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Receiver Architectures

• Consider modulated signal

xc(t) = ℜ{cc(t)e
jΩct}

= ac(t) cos(Ωct) − bc(t) sin(Ωct)

of xc(t), whereΩc = carrier frequency andcc(t) = ac(t) + jbc(t) =

complex envelope with bandwidthB/2.

• We seek to compute the sampled sequencesa(n) = ac(nT ′

s) and

b(n) = bc(nT ′

s) of the in phase and quadrature signal components, where

Ω′

s > B.

• Classical heterodyne and homodyne receiver architecturesrequire analog

filters and mixers.
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Receiver Architectures (cont’d)

HS HIF HLP ADC1

HLP ADC2

90 LO2

xc(t) ac(t) a(n)

bc(t) b(n)

LO1

Heterodyne Receiver Architecture
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Receiver Architectures (cont’d)

HS HLP ADC1

HLP ADC2

90 LO

xc(t) ac(t) a(n)

bc(t) b(n)

Ωc

Homodyne Receiver
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Receiver Architectures (ct’d

HS S/H1 ADC1

S/H2 ADC2

xc(t) a(n)

b(n)

DSP

nT ′

s

(n − d)T ′

s

Direct Interleaved Sampling Receiver

Uses a high quality tunable MEMS filterHS , 2 wideband S/Hs (available

from Inphi), but no mixer or phase shifter and fewer analog filters.
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Bandpass Sampling Problem

• Consider a bandpass signal whose spectral support is[−ΩH ,−ΩL] and

[ΩL, ΩH ], with occupied bandwidthB = ΩH − ΩL.

Ω

|Xc(jΩ)|

−ΩH −ΩL ΩL ΩH0

B B

︸ ︷︷ ︸

|X−(jΩ)|

︸ ︷︷ ︸

|X+(jΩ)|
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Bandpass Sampling Problem (cont’d)

• Due to overlap of copiesX+(j(Ω − kΩs)) andX−(j(Ω − ℓΩs)) of the

positive and negative components of the spectrum (withk, ℓ integer), it is

not always possible to reconstructxc(t) from its samples

x(n) = xc(nTs) if Ωs > 2B.

• Stronger conditions need to be satisfied. LetkM = ⌊ΩH/B⌋. ThenΩs

must satisfy
2ΩH

kB
≤

Ωs

B
≤

2ΩL

(k − 1)B

with k integer such that1 ≤ k ≤ kM .
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Bandpass sampling (cont’d)

Forbidden Region
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Bandpass Sampling (cont’d)

• Kohlenberg (1953), Coulson (1995), Lin and Vadyanathan (1998)

recognized thatxc(t) can be recovered from the samples

x1(n) = xc(nT ′

s) andx2(n) = xc((n − d)T ′

s) of two interleaved ADCs,

as long as the overall sampling rateΩs = 2Ω′

s > 2B. But some offsets,

such asd = 1/2, areforbidden.

S/H1 ADC1

S/H2 ADC2

xc(t)

x1(n)

x2(n)

nT ′

s

(n − d)T ′

s
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Interleaved ADC Sampling Model

• Consider the representation

xc(t) = ℜ{cc(t)e
jΩct}

of xc(t), whereΩc = carrier frequency andcc(t) = ac(t) + jbc(t) =

complex envelope with bandwidthB/2.

• Unlike Kohlenberg and others who considered the problem of recovering

xc(t) from its interleaved samples, we seek to evaluate the sampled

complex envelopec(n) = cc(nTs) from the interleaved samples, i.e. we

jointly sample and demodulate.
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Interleaved ADC Sampling Model (cont’d)

• Let ℓ = round(Ωc/Ω′

s) and

ωb =
(Ωc

Ω′

s

− ℓ
)

2π ,

so that−π ≤ ωb < π.

Ω
(ℓ − 1/2)Ω′

s ℓΩ′

s (ℓ + 1/2)Ω′

sΩc

ωb

T ′

s

ℓ-th image
zone
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Interleaved ADC Sampling Model (cont’d)

With Ω′

s > B, if c(n) = cc(nT ′

s) = sampled envelope, we have

x1(n) = ℜ{c(n)ejΩcT ′

sn} = ℜ{c(n)ejωbn}

and

x2(n) = ℜ{(f ∗ c)(n)ejΩcT ′

s(n−d)}

= ℜ{(f ∗ c)(n)ejωb(n−d)e−j2πℓd}

wheref(n) = impulse response of the fractional delay filterF (ejω) = e−jωd

for −π < ω ≤ π. Let

G(ejω) =







e−j2π(ℓ+1) −π ≤ ω < −π + ωb

e−j2πℓd −π + ωb ≤ ω < π

for ωb ≥ 0, and
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Interleaved ADC Sampling Model (cont’d)

G(ejω) =







e−j2πℓd −π ≤ ω ≤ π + ωb

e−j2π(ℓ−1)d π + ωb ≤ ω < π

for ωb < 0. This gives the model shown below, where the goal is to recover

c(n) from x1(n) andx2(n).

