Switched-Capacitor Converters: Big & Small

Michael Seeman Ph.D. 2009, UC Berkeley SCV-PELS April 21, 2010

Outline

- Problem & motivation
- Applications for SC converters
- Switched-capacitor fundamentals
- Power conversion for energyharvesting sensor nodes
- SC converters for microprocessors
- Conclusions

Problem & Motivation

- Inductor-based Converters:
 - Cannot be integrated
 - The inductor is often the largest and most expensive component
 - Causes EMI issues
 - + Efficient at arbitrary conversion ratios
- Switched-capacitor (SC) converters:
 - + Can easily be integrated
 - + No inductors
 - + EMI well controlled
 - Efficient at a single (or a few) conversion ratios

Applications

Existing:

RS-232 Interfaces

Microprocessors

Motor Drive

And more...

Switched-Capacitor Fundamentals

Simple 2:1 converter:

- The flying capacitor C1 shuttles charge from V_{IN} to V_{OUT} .
 - Fixed charge ratio of 2:1
- A voltage sag on the output is necessary to facilitate charge transfer
- Fundamental output impedance:

Switched-Capacitor Losses

Capacitor Losses:

Charge transfer loss:

$$P_{SSL} = I_{OUT}^2 \sum_{caps} \frac{a_{c,i}^2}{C_i f_{sw}}$$

Switch Losses:

Resistive loss:

$$P_{FSL} = 2I_{OUT}^2 \sum_{switches} a_{r,i}^2 R_i$$

Contributes to R_{OUT}, V_{OUT}

Bottom plate loss:

$$P_{CAP} = f_{sw} \sum_{caps} \alpha C_i V_i^2$$

Parasitic loss:

$$P_{SW} = f_{sw} \sum_{switches} C_{GS,i} V_{GS}^2 + C_{DS,i} V_{DS}^2$$

No direct R_{OUT} contribution

[1] Seeman, Sanders, "Analysis and Optimization of Switched-Capacitor Converters," IEEE TPEL, Mar. 2008.

Performance Optimization

Performance Optimization

Comparison vs. Boost

1 V to 3 V Boost: 1A out

1:3 SC Ladder: 6 Switches Top 4: 1 V, 1 A Bottom 2: 1 V, 2 A

1:3 Boost: 2 switches Each: 3 V, 3 A

Comparison vs. Boost

Wireless Sensor Node Converters

- Distributed, inexpensive sensors for a plethora of applications
- Batteries and wires increase cost and liability
- Low-bandwidth and aggressive duty cycling reduces power usage to microwatts
- Miniaturization expands
 application space

Node Structure

Environmental Energy

Power Source			Power [µW/cm ³]		Notes	
Solar (outside)			15,000		(per square cm)	
Solar (inside)			30		(per square cm)	
Temperature			40-5,000		(per square cm, 5 K gradient)	
Air flow			380		(5 m/s, 5% efficiency)	
Pressure variation			17			
Vibrations			375		AC appliances vibrate	
					at multin	ples of 60 Hz!
	Vibratio		n Source	Frequ	uency [Hz]	Peak Acceleration [m/s ²]
		Clothes Dryer	r			3.5
		Small Microwave Oven		121		2.25
		HVAC vents in offi	60		0.2-1.5	
		Wooden Deck (with people walking)		385		1.3
		External Windows	100		0.7	
FORM		Refrigerator	240		0.1	

S. Roundy, et. al., "Improving Power Output for Vibrational-Based Energy Scavengers," IEEE Pervasive Computing, Jan-Mar 2005, pp. 28-36.

