADC Sampling Model (cont'd)

$$G(e^{j\omega}) = \begin{cases} e^{-j2\pi\ell d} & -\pi \le \omega \le \pi + \omega_b \\ e^{-j2\pi(\ell-1)d} & \pi + \omega_b \le \omega < \pi \end{cases}$$

for $\omega_b < 0$. This gives the model shown below, where the goal is to recover c(n) from $x_1(n)$ and $x_2(n)$.

- Receiver Architectures
- Bandpass Sampling Problem
- Interleaved ADC Sampling Model
- Complex Envelope Computation
- Computer Simulations
- Interleaved ADC Calibration
- Conclusions

Complex Envelope Computation

We have

$$\begin{bmatrix} X_1(e^{j\omega}) \\ X_2(e^{j\omega}) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & F(e^{j\omega}) \end{bmatrix} \mathbf{M}(e^{j\omega}) \begin{bmatrix} C(e^{j(\omega-\omega_b)}) \\ C^*(e^{-j(\omega+\omega_b)}) \end{bmatrix}$$

where

$$\mathbf{M}(e^{j\omega}) = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ G(e^{j\omega}) & G^*(e^{-j\omega}) \end{bmatrix}$$

and $X_1(e^{j\omega})$, $X_2(e^{j\omega})$ and $C(e^{j\omega}) = \text{DTFTs of } x_1(n)$, $x_2(n)$ and c(n). So $C(e^{j(\omega-\omega_b)})$ can be recovered from $X_1(e^{j\omega})$ and $X_2(e^{j\omega})$ as long as $\mathbf{M}(e^{j\omega})$ is invertible.

SCV joint IEEE IT-SPS Talk

The determinant $D(e^{j\omega})$ of $\mathbf{M}(e^{j\omega})$ is given by

$$D(e^{j\omega}) = \frac{j}{2}\sin(2\pi\ell d)$$

for $0 \leq \omega \leq \pi - |\omega_b|$ and

$$D(e^{j\omega}) = \frac{j}{2} e^{j\pi \operatorname{sgn}(\omega)d} \sin(\pi(2\ell + \operatorname{sgn}(\omega_b))d,$$

for $\pi - |\omega_b| \le \omega < \pi$. Accordingly $D(e^{j\omega})$ is nonzero as long as $\ell \ge 1$ and the offset d is not equal to one of the forbidden values

$$d_m^i = \frac{m}{2\ell} , \ d_q^e = \frac{q}{2\ell + \operatorname{sgn}(\omega_b)}$$

with m and q integers such that $0 \le m \le 2\ell - 1$ and $1 \le q \le 2\ell + \operatorname{sgn}(\omega_b) - 1$.

SCV joint IEEE IT-SPS Talk

The complex envelope c(n) can be computed as shown below, where

$$\begin{bmatrix} H_1(e^{j\omega}) & H_2(e^{j\omega}) \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{M}^{-1}(e^{j\omega}) \begin{bmatrix} 1 & 0 \\ 0 & F^{-1}(e^{j\omega}) \end{bmatrix}$$
$$= \frac{1}{2D(e^{j\omega})} \begin{bmatrix} G^*(e^{-j\omega}) - F^{-1}(e^{j\omega}) \end{bmatrix}.$$

• The filters $H_1(e^{j\omega})$ and $H_2(e^{j\omega})$ are noncausal IIR with impulse responses

$$\Re\{h_1(n)\} = \delta(n) , \ \Re\{h_2(n)\} = 0$$

$$\Im\{h_1(n)\} = -\cot(\pi(2\ell + \operatorname{sgn}(\omega_b))d)\delta(n) + \left(\cot(\pi(2\ell + \operatorname{sgn}(\omega_b))d) - \cot(2\pi\ell d)\right)\frac{\sin((\pi - |\omega_b|)n)}{\pi n}$$

$$\Im\{h_2(n)\} = \frac{\sin((\pi - |\omega_b|)(n+d))}{\pi \sin(2\pi\ell d)(n+d)} - \frac{\sin((\pi - |\omega_b|)(n+d) - \pi d)}{\pi \sin(\pi(2\ell + \operatorname{sgn}(\omega_b)d)(n+d))}$$