G(ejω) ℜ{·} F (ejω)

ℜ{·}

ejωbn

c(n) x1(n)

x2(n)
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Complex Envelope Computation

We have



X1(e

jω)

X2(e
jω)



 =




1 0

0 F (ejω)



M(ejω)




C(ej(ω−ωb))

C∗(e−j(ω+ωb))





where

M(ejω) =
1

2




1 1

G(ejω) G∗(e−jω)





andX1(e
jω), X2(e

jω) andC(ejω) = DTFTs ofx1(n), x2(n) andc(n). So

C(ej(ω−ωb)) can be recovered fromX1(e
jω) andX2(e

jω) as long asM(ejω)

is invertible.
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Complex Envelope Computation (cont’d)

The determinantD(ejω) of M(ejω) is given by

D(ejω) =
j

2
sin(2πℓd)

for 0 ≤ ω ≤ π − |ωb| and

D(ejω) =
j

2
ejπsgn(ω)d sin(π(2ℓ + sgn(ωb))d ,

for π − |ωb| ≤ ω < π. AccordinglyD(ejω) is nonzero as long asℓ ≥ 1 and

the offsetd is not equal to one of theforbidden values

di
m =

m

2ℓ
, de

q =
q

2ℓ + sgn(ωb)

with m andq integers such that0 ≤ m ≤ 2ℓ − 1 and

1 ≤ q ≤ 2ℓ + sgn(ωb) − 1.
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Complex Envelope Computation (cont’d)

The complex envelopec(n) can be computed as shown below, where

[

H1(e
jω) H2(e

jω)
]

=
[

1 0
]

M
−1(ejω)




1 0

0 F−1(ejω)





=
1

2D(ejω)

[

G∗(e−jω) − F−1(ejω)
]

.

H1(e
jω)

H2(e
jω)

x1(n)

x2(n)
e−jωbn

c(n)r(n)
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Complex Envelope Computation (cont’d)

• The filtersH1(e
jω) andH2(e

jω) are noncausal IIR with impulse

responses

ℜ{h1(n)} = δ(n) , ℜ{h2(n)} = 0

ℑ{h1(n)} = − cot(π(2ℓ + sgn(ωb))d)δ(n)

+
(
cot(π(2ℓ + sgn(ωb))d) − cot(2πℓd)

) sin((π − |ωb|)n)

πn

ℑ{h2(n)} =
sin((π − |ωb|)(n + d))

π sin(2πℓd)(n + d)

−
sin((π − |ωb|)(n + d) − πd)

π sin(π(2ℓ + sgn(ωb)d)(n + d)
.

• They can be approximated by causal FIR filters of order M=2L by

shifting the responses byL and applying a Kaiser window of orderM .
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Complex Envelope Computation (cont’d)

• The quadrature sampling scheme proposed by Brown (1979) requires

Ω′

s = Ωc/ℓ (ωb = 0) andd = 1
4ℓ

+ q
ℓ

with q integer. In this case

x1(n) = ac(nT ′

s) , x2(n) = bc((n − d)T ′

s)

are the sampled in-phase and quadrature components of the complex

envelope

• Impractical for software defined radio since it ties the sampling frequency

to the carrier frequency.

• The proposed scheme requires onlyΩs > 2B andℓ ≥ 1. It is well

adapted to software defined radio: ifΩc changes,ℓ andωb change and the

filtersh1(n) andh2(n) can be recomputed by windowing their closed

form expressions.
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Computer Simulations

• The bandpass signalxc(t) has envelope

cc(t) = 2 cos(400 × 106 × 2πt)

+j[sin(400 × 106 × 2πt) + cos(175 × 106 × 2πt)]

with bandwith(B/2)/2π = 400MHz, and carrier frequency
Fc = Ωc/(2π) = 5.15GHz.

• The sub-ADC sampling frequencyF ′

s = Ω′

s/(2π) = 1GHz is above
B = 800MHz.

• Fc = 5F ′

s + 150, soℓ = 5 andωb = 0.3π.

• The sampled envelope

c(n) =
3

2
ej0.8πn +

1

2
e−j0.8πn +

j

2
[ej0.35πn + e−j0.35πn]

has tones at±0.8π and±0.35π.
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Computer Simulations (cont’d)
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• Timing offsetd = 0.425, between

di
4 = 0.4 andde

5 = 0.454.

• Additive noises with SNR =62dB

added tox1(n) andx2(n) to model

thermal, quantization noises

• Kaiser windows of orderM = 60

andβ = 6 used to approximate

filtersH1 andH2.

