

Modeling Transformer Winding Behavior of Multi-Output Power Supplies using Mutual Impedance Effects

Bryce Hesterman

bryce@ieee.org

Utah State University September 16, 2021

IEEE MAGNETICS 🔊

https://aspire.usu.edu/

Overview

- This presentation introduces a circuit simulation model that includes both inductive coupling and mutual resistance effects
- Mutual inductance and mutual resistance concepts are reviewed
- Modeling approach particularly suited for cases not covered by Dowell's method such as transformers with multiple output windings
- Model parameters are extracted in the frequency domain, but the models also work well in the time domain
- A transformer for a Phase-Shifted Bridge is used as an example to illustrate the modeling approach

Dowell's Method Limitations

- Used to calculate the ac resistance of transformer windings
- Assumes infinite magnetizing inductance (equal and opposite amp-turns)
 - not intended for low permeability or gapped cores (amp-turns unequal and possible fringing loss)
- Assumes one independent current variable (currents scaled by turns ratios)
 - Interleaved windings are supported if they are connected in series
 - Multiple outputs with independent load currents not supported
 - Windings connected in parallel not supported because the current sharing ratio is unknown

Magnetic Coupling Review

- Two windings are coupled when some of the magnetic flux produced by currents flowing in either of the windings passes through both windings
- Only part of the flux produced by a current in one winding reaches other windings
- Flux which doesn't pass through both windings is called leakage flux
- Magnetic coupling can also be modeled in terms of self and mutual impedances

Self and Mutual Impedance Equations [2-5]

 $v_1 = (R_{11} + j\omega L_{11})i_1 + (R_{12} + j\omega L_{12})i_2 \qquad v_2 = (R_{21} + j\omega L_{21})i_1 + (R_{22} + j\omega L_{22})i_2$

 $R_{12} = R_{21} =$ Mutual Resistance $L_{12} = L_{21} =$ Mutual Inductance

Impedance Matrix Equation for N Windings

$$\begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_N \end{bmatrix} = \begin{bmatrix} Z_{11} & Z_{12} & \cdots & Z_{1N} \\ Z_{21} & Z_{22} & \cdots & Z_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ Z_{N1} & Z_{N2} & \cdots & Z_{NN} \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \\ \vdots \\ i_N \end{bmatrix}$$

- A set of coupled windings can be modeled with a matrix equation that relates frequency-domain winding voltages and currents with an impedance matrix [6]
- The values of impedance matrix elements can be obtained through FEA simulations or extracted from measurements [7]
- The impedance matrix values vary with frequency
- Impedance matrices are symmetric

ANSYS Maxwell Impedance Matrix Results

DesignVariation : Ipeak1='1A' Ipeak2='-3A' Ipeak3='-3A' Ipeak4='1A' Solution : Setup1 : LastAdaptive Parameter : ReduceMatrix Inductance Unit: nH

