

Residential Battery Storage: The cornerstone of the Nanogrid and distributed power systems

Antonio Ginart Santa Clara, California

Power System Centralized vs. Distributed

EEE

IICS SOCIET

Distributed Paradigm Shift - Renewables

Disadvantages

- □ More complex technologies
- □ More expensive in many cases
- Less centralized control
- Potential for a less reliable grid
- Need of new technology and regulations
- Potential for greater power quality issues

Advantages

- □ Potential for better local resource use
- Consumers have greater independence
- □Environmentally friendlier
- Potential for a more robust and reliable grid (non-single collapse point)

 - □Natural disaster
- Potential for more economically sound macro-analysis

Minimum-cost of Electrification Electrification Model (REM)

400,000 non-electrified buildings in the Vaishali district of Bihar, India.

Grid extension (low-voltage lines)
 Stand alone system (Nanogrid)
 Microgrid

MIT News (January 2016)

Nanogrid Operation Mode

Power Quality Issues (Back up Mode)

Line voltages under A/C 5 TON system start up

		¹ /2 cycle 8.3ms	1 cycle 16.6ms	3600 cycles 60 s	>3600 cycles > 60 s
1	Transients				
2	Sag and swell				
3	Noise				
4	Harmonics				
5	Under and over Voltages				

The standard IEEE 1100

- Short term voltage variations (sag ,swell, and transients)
- Long term voltage variations (over and under voltages, harmonics and noise)

Residential Nanogrid DC-AC

- 12V- 400V
- Advantages
 - More efficient
 - Easy control, stable
- Disadvantages
 - Large investment required
 - Difficult interruption (protection, fire)

AC Nanogrid

- Advantages
 - Required no additional investment
 - Easy retrofit
- Disadvantages
 - Control and stability are more difficult
 - Region dependent
 - 200-230V 50Hz
 - 120/240V 60 Hz US

Basic DC and AC Nanogrids: Solar and Energy Storage

DC Nanogrid

IEEE POWER ELECTRONICS SOCIETY Powering a Sustainable Future

AC Nanogrid

DC Residential Nanogrid

DC Residential Nanogrid- Control

AC Residential Nanogrid

Control

Droop ControlVoltages and Frequency

Load Handling and Criticality

Residential Load

Droop AC control (Inverter)

The Bode plots of the output impedance of Inverters L-inverter (with L = 7 mH, $R = 0.1 \mathbf{Q}$, and $C_o = 0 \mu \text{F}$) R-inverter (with L = 7 mH, $R = 8\mathbf{Q}$, and $Co = 0 \mu \text{F}$) C-inverter (with L = 7 mH, $R = 0.1 \mathbf{Q}$, and $Co = 161 \mu \text{F}$).

Droop AC control

 $P = \left(\frac{EV_o}{Z_o}\cos\delta - \frac{V_o^2}{Z_o}\right)\cos\theta + \frac{EV_o}{Z_o}\sin\delta\sin\theta,$ $Q = \left(\frac{EV_o}{Z_o}\cos\delta - \frac{V_o^2}{Z_o}\right)\sin\theta - \frac{EV_o}{Z_o}\sin\delta\cos\theta.$ Assuming $\delta \sim 0$ and Inductive $\frac{\pi}{2}$ $P \sim \frac{EV_0}{Z_0} \delta \qquad Q \sim \frac{EV_0}{Z_0} - \frac{V_0^2}{Z_0}$ $P \sim \delta$ $Q \sim E$

Universal Droop Control of Inverters

 v_r

Droop controllers for L-, R-, C-, RL-, and RC-inverters.

Inverter type	θ	Input-output/Droop relationship	Droop controller	
Т	$\frac{\pi}{2}$	$P \sim \delta$	$E = E^* - nQ$	
L-		$Q \sim E$	$\omega = \omega^* - mP$	
р	0°	$P \sim E$	$E = E^* - nP$	
K-		$Q\sim-\delta$	$\omega = \omega^* + mQ$	
C	$-\frac{\pi}{2}$	$P \sim -\delta$	$E = E^* + nQ$	
C-		$Q \sim -E$	$\omega = \omega^* + mP$	
R _C -	$(-\frac{\pi}{2},0)$	Coupled	Depends on θ	
R _L -	$(0, \frac{\pi}{2})$	Coupled	Depends on θ	

Fundamentals Back up battery storage

Energy Storage (Why Battery & Capacitor?

