

Fundamental Limits of Power Conversion

Energy Buffered converters

José A. Cobos June 2017

...that is, the **power processed by the components**

(energy stored and delivered by reactive components, times frequency)

...which is **different than the nominal power** because there is some "direct power"

...it is **NOT about reducing the nominal power** at system level ("differential power converters", "partial power",...)

Same "Differential" Power, P_{diff}...

...but arbitrary "Nominal" Power!

...with same components and losses, very different power levels may be converted

Buck vs Buck-boost

For the same $v_{in},\,v_o,\,i_{in},\,i_o,\,different\,Volume$ and losses

...Size and losses are smaller in a Buck converter than in a Buck-boost

"Differential Power" is half in Buck (in this example)

Context Timeline Think P_{diff} !! Wilson et al. J. Sebastián et al. Sanders et al. D. H. Wolaver Dan Wolaver vner at Wolaver Consulting Wolaver Consulting Greater Boston Area • 3 & 1966 LITTLE BOX Challenge 1996 (PESC) 2008 1969 CEIU 2014- 2014-2015 P_{ac} Formal **TI-Buck** Bounds "Single stage \$1,000,000 P_{dc} in SC Energy buffered bounds (Volume, no cost) converter" VA_{rating} reference: 40 in3 TSIBra Shalle winner, 14 in3 BOX CHALLEN Standard inverter WWW CET-POWER COM

DEFINITION

Differential Power

Google

Solar Panel

1 120Hz ripple (constant input current)

2 Miniaturization of Components (HF Power Conversion)

3 Thermal (T=60[°]C)

4 EMC

Energy Buffered Converters:

Energy Buffered converters

Non-linear Impact of C_s on Δv_s

...and what is the optimum power topology for these voltage and current levels?

Let us see, for the VERY specific case of $70\mu F$

perform both functions?

Let us see, for the VERY specific case of $70\mu F$

At that specific instant ($\omega t = \pi/2$):

- 4kW output power (P)
- 3.7kW flow "DIRECTLY" to the load (P_{dir})
- 0.3kW are internally processed by the power stage !! (P_{diff})
 - 1. What about typical architectures?
 - 2. How to calculate P_{dir} and P_{L}
 - 3. Can this be extended to the whole line cycle?

Let us see, for the VERY specific case of 70μ F At that specific instant ($\omega t = \pi/2$):

6kW of internal power processing (P_L), compared to 300W !!

It is because $P_{dir} = 0$ in buck-boost stages

Let us see, for the VERY specific case of 70μ F At that specific instant ($\omega t = \pi/2$):

6kW of internal power processing (P_L) compared to 300W !!

It is because $P_{dir} = 0$ in buck-boost stages

Same current for "n" functions

At time t

At time t

Differential Power

$$P_{diff^{+}} = \overline{\iota}_{L} \cdot \nu_{L}^{+} \cdot d$$
$$P_{diff^{-}} = \overline{\iota}_{L} \cdot \nu_{L}^{-} \cdot (1 - d)$$

Differential Power

Calculate $P_{dir}(t)$, $P_{dir}(t)$,... and average intervals

We practice with our "optimum" converter

How to

Differential Power

Average model, no need to know the specific topology !!

Differential Power

$$P_{diff}^{+} = \sum P_j > o$$

$$P_{diff}^{-} = \sum P_k < o$$

 $P_{diff^{+}} = \bar{\iota}_{dir} \cdot (V_{in} - \nu_{o})$ $= P_{diff^{-}} = (i_{o} - \bar{\iota}_{in}) \cdot \nu_{o}$ $= P \cdot (\mathbf{1} - \frac{\nu_{o}}{\nu_{in}})$

How to Step up

 $P_{diff^{+}} = \bar{\iota}_{dir} \cdot (V_{in} - v_o)$ $= P_{diff^{-}} = (i_{o} - \bar{\iota}_{in}) \cdot v_o$ $= \mathbf{P} \cdot (\mathbf{1} - \frac{v_o}{V_{in}})$

Differential Power

$$P_{diff^{+}} = i_g \cdot V_g$$
$$P_{diff^{-}} = i_o \cdot v_o$$
$$= \mathbf{P}$$

How to

Differential Power

Energy Buffered converters

Differential Power, for **30% discharge ratio**

 $P_{diff} = 478/2,000 = 0.24$

How to implement such inverter ??

Based on the charging phase:

We calculate P_{diff} to check if it is a good idea

Can this concept be extended to the whole line cycle?

We have the methodology to compare...

Comparison at 600V and 30% discharge ratio

Our "EBC_output invention" was better than "2 stage" at 600V

Comparison at 600V and 30% discharge ratio

Our "EBC_output invention" was worse than "Active Filter" at 600V

Comparison at 600V and 30% discharge ratio

Active Filter is the best choice at V_{bus} = 600V and 30% discharge ratio

Comparison at 400V and 30% discharge ratio

Discharge ratio limited to 20% in "2 stage" and "3 stage" converters

Comparison at 400V and 30% discharge ratio

- "2 stage" would be preferred BUT... ...both step-down and step-up functions are needed.
- "Active Filter" is therefore preferred

Comparison at 400V and 20% discharge ratio

- But 20% discharge ratio implies "large" capacitor.
- Discarded for the competition, but good for "low cost" products

Comparison at 400V and 40% discharge ratio

This has been the preferred option of most teams !!

Remind, optimum $P_{diff} = 0.24$

Active Filter preferred option at 600V

Active Filter preferred option at 400V by most teams !!

A given power architecture...

...may process different Pdiff, depending on how you operate it

Internal power is HALF !!

Partial Results

2kW 16W loss (only one mode) Efficiency: 99,2% 12,9 in3 Tmáx = 55,5°C

... enables Energy Efficiency