Adaptive Freq : 1Hz

R,L

		Winding1	Winding2	Winding3	Winding4
	Winding1	0.0090854, 1.942E+05	3.1879E-09, 64607	3.1406E-09, 64449	9.3019E-09, 1.9268E+05
	Winding2	3.1879E-09, 64607	0.0015571, 21581	1.0364E-09, 21535	3.0759E-09, 64376
	Winding3	3.1406E-09, 64449	1.0364E-09, 21535	0.0017664, 21575	3.0606E-09, 64519
	Winding4	9.3019E-09, 1.9268E+05	3.0759E-09, 64376	3.0606E-09, 64519	0.01418, 1.9399E+05
10000Hz					
R,L					
		Winding1	Winding2	Winding3	Winding4
	Winding1	0.035178, 1.9285E+05	0.0086129, 64162	0.0083757, 64014	0.024021, 1.9141E+05
	Winding2	0.0086129, 64162	0.0044826, 21433	0.0028806, 21389	0.008286, 63949
	Winding3	0.0083757, 64014	0.0028806, 21389	0.0046813, 21429	0.008507, 64089
	Winding4	0.024021, 1.9141E+05	0.008286, 63949	0.008507, 64089	0.039969, 1.927E+05
15848.9319246	5111Hz				
R,L					
		Winding1	Winding2	Winding3	Winding4
	Winding1	0.046427, 1.9273E+05	0.0123, 64123	0.011947, 63976	0.034285, 1.913E+05
	Winding2	0.0123, 64123	0.005745, 21419	0.0041158, 21376	0.011827, 63911
	Winding3	0.011947, 63976	0.0041158, 21376	0.0059462, 21416	0.012177, 64050
	Winding4	0.034285, 1.913E+05	0.011827, 63911	0.012177, 64050	0.051245, 1.9258E+05
25118.8643150	958Hz				
R,L					
		Winding1	Winding2	Winding3	Winding4
	Winding1	0.062141, 1.9263E+05	0.017424, 64088	0.01687, 63942	0.0484, 1.9121E+05
	Winding2	0.017424, 64088	0.0075022, 21408	0.0058219, 21364	0.016704, 63877
	Winding3	0.01687, 63942	0.0058219, 21364	0.0077053, 21404	0.017271, 64016
	Winding4	0.0484, 1.9121E+05	0.016704, 63877	0.017271, 64016	0.066999, 1.9248E+05

Transformer Comparison

Two transformers with different insulation thickness between the windings

3 layers 2 mil Nomex

Measured Capacitance between windings

1-2: 122 pF 2-3: 151 pF 3-4: 174 pF

SRF: 1.03 MHz

Measured Inductances @10 kHz Winding 1: 181 µH Winding 2: 20.2 µH Winding 3: 20.2 µH Winding 4: 181 µH

10 layers 2-mil Nomex

SRF: 998 kHz

Measured Inductances@ 10 kHz Winding 1: 192 µH Winding 2: 21.4 µH Winding 3: 21.4 µH Winding 4: 192 µH

FEA Self Inductances

3 layers 2 mil Nomex

10 layers 2 mil Nomex

Self Resistances

3 layers 2 mil Nomex

10 layers 2 mil Nomex

Mutual Inductances

L12, L13, L24 and L34 are nearly equal.

Mutual Resistances

3 layers 2 mil Nomex

10 layers 2 mil Nomex

Definition of Leakage Impedance

- Leakage impedance is the impedance measured at one winding when another winding is shorted
- Leakage impedances are a function of self and mutual impedances as shown in the equation above [8]
- Consequently, leakage impedances are a property of a pair of windings and generally can't be split up and assigned to individual windings when there are more than two windings

Leakage Inductances

3 layers 2 mil Nomex

10 layers 2 mil Nomex

Leakage Resistances

3 layers 2 mil Nomex

10 layers 2 mil Nomex

Inductive Coupling Coefficients

- The coupling coefficient is negative when the mutual inductance is negative
- The inequality ensures that the total stored energy is always positive for two windings
 - A more restrictive criterion is needed to ensure that the model is passive for more than two windings [9]

Resistive Coupling Coefficients

3 layers 2 mil Nomex

10 layers 2 mil Nomex

- A coupling coefficient for mutual resistance k^R can be defined as shown above [10]
- The coupling coefficient is negative when the mutual resistance is negative
- The inequality ensures that the total dissipated power is always positive for two windings
 - I presume that the same type of constraints described in [9] also apply to resistive coupling coefficients

- The leakage resistance (green) is less than the sum of the self-resistance R22 and the reflected self-resistance R33
- There is a significant reduction of the ac resistance due to the mutual resistance between these adjacent windings. The reduction in leakage resistance increases as the mutual resistance coupling increases.

- The leakage resistance (green) is less than the sum of the self-resistance R22 and the reflected self-resistance R33
- There is a significant reduction of the ac resistance due to the mutual resistance between these adjacent windings. The reduction in leakage resistance increases as the mutual resistance coupling increases.

