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Motivation

• Future aircraft systems will rely more on electrical and electronic 

components

• UAV’s with all electric powertrain are increasingly being used for 

long missions

• Electrical and Electronic components have increasingly critical 

role in on-board, autonomous functions for 

– Powertrain subsystems and components 

– Batteries are the sole energy storage 

– Integrated navigation (INAV) module combines output of the GPS 

model and inertial measurement unit

• Assumption of new functionality increases number of faults with 

perhaps unanticipated fault modes

• We need understanding of behavior of deteriorated components 

to develop capability to anticipate failures/predict remaining 

RUL



Motivation

• LiPo Batteries 
▪ Lithium corrosion, plating, electrolyte layer formation, and contact losses 

• Permanent Magnet Brushless DC Motors
▪ Bearing wear, and electrical faults in the form of poor contacts and insulation 

deterioration 

• Electronics Speed Controllers 
▪ MOSFETs are not synchronized while operating, or when the switching circuit is 

malfunctioning 

• Study Cascading faults 

• Effects of component level aging/degradation on system performance



Agenda

• Introduction to Prognostics

• Introduction to Model-based Prognostics

• Research Approach
– Architecture

– Accelerated Aging as a Prognostics Research Tool

• Case Study I: Electrolytic Capacitors

• Case Study II: Li-Ion Batteries

• Closing Remarks



INTRODUCTION TO 

PROGNOSTICS



Definitions

• prog-nos-tic 

– M-W.com – “Something that foretells”

– PHM Community – “Estimation of the Remaining Useful Life of a 

component”

• Remaining Useful Life (RUL) – The amount of time a 

component can be expected to continue operating within 

its stated specifications.

– Dependent on future operating conditions

– Input commands

– Environment

– Loads

So what is “Prognostics” anyway?



Why Model-Based Prognostics?

• With model-based algorithms, 
models are inputs
– given a new problem, we use the 

same general algorithms

– only the models should change

• Model-based prognostics 
approaches are applicable to a 
large class of systems, given a 
model

• Approach can be formulated 
mathematically, clearly and 
precisely

Prognostics 

Framework

System 

Inputs

System 

Outputs

System 

Models

Predictions



Why Prognostics?

Home Base

Objective #1

Objective #2

Objective #3

Objective #4

Electric 

Aircraft

Example: UAV Mission

Visit waypoints to accomplish science objectives. Predict aircraft battery end of discharge to 

determine which objectives can be met. Based on prediction, plan optimal route. Replan if 

prediction changes.

Prognostics: 

Full discharge 

before mission 

completion



Why Prognostics?

• Prognostics enables:
– Adopting condition-based maintenance strategies, 

instead of time-based maintenance

– Optimally scheduling maintenance

– Optimally planning for spare components

– Reconfiguring the system to avoid using the component 
before it fails

– Prolonging component life by modifying how the 
component is used (e.g., load shedding)

– Optimally plan or replan a mission

• System operations can be optimized in a variety of 
ways



The Basic Idea : Batteries Example

Time

Cell 

Voltage

Voltage Threshold

tEOD

ΔtEOD

t

E = End of Discharge (EOD)



PROGNOSTIC MEHTODS
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Sources of Knowledge

• FMEA / FMECA

– Failure modes

– Effects (and Criticality) – which failure modes to go after

• Fault Tree Analysis

– Propagation Models

• Designers / Reliability Engineers

– System knowledge and insight

– Expected / nominal behavior of the system

• Seeded Failure Testing / Accelerated Life Testing

– Data

– Failure signatures

– Effects of environmental conditions

• Fielded Systems

– Sensors measurements

– Maintenance logs

– Fleet Statistics

– Performance Validation
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Prognostic Algorithm Categories

• Type I: Reliability Data-based
– Use population based statistical model

– These methods consider historical time to failure data which are used to model 
the failure distribution.  They estimate the life of a typical component under 
nominal usage conditions.

– Ex: Weibull Analysis

• Type II: Stress-based
– Use population based fault growth model – learned from accumulated knowledge

– These methods also consider the environmental stresses (temperature, load, 
vibration, etc.) on the component.  They estimate the life of an average 
component under specific usage conditions.

– Ex: Proportional Hazards Model

• Type III: Condition-based
– Individual component based data-driven model

– These methods also consider the measured or inferred component degradation.  
They estimate the life of a specific component under specific usage and 
degradation conditions.

– Ex: Cumulative Damage Model, Filtering and State Estimation



Data-Driven Methods

• Model is based solely on data collected from the system

• Some system knowledge may still be handy:
– What the system ‘is’

– What the failure modes are

– What sensor information is available

– Which sensors may contain indicators of fault progression (and how those 
signals may ‘grow’)

• General steps:
– Gather what information you can (if any)

– Determine which sensors give good trends

– Process the data to “clean it up” – try to get nice, monotonic trends

– Determine threshold(s) either from experience (data) or requirements

– Use the model to predict RUL

• Regression / trending

• Mapping (e.g., using a neural network)

• Statistics



Data-Driven Methods

• Pros

– Easy and Fast to implement

• Several off-the-shelf packages are available for data mining

– May identify relationships that were not previously considered

• Can consider all relationships without prejudice

• Cons

– Requires lots of data and a “balanced” approach

• Most of the time, lots of run-to-failure data are not available

• High risk of “over-learning” the data

• Conversely, there’s also a risk of “over-generalizing”

– Results may be counter- (or even un-)intuitive

• Correlation does not always imply causality!