• MSE= -53.54dB, SFDR = 65dB.

• Secondary tones = residual

components ofe−j2ωbnc∗(n).
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Computer Simulations (cont’d)
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• Timing offsetd = di
4 + 0.001

close to a forbidden offset.

• D(ejω) almost singular over

[−0.7π, 0.7π], so filter gains

inaccurate over this band.

• Translated to[−π, 0.4π] by

e−j0.3πn demodulation.

• MSE = -47.27dB, SFDR =55dB.
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Interleaved ADC Calibration

• The effect of timing-skew mismatchesδ = d − d0 with d = true

mismatch,d0 = nominal mismatch, grows as increases. Due to the2πℓd

phase shift ofG(ejω).

• ADC1 andADC2 cannot share the sample S/H sinced 6= 1/2 ⇒

mismatches cannot be avoided.

• TIADC calibration is therefore needed. We propose ablind calibration

method under the assumption that the signal is oversampled with

oversampling ratioα = 1 − 2B/Ωs.
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Interleaved ADC Calibration

• If γ = g − 1 = relative gain mismatch, if

θ =




g

d



 , θ0 =




1

d0





denote the true and nominal parameter vectors (g = relative channel

gain), for small mismatches we use first-order expansions

H1(e
jω, d) = H10(e

jω) + δH11(e
jω)

H2(e
jω, θ) = (1 − γ)[H10(e

jω) + δH11(e
jω)] .

• Due to oversampling,C(ejω) = 0 overJ = [(1 − α)π, (1 + α)π]

mod (2π), sor(n, θ) = c(n)ejωbn has no power in the bandJ + ωb

mod (2π).
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Interleaved ADC Calibration

• let hBP(n) = impulse response of bandpass filter

HBP(ejω) =







1 ω ∈ I

0 otherwise .

Then the error signal

e(n, θ̂) = hBP(n) ∗ r(n, θ̂)

is zero forθ̂ = θ, nonzero otherwise.

• The blind estimation algorithm minimizes adaptively

J(θ̂) = E[|e(n, θ̂|2]

by using thestochastic gradientscheme

θ̂(n + 1) = θ̂(n) − µℜ{e∗(n, θ̂(n)∇
θ̂
e(n, θ̂(n))} .
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Interleaved ADC Calibration (cont’d)

H11(e
jω)

ĉ(n)
H10(e

jω)

H20(e
jω)

H21(e
jω)

δ̂

δ̂

HBP(ejω)
e11(n)

HBP(ejω)
e21(n)

HBP(ejω)
e2(n, θ̂)

HBP(ejω)
e(n, θ̂)

r(n, θ̂)

e−jωbn

x1(n)

x2(n)

1 − γ̂
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Interleaved ADC Calibration (cont’d)
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• Mismatches:γ = 10−2, δ = −0.25 ×

10−2.

• I = [−0.9π,−0.5π], FIR approxima-

tion of HBP with Kaiser window of

orderM = 80.

• Step sizesµγ = 10−3, µδ = 10−5.

• L = 5 × 104 samples. Final estimates

γ̂(L) = 0.77 × 10−2, δ̂ = −0.27 ×

10−2.
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Interleaved ADC Calibration (cont’d)
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Before calibration: MSE=-17.8dB,

SFDR=25dB
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After calibration: MSE=-36.51dB,

SFDR=43dB.
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Interleaved ADC Calibration (cont’d)

Carrier Freq. 2.15GHz 3.15Gz 4.15GHz 5.15 GHz

ℓ 2 3 4 5

MSE, Before (dB) -25.51 -22.24 -19.76 -17.79

MSE, After (dB) -50.89 -46.01 -40.97 -36.52

γ̂(L)(×10−3) 10 9.7 8.8 7.7

δ̂(L) (×10−3) 2.5 2.6 2.6 2.7

The performance of the envelope reconstruction scheme before and after

calibration degrades asℓ increases. Reason: the first order expansion of

correction filtersH1 andH2 becomes inaccurate. As soon asg andd are

estimated, the exact filtersH1 andH2 should be used instead of their first

order approximations.
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Conclusions

• A direct complex envelope sampling scheme for bandpass signals with

nonuniformly interleaved ADCs has been proposed. In combination with

tunable RF band selection filters and high bandwidth S/H circuits,

provides an approach to software defined radio/radar.

• TIADC calibration is required due to the sensitivity of the sampling

system to timing skew mismatches.

• The proposed sampling and blind calibration system work well for small

to moderate values ofℓ (Ωc/B). The calibration can be improved for

large values ofℓ by iterating the calibration using the most recentθ

estimate as reference in the first-order expansions ofH1(e
jω, d) and

H2(e
jω, θ).
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Thank you!
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