3 layers 2 mil Nomex

- The leakage resistance (brown) is less than the sum of the self-resistance R11 and the reflected self-resistance R44
- These windings are not adjacent. The leakage resistance increases beyond the sum of the two winding resistances when the resistive coupling changes polarity.

10 layers 2 mil Nomex

- The leakage resistance (brown) is less than the sum of the self-resistance R11 and the reflected self-resistance R44
- These windings are not adjacent. The leakage resistance increases beyond the sum of the two winding resistances when the resistive coupling changes polarity.

Impedance of an Isolated Winding

ANSYS Maxwell 2D Radial Model

Core: Ferroxcube ETD49-25-16 3C97 (Core loss set to zero) Gap: 3 mil Bobbin: TDK B66368B1020T001 Winding: 12 Turns 0.003" x 1" copper foil Insulation: 0.002" Nomex

Turn-Turn spacing modeled as 0.003" based on measurements of wound bobbin

Impedance of an Isolated Winding

Impedance of Same Winding Within a Transformer

ANSYS Maxwell 2D Radial Model

Winding 1: 12 Turns 0.003" x 1" copper foil Winding 2: 4 Turns 0.007" x 1" copper foil Winding 3: 4 Turns 0.007" x 1" copper foil Winding 4: 12 Turns 0.003" x 1" copper foil Layer Insulation: 0.002" Nomex Winding Insulation: 10 Layer 0.002" Nomex

Nomex modeled as 0.003" based on measurements of wound bobbin

Impedance Comparison

Winding by itself

Equivalent Circuit Model of Winding Impedance

+	Lb1=0.00019432
+	Rb1=0.0090853
.param	RA11=13.2811248049748
+	RA12=198.581714665757
+	RA13=5684.2858376726
KA1 Lb	1 LA11 0.0321509449196223
KA2 Lb	1 LA12 0.0155856887378975
KA3 Lb	1 LA13 0.0132621479795541

.inc ETD49-25_12T.txt AC losses

Equivalent Circuit Model of Winding Impedance

R

NSF Engineering Research Center

Same Winding within a transformer

An Equivalent RL Circuit for a Four-Winding Transformer

- Model is based on methods described in [11,12]
- The physical windings are represented by L1, L2, L3 and L4
- Each physical winding is accompanied by auxiliary windings shunted by resistors that model the ac losses
- Increasing the number of auxiliary windings increases the frequency range of the model (3-aux ~ 10 MHz)
- Each physical winding is coupled to each of the auxiliary windings
- Some of the couplings could be negative
- The auxiliary windings have the same inductance as their associated physical winding
- The parameter values were determined by a solver in Mathcad that attempts to match the performance of the model to the impedance matrix data imported from Maxwell

Transformer Equivalent Circuit Model

SPIRE

NSF Engineering Research Center

UtshState C. University

.param	Lb1=0.0001942	1
+	Lb2=2.1581e-05	1
+	Lb3=2.1575e-05	1
+	Lb4=0.00019399	1
.param	Rb1=0.0090854	1
+	Rb2=0.0015571	1
+	Rb3=0.0017664	1
+	Rb4=0.01418	1
.param	RA11=6298.48735893051	1
+	RA12=7.82033324539965	1
+	RA13=1099.86211174956	1
+	RA21=2.58392936460871	1
+	RA22=19.9782676625286	1
+	RA23=714.052153435295	1
+	RA31=4.74552746006711	1
+	RA32=93.2466219025053	1
+	RA33=1147.41553865716	1
+	RA41=990.880353341061	1
+	RA42=689.178480736719	1
+	RA43=6874.80515163138	1
KA1 Lb1	L LA11 0.0174753852251423	1
KA2 Lb1	LA12 0.0600395501685122	1
KA3 Lb1	LA13 0.0259267489912189	j,
KA4 Lb1	L LA21 0.0102497019739799	1
KA5 Lb1	LA22 0.0261608216852448	1
KA6 Lb1	L LA23 0.00737161407564278	1
KA7 Lb1	L LA31 0.0374917853799379	1
KA8 Lb1	L LA32 -0.00511830441554691	
KA9 Lb1	L LA33 -0.0117244222029584	2
KA10 Lt	01 LA41 0.00674338243958032	1
KA11 Lt	D1 LA42 0.0153369384144078	1
KA12 Lt	D1 LA43 -0.0211255520600343	
KA13 Lt	2 LA11 -0.00407636485303306	1
KA14 Lt	2 LA12 0.0612265652683242	1
KA15 Lt	2 LA13 0.017060838144862	j