They can be approximated by causal FIR filters of order M=2L by shifting the responses by *L* and applying a Kaiser window of order *M*.
 SCV joint IEEE IT-SPS Talk

University of California at Davis

• The quadrature sampling scheme proposed by Brown (1979) requires $\Omega'_s = \Omega_c/\ell \ (\omega_b = 0)$ and $d = \frac{1}{4\ell} + \frac{q}{\ell}$ with q integer. In this case

$$x_1(n) = a_c(nT'_s)$$
, $x_2(n) = b_c((n-d)T'_s)$

are the sampled in-phase and quadrature components of the complex envelope

- Impractical for software defined radio since it ties the sampling frequency to the carrier frequency.
- The proposed scheme requires only Ω_s > 2B and ℓ ≥ 1. It is well adapted to software defined radio: if Ω_c changes, ℓ and ω_b change and the filters h₁(n) and h₂(n) can be recomputed by windowing their closed form expressions.

- Receiver Architectures
- Bandpass Sampling Problem
- Interleaved ADC Sampling Model
- Complex Envelope Computation
- Computer Simulations
- Interleaved ADC Calibration
- Conclusions

Computer Simulations

• The bandpass signal $x_c(t)$ has envelope

 $c_{c}(t) = 2\cos(400 \times 10^{6} \times 2\pi t) + j[\sin(400 \times 10^{6} \times 2\pi t) + \cos(175 \times 10^{6} \times 2\pi t)]$

with bandwith $(B/2)/2\pi = 400$ MHz, and carrier frequency $F_c = \Omega_c/(2\pi) = 5.15$ GHz.

- The sub-ADC sampling frequency $F_s' = \Omega_s'/(2\pi) = 1$ GHz is above B = 800MHz.
- $F_c = 5F'_s + 150$, so $\ell = 5$ and $\omega_b = 0.3\pi$.
- The sampled envelope

$$c(n) = \frac{3}{2}e^{j0.8\pi n} + \frac{1}{2}e^{-j0.8\pi n} + \frac{j}{2}[e^{j0.35\pi n} + e^{-j0.35\pi n}]$$

has tones at $\pm 0.8\pi$ and $\pm 0.35\pi$.

SCV joint IEEE IT-SPS Talk

Computer Simulations (cont'd)

- Timing offset d = 0.425, between $d_4^i = 0.4$ and $d_5^e = 0.454$.
- Additive noises with SNR =62dB added to x₁(n) and x₂(n) to model thermal, quantization noises
- Kaiser windows of order M = 60 and β = 6 used to approximate filters H₁ and H₂.
- MSE= -53.54dB, SFDR = 65dB.
- Secondary tones = residual components of $e^{-j2\omega_b n}c^*(n)$.

Computer Simulations (cont'd)

- Timing offset d = dⁱ₄ + 0.001
 close to a forbidden offset.
- D(e^{jω}) almost singular over [-0.7π, 0.7π], so filter gains inaccurate over this band.
- Translated to $[-\pi, 0.4\pi]$ by $e^{-j0.3\pi n}$ demodulation.
- MSE = -47.27dB, SFDR =55dB.

- Receiver Architectures
- Bandpass Sampling Problem
- Interleaved ADC Sampling Model
- Complex Envelope Computation
- Computer Simulations
- Interleaved ADC Calibration
- Conclusions

Interleaved ADC Calibration

- The effect of timing-skew mismatches δ = d − d₀ with d = true mismatch, d₀ = nominal mismatch, grows as increases. Due to the 2πℓd phase shift of G(e^{jω}).
- ADC_1 and ADC_2 cannot share the sample S/H since $d \neq 1/2 \Rightarrow$ mismatches cannot be avoided.
- TIADC calibration is therefore needed. We propose a blind calibration method under the assumption that the signal is oversampled with oversampling ratio $\alpha = 1 2B/\Omega_s$.