Air CompressorHydraulics

Thermal (Molten Salt)

Inertia Wheels

Magnetics

Capacitor (Super)

Battery

General Flow Batteries

Dynamic Power Compensation (very fast – few milliseconds)

□Sized according its nanogrid

Able to regulate the nanogrid

UWeather prediction via internet

Fast Energy Storage

Batteries: State-of-the-Art

- Lead Acid
- Nickel–Cadmium
- Lithium-ion
 - Lithium cobalt oxide LiCoO2 (metal oxide)
 - Lithium manganese oxide LiMn2O4 (tunneled structure)
 - Lithium iron-phosphate LiFePO4 (olivine structure)

IOXUS super capacitor

2.70V Cylindrical cells (-40°C to +85°C)						
2.85V Cylindrical cells (-40°C to +65°C) 2.70V Pouch cells (-20°C to +65°C)						 High energy density High power density Low ESR
Cylindrical	100F	385F	1250F	2000F	3000F	 1M cycles Multiple patents
Pouch	160F 210F	445F	600F	1245F	1600F	

Batteries

- Basic structure
 - Battery cell
 - Cell arrangements
 - Balancing circuits
- Modeling
- Life and modeling
 - Cycles
 - Current dependence
 - Temperature dependence

- Positive electrode
- Negative electrode (carbon-graphite)
- Electrolyte and separator

Modeling

10¹

(a)

Frequency (Hz)

10⁰

10²

10³

10-2

10-2

10-1

75

100

10-2

r r r r nul

10-1

10⁰

a roud

Frequency (Hz)

10¹

(b)

10²

a cond

10³

T I I I IIII

10⁴

1.1.1111

10⁵

T TITUL T TITU

10⁵

10⁴

Life Model- Charge capacitace

Capacity loss as a function of charge and discharge bandwidth.

https://www.nrel.gov/docs/fy13osti/58550.pdf

Nissan Leaf case

both electrodes

500

140

120

Life model _Impedance Real Part and Aging

Battery dimensioning Charge and discharge

Solar – storage relation

Peak demand (other aspect)

Battery Spec Temperature Charge and Discharge

$$OC = \int_{V_1}^{V_2} I(t) dt$$

DC/AC

Battery Specs Temperature Charge and Discharge Energy storage

Energy and Power Arrangement

3 ampere-hours, 3.2 V 14x16

Energy = kW/h

Power= kW

Battery system in a nanogrid go from 4kw/h to 16 kW/h

Inverters Fundamentals

Solar Inverter Evolution

98

97

* Kouro, S. Leon, J.I.; Vinnikov, D.; Franquelo, L.G. "Grid-Connected Photovoltaic Systems: An Overview of Recent Research and Emerging PV Converter Technology" Industrial Electronics Magazine, IEEE Volume:9, Issue: 1 P:47 - 61 March 2015 32

IEEE

RONICS SOCIETY

a Sustainable Future

DWER

Average weight

3-4

4-5

PV Inverter with DC Power<6.5kW

-Transformerless

-HF-Transformer

Bi-directional Inverter (Voltages based)

- Inverter Topology Type (Basic topologies and their advantages and disadvantages)
- Inverter Connection Type
 - Low-frequency transformer:
- The basic structure consists of one or more H-bridges Single H-bridge, high PWM
 - Center tap
 - Multiple H-bridges with interleaving
- The course contains some design examples.
 - High-frequency transformer
- The isolation is accomplished by high-frequency switching on the DC side using a highfrequency core, traditionally ferrite. Recent developments in low-cost and low-loss materials are challenging ferrite use.
 - Topology and Design examples, including inverter and magnetic parts
 - Use of new semiconductors GaN and SIC
 - Transformerless

Eliminating the transformer reduces cost and significantly improves efficiency. This course analyzes the topologies that can achieve transformerless operation

Voltages Based Bi-directional inverter Sustainable Future

Low Frequency Bi-directional inverter

 $V_{RMS} = 4.44 f B_{\text{max}} A.N$

Low Frequency Bi-directional inverter interleaving

HF Inverter _Hard Switch

High frequency ZCS

S1

t₁

t₂

t₃

(a)

Vicor solution

Xiaoyan Yu and Paul Yeaman, "A new high efficiency isolated bidirectional DC-DC converter for DC-bus and battery bank interface