KA16 Lb2 LA21 0.00428842568705198 KA17 Lb2 LA22 0.027129657434239 KA18 Lb2 LA23 0.0170200265739508 KA19 Lb2 LA31 0.0377309178709713 KA20 Lb2 LA32 0.00659413200674197 KA21 Lb2 LA33 -0.00719794084932156 KA22 Lb2 LA41 0.0200791055468109 KA23 Lb2 LA42 0.00805373794823475 KA24 Lb2 LA43 -0.0278146234646167 KA25 Lb3 LA11 -0.000909264271214426 KA26 Lb3 LA12 0.061047766316242 KA27 Lb3 LA13 -0.0121169490727813 KA28 Lb3 LA21 -0.00439854443574395 KA29 Lb3 LA22 0.0272361149345052 KA30 Lb3 LA23 0.0182109194950555 KA31 Lb3 LA31 0.0377405288713751 KA32 Lb3 LA32 -0.00385677458622876 KA33 Lb3 LA33 0.00597414079828727 KA34 Lb3 LA41 0.0226614916107693 KA35 Lb3 LA42 0.00779219337346387 KA36 Lb3 LA43 -0.0275666211705724 KA37 Lb4 LA11 -0.0124709571098259 KA38 Lb4 LA12 0.0592117185958606 KA39 Lb4 LA13 -0.0238588649629732 KA40 Lb4 LA21 -0.0126287025191818 KA41 Lb4 LA22 0.0260993156183912 KA42 Lb4 LA23 -0.00761399596581985 KA43 Lb4 LA31 0.0374342121749694 KA44 Lb4 LA32 0.00597872288177876 KA45 Lb4 LA33 0.0110593303205595 KA46 Lb4 LA41 0.00715813706493723 KA47 Lb4 LA42 0.0159117145488322 KA48 Lb4 LA43 -0.0201749309394903 Kb1 Lb1 Lb2 0.997973892475517 Kb2 Lb1 Lb3 0.995671711106925 Kb3 Lb1 Lb4 0.992709900790831 Kb4 Lb2 Lb3 0.998007239231169 Kb5 Lb2 Lb4 0.994943764205363 Kb6 Lb3 Lb4 0.997292501813081