Energy Harvesters

Voltage

0.6V/cell (outdoors) 0.1V/cell (indoors)

Considerations

Efficiency drops inside due to carrier recombination and spectrum shift

1-100V (macro) 10mV-1V (MEMS) Resonance must be tuned to excitation frequency for maximum output, sensitive to variation

1-3 μV/K / junctionRequires large gradient and
heat output; low output
voltage unless thousands of
junctions used

Ultra-compact Energy Storage

- Commercial LiPoly batteries only get down to ~5mAh; 300mg
- Printed batteries and supercapacitors allow flexible placement and size
- Li-Ion and AgZn batteries under development

Example: PicoCube TPMS

A wireless sensor node for tire pressure sensing:

Synchronous Rectifier

Converter Designs

- Native 0.13µm NMOS devices used for high performance
- 30 MHz switching frequency using ~1nF on-chip capacitors
- Hysteretic feedback used to regulate output voltage by varying converter switching frequency
- Novel gate drive structures used to drive triple-well devices

Seeman, et. al. An ultra-low-power Power Management IC for energy-scavenged Wireless Sensor Nodes. IEEE PESC 2008.

Power Circuitry Performance

Power Conditioning: Power Conversion: Synchronous Rectifier Switched-Cap Converters 0.9 Matched Load $R_1 = R_s$ 0.8 Ideal diode rectifier ($V_D=0$) 0.8 This chip, \leq 1 kHz input Regulated 0.7 This chip, 10 kHz input Output Power [mW] 9.0 0.6 $V_{\rm D}$ = 0.5V diode rectifier Efficiency 0.4 Peak efficiency of 88% (max possible 92%) 0.3 Unregulated 0.2 0.2 0.1 3:2 step-down (0.7V) 1:2 step-up (2.1V) 0.5 1.5 2 2.5 3 3.5 1 4 10⁻³ 10^{-2} 10^{-1} 10° Input Voltage Amplitude [V] Output Power Level [mW] V_{DD} = 1.1 V NiMH; 2.1 k Ω source

SC Converters for Microprocessors

Intel Atom (2008) 45nm, 25mm² 2.5W TDP

April 21, 2010

- Power-scalable on-die switchedcapacitor voltage regulator (SCVR) to supply numerous on-die voltage rails
- Common voltages: 1.05V, 0.8V, 0.65V, 0.3V
 - From a 1.8V input
- Small cells are tiled to provide necessary power for each rail

This work was partially supported by Intel Corp.

Also, see "Le, Seeman, Sanders, Sathe, Naffziger, Alon. A 32nm fully integrated reconfigurable switched-capacitor DC-DC converter delivering 0.55W/mm² at 81% efficiency, ISSCC 2010

SCVR: Topology

For low-voltage rails, add an additional 2:1 at the output

Switch	3:2	2:1	3:1	S1° S2°
S1	Ф1	Ф1	Ф1	
S2	Ф2	Ф2	Ф2	
S3	Φ1	Ф1		
S4	—	Ф2	Ф2	
S5	Φ1	Φ1		\$5° \$6°
S6	—	Ф2	Ф2	C2
S7	Φ1	Φ1	Φ1	- S8 - S7 -
S8	Ф2	Ф2	Ф2	<u>+</u>
S9	Ф2		Φ1	

 V_{IN}

SCVR: Performance

SCVR: Performance Tradeoffs

Improving SCVR Efficiency

- Improving switch conductance/capacitance
- Improving capacitor technology
 - Higher capacitance density
 - Lower bottom plate capacitance ratio
- Parasitic reduction schemes
 - Charge transfer switches
 - Resonant gate/drain
- Control tricks can help for power backoff

Regulation with SCVRs

- Regulation is critical to maintain output voltage under variation in input and load.
- No inductor allows ultra-fast transient response
 - Given ultra-fast control logic
- Regulation by ratio-changing and R_{OUT} modulation:

Regulation and Efficiency

Example Transient Response

Conclusions

- Switched-capacitor converters exhibit significant advantages over inductor-based converters in many applications
- SC converters can be easily modeled using relatively simple analysis methods
- SC converters and CMOS rectifiers make ideal sensor node power converters
- Modern CMOS technology allows for highpower-density on-chip power conversion