Transformerless Design _Motivation

- Cost reduction with additional weight and size reduction
- Efficiency increase and low cost

Average Parameter Comparisons for PV Inverters up to 6.5kW

	Transformerless	<u>LF-</u> <u>Transformer</u>	HF- Transformer
Avg. Efficiency (%)	95.7	94.5	94.1
Avg. Power per Weight (kW/kg)	0.213	0.0753	0.168
Avg. Power per Volume (kW/m ³)	115.2	84.7	80.2

EXAMPLE OF TRANSFORMERLESS INVERTER

INVERTER DEVICE, ENERGY STORAGE SYSTEM AND METHOD OF CONTROLLING AN INVERTER DEVICE Publication number: 20170077836

With interleaving

7KW 2- Split phase system 240/120V

PRINCIPLE OF OPERATION 3-LEVEL

Reverse energy transfer

DC/DC basic operation

TRANSFORMERLESS OPERATION

nт

(b)

m

Ground current for 1uF total parasitic capacitance

Evaluation Ground Current UL 1741

UL 1741 Ground Fault Detection Specifications vs. Inverter DC Rating

Inverter DC Rating (kW)	Maximum Ground Fault Current (Amps)
0-25	1
25-50	2
50-100	3
100-250	4
>250	5

Note: kW = kilowatts

Current Based Bi-directional inverter

AC-link and bidirectional switches

SOFT SWITCHED HIGH FREQUENCY AC-LINK CONVERTER

ANAND KUMAR BALAKRISHNAN

Inverter tied-grid control

Generalized d,q control

POWER RELATION BETWEEN A BATTERY SYSTEM

$$P_{DC} = I_{DC} \cdot V_{DC} = \eta \cdot I_{RMS} \cdot V_{RMS} = P_{AC}$$

$$I_{DC}(t) = 2I_{DC} \sin^{2}(\omega t)$$

$$V_{DC}I_{DC} = V_{RMS} \sqrt{2} \sin(\omega t) I_{RMS} \sqrt{2} \sin(\omega t) \Rightarrow$$

$$V_{DC}I_{DC} = 2V_{RMS}I_{RMS} \sin^{2}(\omega t)$$

$$I_{DC} = \frac{1}{\pi} \int_{0}^{\pi} I_{p} \sin^{2}(\alpha) d\alpha = \frac{1}{2}I_{p}$$

$$I_{RMS} = \sqrt{\frac{1}{\pi}} \int_{0}^{\pi} I_{p}^{2} \sin^{4}(\alpha) d\alpha} = \frac{\sqrt{3}}{2\sqrt{2}}I_{p}$$

Inverter Control

Stand Alone

GUI

GUI and Weather Prediction

Energy Storage Prices

• 10,000 cycles and/or 10 years, 80% charge

http://eupd-research.com/

Nanogrid-Energy Storage: Why Now?

□ Renewables Intermittence (generate "the need")

□Price (large price reduction)

□ Regulation (zero export to the grid)

Tariffs (peak demand)

UWeather Prediction via Internet

Power grid reliability and safetySmart Grid

Technology Conversion To Availability and Affordability

Fault Diagnosis for Robust Inverter Power Drives

Power drives are used for induction motor control, uninterruptible power supplies, and in electrical vehicles. The increasing penetration of power drives makes their reliability, robustness, and early diagnosis a central point of attention especially in planning, designing, and financing. This book explores fault diagnosis of inverter drives to enable early diagnosis and robust design for efficient long life operation.

Fault Diagnosis for Robust Inverter Power Drives focuses on early diagnosis, prognosis, and intrinsic reliability of inverter power drives and their applications. Topics include material degradation, materials, semiconductors, inverter topologies, and early diagnosis as well as fault tolerant software strategies.

This work is highly relevant to researchers, power electronics professionals, and system designers in aerospace, hybrid and electrical cars, and power systems.

About the Editor

Antonio E. Ginart Antonio E. Ginart is principal R&D engineer at SmartWires. He serves as Affiliate Faculty Member of the College of Engineering of the University of Georgia and Adjunct professor at Kennesaw State University. He has over 30 years of experience in power electronics, inverter drives design and motors control which has led to over 70 publications and patents.

The Institution of Engineering and Technology

Fault Diagnosis for Robust Inverter Power Drives

Edited by Antonio Ginart

Thanks! Questions?