Model Coupling Coefficients

Physical Windings

$K_{mod}\left(k_{\mathcal{A}} ight) =$	$\begin{bmatrix} 1\\ 0.993\\ 0.979\\ 0.966\\ -0.014\\ 0.018\\ 0.055\\ -1.783 \cdot 10^{-5}\\ -0.033\\ 0.05\\ -3.819 \cdot 10^{-5}\\ -0.009\\ 0.114\\ 0.07\\ -0.014 \end{bmatrix}$	0.993 1 0.99 0.976 0.023 0.006 0.059 0.003 -0.089 0.054 0.003 0.01 0.099 0.047 0.014	$\begin{array}{c} 0.979\\ 0.99\\ 1\\ 0.99\\ -0.008\\ -0.023\\ 0.056\\ 7.623 \cdot 10^{-6}\\ -0.105\\ 0.051\\ 6.891 \cdot 10^{-5}\\ -0.013\\ 0.101\\ -0.036\\ 0.016\\ \end{array}$	0.966 0.976 0.99 1 0.036 -0.041 0.05 0.004 -0.054 0.045 -0.004 0.012 0.114 -0.085 -0.013	$\begin{array}{c} -0.014\\ 0.023\\ -0.008\\ 0.036\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$\begin{array}{c} 0.018\\ 0.006\\ -0.023\\ -0.041\\ 0\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	0.055 0.059 0.056 0.05 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} -1.783 \cdot 10^{-5} \\ 0.003 \\ 7.623 \cdot 10^{-6} \\ 0.004 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} -0.033\\ -0.089\\ -0.105\\ 0\\ 0\\ 0\\ 0\\ 0\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	0.05 0.054 0.051 0.045 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} -3.819 \cdot 10^{-5} \\ 0.003 \\ 6.891 \cdot 10^{-5} \\ -0.004 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0$	$\begin{array}{c} -0.009\\ 0.01\\ -0.013\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$\begin{array}{c} 0.114\\ 0.099\\ 0.101\\ 0.114\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$\begin{array}{c} 0.07\\ 0.047\\ -0.036\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$\begin{array}{c} -0.014\\ 0.014\\ 0.016\\ -0.013\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 1\end{array}$	$\begin{array}{c} 0.019\\ 0.007\\ -0.022\\ -0.039\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	eigenvals $\langle K_{mod}(k_A) \rangle =$	3.976231 1.021110 1.003832 1.001675 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.970672 0.019848 0.004485
	-0.014 0.019	0.014 0.007	0.016 -0.022	-0.013 -0.039	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0 0	1 0	0 1		0.004485 0.002148

- The couplings among the physical windings are high, but the auxiliary couplings are low
- A matrix of all the coupling coefficients used in the model can be used to check the stability of the model [9]
- All the eigenvalues of the coupling matrix must non-negative to ensure stability of the model
- The solver checks for stability and rejects unstable solutions
- The model is reduced-order because not all the couplings are included (the model in [11] includes all couplings)

Self Resistance and Inductance Capacitive Correction

Original Series Inductance	Original Series Resistance	Radian Frequency	Series Inductor Reactace	Equivalent Parallel Inductance Reactance	Parallel Resistance	<i>Cp</i> Reactance	Corrected Parallel Inductor Reactance	Corrected Series Inductor Reactance	Corrected Series Inductor Resistance	Corrected Series Inductance
L _s	R _s	2πf	ωLs	$\frac{X_{Ls}^2 + R_s^2}{X_{Ls}}$	$\frac{X_{Ls}^2 + R_s^2}{R_s}$	$\frac{-1}{\omega C_p}$	$\frac{1}{\frac{1}{X_{Lp}} - \frac{1}{X_{Cp}}}$	$\frac{R_p^2 X_{Lpc}}{X_{Lpc}^2 + R_p^2}$	$\frac{R_p X_{Lpc}^2}{X_{Lpc}^2 + R_p^2}$	$\frac{X_{Lsc}}{\omega}$
Res	sults	ω	X _{Ls}	X _{Lp}	R_p	X _{Cp}	X_{Lpc}	X _{Lsc}	R _{sc}	L_{sc}