Interleaved ADC Calibration

• If $\gamma = g - 1 =$ relative gain mismatch, if

$$\boldsymbol{ heta} = \left[egin{array}{c} g \\ d \end{array}
ight] \ , \ \boldsymbol{ heta}_0 = \left[egin{array}{c} 1 \\ d_0 \end{array}
ight]$$

denote the true and nominal parameter vectors (g = relative channel gain), for small mismatches we use first-order expansions

$$H_1(e^{j\omega}, d) = H_{10}(e^{j\omega}) + \delta H_{11}(e^{j\omega})$$
$$H_2(e^{j\omega}, \boldsymbol{\theta}) = (1 - \gamma)[H_{10}(e^{j\omega}) + \delta H_{11}(e^{j\omega})].$$

 Due to oversampling, C(e^{jω}) = 0 over J = [(1 - α)π, (1 + α)π] mod (2π), so r(n, θ) = c(n)e^{jω_bn} has no power in the band J + ω_b mod (2π).

Interleaved ADC Calibration

• let $h_{BP}(n)$ = impulse response of bandpass filter

$$H_{\mathrm{BP}}(e^{j\omega}) = \begin{cases} 1 & \omega \in I \\ 0 & \text{otherwise} \end{cases}.$$

Then the error signal

$$e(n, \hat{\theta}) = h_{\mathrm{BP}}(n) * r(n, \hat{\theta})$$

is zero for $\hat{\theta} = \theta$, nonzero otherwise.

• The blind estimation algorithm minimizes adaptively

$$J(\hat{\theta}) = E[|e(n, \hat{\theta})|^2]$$

by using the stochastic gradient scheme

$$\hat{\boldsymbol{\theta}}(n+1) = \hat{\boldsymbol{\theta}}(n) - \mu \Re\{e^*(n, \hat{\boldsymbol{\theta}}(n) \nabla_{\hat{\boldsymbol{\theta}}} e(n, \hat{\boldsymbol{\theta}}(n))\}.$$

SCV joint IEEE IT-SPS Talk

- Mismatches: $\gamma = 10^{-2}$, $\delta = -0.25 \times 10^{-2}$.
- $I = [-0.9\pi, -0.5\pi]$, FIR approximation of $H_{\rm BP}$ with Kaiser window of order M = 80.
- Step sizes $\mu_{\gamma} = 10^{-3}$, $\mu_{\delta} = 10^{-5}$.
- $L = 5 \times 10^4$ samples. Final estimates $\hat{\gamma}(L) = 0.77 \times 10^{-2}, \hat{\delta} = -0.27 \times 10^{-2}.$

Before calibration: MSE=-17.8dB, After calibration: MSE=-36.51dB, SFDR=25dB SFDR=43dB.

SCV joint IEEE IT-SPS Talk

Carrier Freq.	2.15GHz	3.15Gz	4.15GHz	5.15 GHz
l	2	3	4	5
MSE, Before (dB)	-25.51	-22.24	-19.76	-17.79
MSE, After (dB)	-50.89	-46.01	-40.97	-36.52
$\hat{\gamma}(L)(\times 10^{-3})$	10	9.7	8.8	7.7
$\hat{\delta}(L) \ (imes 10^{-3})$	2.5	2.6	2.6	2.7

The performance of the envelope reconstruction scheme before and after calibration degrades as ℓ increases. Reason: the first order expansion of correction filters H_1 and H_2 becomes inaccurate. As soon as g and d are estimated, the exact filters H_1 and H_2 should be used instead of their first order approximations.

- Receiver Architectures
- Bandpass Sampling Problem
- Interleaved ADC Sampling Model
- Complex Envelope Computation
- Computer Simulations
- Interleaved ADC Calibration
- Conclusions

Conclusions

- A direct complex envelope sampling scheme for bandpass signals with nonuniformly interleaved ADCs has been proposed. In combination with tunable RF band selection filters and high bandwidth S/H circuits, provides an approach to software defined radio/radar.
- TIADC calibration is required due to the sensitivity of the sampling system to timing skew mismatches.
- The proposed sampling and blind calibration system work well for small to moderate values of l (Ω_c/B). The calibration can be improved for large values of l by iterating the calibration using the most recent θ estimate as reference in the first-order expansions of H₁(e^{jω}, d) and H₂(e^{jω}, θ).

Thank you!