RE

FEA and Equivalent Circuit Self Resistances and Inductances

Measured and Eq. Cir. Self Resistances and Inductances

FEA and Equivalent Circuit Leakage Inductances

Q

Measured and Equivalent Circuit Leakage Inductances

FEA and Equivalent Circuit Leakage Resistances

Measured and Equivalent Circuit Leakage Resistances

FEA and Equivalent Circuit Mutual Resistances

Measured and Equivalent Circuit Mutual Resistances

FEA and Equivalent Circuit Mutual Resistance Coupling

SPIRE

Measured and Equivalent Circuit Mutual Resistance Coupling

Self-Impedance SPICE Simulation

RE

Self-Impedance SPICE Simulation

Leakage-Impedance SPICE Simulation

.ac dec 10 10000 10MEG

.inc ETD49-25-16_12-4-4-12T.txt

RF

Leakage-Impedance SPICE Simulation

RE

NSF Engineering Research Center

Phase-Shifted Bridge Converter

TI UCC27714EVM-551Demo Board with new transformer and output circuit

Phase-Shifted Bridge Converter Power Stage

Simulation and Measured Test Results, Lzvs = 2.4 μ H SPICE based on FEA Data

2.4uH	Vin, V	lin, A	Vpos	Vneg	Rpos	Rneg	Pin	Pout	Eff
Measured	149.8	2.207	29.97	29.97	6.009	5.997	330.6	299.3	90.5%
SPICE	149.8	2.258	29.97	29.96	6.009	5.997	338.2	299.2	88.4%
Measured	149.9	1.166	29.97	31.15	6.009	106.5	174.8	158.6	90.7%
SPICE	149.9	1.172	29.96	32.82	6.009	106.5	175.7	159.5	90.8%
Measured	150.1	0.1023	29.98	2.03	106.0	5.997	15.4	8.5	55.2%
SPICE	150.1	0.1210	29.96	2.03	106.0	5.997	18.2	8.5	46.6%
Measured	150.1	0.1336	29.97	30.18	106.0	106.5	20.1	8.6	42.6%
SPICE	150.1	0.1379	29.91	29.92	106.0	106.5	20.7	8.4	40.6%

Simulation and Measured Test Results, Lzvs = 2.4 μ H SPICE based on Measured Data

2.4uH	Vin, V	lin, A	Vpos	Vneg	Rpos	Rneg	Pin	Pout	Eff
Measured	149.8	2.207	29.97	29.97	6.009	5.997	330.6	299.3	90.5%
SPICE	149.8	2.260	29.97	29.94	6.009	5.997	338.5	298.9	88.3%
Measured	149.9	1.166	29.97	31.15	6.009	106.5	174.8	158.6	90.7%
SPICE	149.9	1.176	29.96	32.60	6.009	106.5	176.3	159.4	90.4%
Measured	150.1	0.1023	29.98	2.03	106.0	5.997	15.4	8.5	55.2%
SPICE	150.1	0.1200	29.96	1.99	106.0	5.997	18.0	8.5	47.0%
Measured	150.1	0.1336	29.97	30.18	106.0	106.5	20.1	8.6	42.6%
SPICE	150.1	0.1152	29.96	29.97	106.0	106.5	17.3	8.4	48.8%

Simulation and Measured Test Results, Lzvs = 10.7 μ H SPICE based on FEA Data

10.7uH	Vin, V	lin, A	Vpos	Vneg	Rpos	Rneg	Pin	Pout	Eff
Measured	149.6	2.218	29.97	29.99	6.009	5.997	331.8	299.5	90.2%
SPICE	149.6	2.269	29.97	29.96	6.009	5.997	339.4	299.2	88.2%
Measured	149.9	1.170	29.97	31.03	6.009	106.5	175.4	158.5	90.4%
SPICE	149.9	1.168	29.96	31.05	6.009	106.5	175.1	158.4	90.5%
Measured	150.1	0.0897	29.98	2.09	106.0	5.997	13.5	8.5	63.0%
SPICE	150.1	0.10761	29.96	2.14	106.0	5.997	16.2	8.5	52.4%
Measured	150.1	0.1377	29.98	30.03	106.0	106.5	20.7	8.5	41.0%
SPICE	150.1	0.1141	29.94	29.95	106.0	106.5	17.1	8.4	49.1%

Simulation and Measured Test Results, Lzvs = 10.7 μ H SPICE based on Measured Data

10.7uH	Vin, V	lin, A	Vpos	Vneg	Rpos	Rneg	Pin	Pout	Eff
Measured	149.6	2.218	29.97	29.99	6.009	5.997	331.8	299.5	90.2%
SPICE	149.6	2.272	29.97	29.94	6.009	5.997	339.9	299.0	87.9%
Measured	149.9	1.170	29.97	31.03	6.009	106.5	175.4	158.5	90.4%
SPICE	149.9	1.195	29.96	30.68	6.009	106.5	179.2	158.3	88.3%
Measured	150.1	0.0897	29.98	2.09	106.0	5.997	13.5	8.5	63.0%
SPICE	150.1	0.1075	29.97	2.05	106.0	5.997	16.1	8.5	52.5%
Measured	150.1	0.1377	29.98	30.03	106.0	106.5	20.7	8.5	41.0%
SPICE	150.1	0.1148	29.95	29.97	106.0	106.5	17.2	8.4	49.0%

Transformer Primary Currents Lzvs = 2.4 μH, FEA-Based SPICE

RE

Transformer Primary Currents Lzvs = 2.4 μH, Meas-Based SPICE

Transformer Primary Currents Lzvs = 10.7 μH, FEA-Based SPICE

RF

Transformer Primary Currents Lzvs = 10.7 μH, Meas-Based SPICE

Phase-Shifted Bridge Transformer Loss Waveforms, FEA

NSF Engineering Research Center

Phase-Shifted Bridge Transformer Loss Waveforms, Meas

A S P I R

Maxwell 2D Pulse Test Transformer Model

All wires 22 AWG

All windings 38 turns

2 layers 2 mil tape between layers, 0.1mm

Core: ETD49/25/16-3C97

Gap: 3 mil spacer

Bobbin: TDK B66368B1020T001

Leakage Inductance Variation with Pulse Width

A voltage pulse is applied to winding 1 while winding 4 is shorted in order to show how the apparent leakage inductance varies with time.

Leakage Inductance Simulations

• The range for the effective leakage inductance in the time domain is close to the range in the frequency domain

Diode Reverse Recovery Test Circuit [13]

PWL(0 -1 3u -1 3.01u 1 5u 1 5.01u -1)

.SUBCKT 1N6631 anode cathode .param IS=300n N=1.5 Tau=60n Y0=1 alpha=5MEG va=0.1 Dpn anode N001 Dj .MODEL Dj D(IS {IS} N {N}) Cdiff N002 diff 1 Vdiff diff 0 0V Ediff N003 0 Value {I(Vdiff)} Hcsense N005 0 VHcsense 1 VHcsense N005 0 VHcsense 1 VHcsense N001 N004 0V G_charge_current anode N004 N003 0 1 E_charge_calculator N002 0 VALUE{Tau*(V(N005)-va*V(N003))} G_base_region_current N004 cathode VALUE {(V(N004) - V(cathode))*(Y0+alpha*V(N002)) } .ENDS

Diode Reverse Recovery Comparison

Mutual Resistance Model Enabled

Mutual Resistance Model Disabled

 The mutual resistance model reduces the effective inductance and increases the peak reverse recovery current

Conclusions

- This mutual impedance circuit model can be made to match FEA results very closely
- The mutual impedance circuit model matches measured data fairly well, but the range of frequencies where accurate results can be obtained are more limited compared to FEA-based models because of capacitive effects
- Compensating for the winding capacitances can extend the frequency range of accurate measurements
- The SPICE circuit models produced from FEA simulations are more accurate at predicting the current sharing than the models produced by LCR measurements
- The SPICE circuit models produced from both the FEA simulations and LCR measurements accurately predict the dc measurements
- All of the model variations were able to capture a loading condition of concern

Conclusions (continued)

- The leakage inductance for closely-coupled winding pairs decreases with frequency
- The inductance decrease is due to skin and proximity effects
- The effective leakage inductance for pulsed waveforms can be determined by dividing the applied voltage by the time derivative of the current
- The effective leakage inductance for short pulses is less than for longer pulses
- The currents produced by the reverse recovery of fast diodes connected to transformer outputs depend on the high-frequency leakage inductance values
- Example files can be found at <u>http://www.verimod.com/resources.html</u>

References

- [1] P. L. Dowell, "Effects of eddy currents in transformer windings," in Proceedings of the Institution of Electrical Engineers, vol. 113, no. 8, pp. 1387-1394, August 1966. https://ieeexplore.ieee.org/document/5247417
- [2] James Spreen, "Electrical terminal representation of conductor loss in transformers," IEEE Transactions on Power Electronics, vol. 5, No. 4, Oct 1990, pp. 424-429. https://ieeexplore.ieee.org/document/60685/
- [3] D. R. Zimmanck and C. R. Sullivan, "Efficient calculation of winding-loss resistance matrices for magnetic components," 2010 IEEE 12th Workshop on Control and Modeling for Power Electronics (COMPEL), Boulder, CO, 2010, pp. 1-5. <u>https://ieeexplore.ieee.org/document/5562359</u>
- [4] JE Bracken, "Mutual resistance in Spicelink," Ansoft Corporation, Pittsburgh, PA, 2000 http://www.oldfriend.url.tw/article/Sl/mutualresistance.pdf
- [5] Mathworks Help Center, "Implement inductances with mutual coupling" https://www.mathworks.com/help/physmod/sps/powersys/ref/mutualinductance.html
- [6] D. L. Alvarez, J. A. Rosero and E. E. Mombello, "Analysis of impedance matrix in transformer windings through the Finite Element Method (FEM)," 2014 IEEE PES Transmission & Distribution Conference and Exposition – Latin America (PES T&D-LA), 2014, pp. 1-7 https://ieeexplore.ieee.org/document/6955273
- [7] K. Niyomsatian, J. J. C. Gyselinck and R. V. Sabariego, "Experimental Extraction of Winding Resistance in Litz-Wire Transformers—Influence of Winding Mutual Resistance," in IEEE Transactions on Power Electronics, vol. 34, no. 7, pp. 6736-6746, July 2019. <u>https://ieeexplore.ieee.org/document/8493262</u>

References (continued)

- [8] W. G. Hurley, D. J. Wilcox and P. S. McNamara, "Calculation of short circuit impedance and leakage impedance in transformer windings," PESC '91 Record 22nd Annual IEEE Power Electronics Specialists Conference, 1991, pp. 651-658
 https://ieeexplore.ieee.org/document/162744
- [9] Yilmaz Tokad and Myril B. Reed, "Criteria and Tests for Realizability of the Inductance Matrix," Trans. AIEE, Part I, Communications and Electronics, Vol. 78, Jan. 1960, pp. 924-926 <u>https://ieeexplore.ieee.org/document/6368492/</u>
- [10] Teruyoshi Sasayama et al., "Proposal of Concept of Theoretical Formula for Equivalent Resistances for Zone-Control Induction Heating System and Theoretical and Numerical Examination," COMPUMAG 2013, June 30 – July 4, 2013 Budapest, Hungary <u>https://www.compumag.org/Proceedings/2013_Budapest/files/pa6-1.pdf</u>
- [11] E. E. Mombello and K. Moller, "New power transformer model for the calculation of electromagnetic resonant transient phenomena including frequency-dependent losses," IEEE Transactions on Power Delivery, vol. 15, No. 1, January 2000, pp. 167-174. <u>https://ieeexplore.ieee.org/document/847246/</u>
- [12] B. L. Hesterman, E. E. Mombello and K. Moller, "Discussion of "New power transformer model for the calculation of electromagnetic resonant transient phenomena including frequency-dependent losses" [Closure to discussion]," in IEEE Transactions on Power Delivery, vol. 15, no. 4, pp. 1320-1323, Oct. 2000. <u>https://ieeexplore.ieee.org/document/891529</u>
- [13] K. J. Tseng and S. Pan, "Modified charge-control equation for more realistic simulation of power diode characteristics," Proceedings of Power Conversion Conference - PCC '97, 1997, pp. 439-444 vol.1 https://ieeexplore.ieee.org/document/645651