– Can be computationally intensive, both for analysis and implementation

• Example techniques

– Regression analysis

– Neural Networks (NN)

– Bayesian updates

– Relevance vector machines (RVM)



Physics-Based Methods

• Description of a system’s underlying physics using suitable 
representation

• Some examples:
– Model derived from “First Principles”

• Encapsulate fundamental laws of physics

▪ PDEs

▪ Euler-Lagrange Equations

– Empirical model chosen based on an understanding of the dynamics of a 
system

• Lumped Parameter Model

• Classical 1st (or higher) order response curves

– Mappings of stressors onto damage accumulation

• Finite Element Model

• High-fidelity Simulation Model

• Something in the model correlates to the failure mode(s) of interest



Physics-Based Models

• Pros
– Results tend to be intuitive

• Based on modeled phenomenon

• And when they’re not, they’re still instructive (e.g., identifying needs for more 
fidelity or unmodeled effects)

– Models can be reused

• Tuning of parameters can be used to account for differences in design

– If incorporated early enough in the design process, can drive sensor 
requirements (adding or removing)

– Computationally efficient to implement

• Cons
– Model development requires a thorough understanding of the system

– High-fidelity models can be computationally intensive

• Examples
– Paris-Erdogan Crack Growth Model

– Taylor tool wear model

– Corrosion model

– Abrasion model



RESEARCH APPROACH



Research Approach

Development of remaining life prediction algorithms that take into account the different sources of 
uncertainty while leveraging physics-based degradation models that considers future operational 

and environmental conditions

Development of degradation models based on the physics of the device and the failure 
mechanisms

Development of accelerated aging testbeds that facilitate the exploration of different failure 
mechanisms and aid the understanding of damage progression 

Identification of precursors of failure which play an essential role in the prediction of remaining life 

Identification of failure modes and their relationship to their particular failure 
mechanisms
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Methodology

• State vector includes dynamics of operation/degradation process

• EOL defined at time in which performance variable cross failure 

threshold

• Failure threshold could be crisp or also a random variable



Algorithm Maturation through Validation Experiments
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TRL	3	

TRL	4	
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ARCHITECTURE
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Fault Detection 

Isolation & 

Identification

Damage 

Estimation
Prediction

uk p(EOLk|y0:k)
System

yk p(xk,θk|y0:k)

p(RULk|y0:k)

F

Prognostics

Model-Based Architecture

System receives 

inputs, produces 

outputs

Identify active 

damage 

mechanisms

Estimate current 

state and 

parameter values

Predict EOL and 

RUL as probability 

distributions

1 2

3 4

Estimation Prediction



Problem Requirements
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System Model



Initial Problem Formulation



Concept: ComputeEOL



Computational Algorithm



Integrated Prognostics Architecture

• System (battery) gets inputs (current) and produces outputs (voltage)

• State estimation computes estimate of state given estimates of age 
parameters

• EOD prediction computes prediction of time of EOD, given state and 
age parameter estimates

• Age parameter estimation computes estimates of age parameters

• Age rate parameter estimation computes parameters defining aging 
rate progression

• EOL prediction computes prediction of time of EOL, given age 
parameter and age rate parameter estimates



State Estimation

• What is the current system state and its associated 

uncertainty?

– Input: system outputs y from k0 to k, y(k0:k)

– Output: p(x(k),θ(k)|y(k0:k))

• Battery models are nonlinear, so require nonlinear state 

estimator (e.g., extended Kalman filter, particle filter, 

unscented Kalman filter)

• Use unscented Kalman filter (UKF)

– Straight forward to implement and tune performance

– Computationally efficient (number of samples linear in size of state 

space)



Prediction

• Most algorithms operate by simulating samples forward in 

time until E

• Algorithms must account for several sources of uncertainty 

besides that in the initial state

– A representation of that uncertainty is required for the selected 

prediction algorithm

– A specific description of that uncertainty is required (e.g., mean, 

variance)



Accelerated Aging

• Traditionally used to assess the reliability of products with 

expected lifetimes in the order of thousands of hours

– in a considerably shorter amount of time

• Provides opportunities for the development and validation of 

prognostic algorithms 

• Such experiments are invaluable since run-to-failure data for 

prognostics is rarely or never available

• Unlike reliability studies, prognostics is concerned not only with 

time to failure of devices but with the degradation process 

leading to an irreversible failure

– This requires in-situ measurements of key output variables and 

observable parameters in the accelerated aging process with the 

associated time information

• Thermal, electrical and mechanical overstresses are commonly 

used for accelerated aging tests of electronics



CASE STUDY I: CAPACITORS
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Degradation Mechanisms

Decrease in capacitance

Increase in ESR

Electrolyte Evaporation

Degradation of Oxide Film

Degradation in 

Anode foil

Degradation in  

Cathode foil

Increase in internal Temperature

Over Voltage Stress

Excess Ripple Current

Charging\Discharging Cycles
Over Voltage Stress

Excess Ripple Current

Charging\Discharging Cycles

Increase in internal Temperature

Over Voltage Stress
Excess Ripple Current

Charging\Discharging Cycles

Degradation Causes\ Mechanisms Failure Modes

Over Voltage Stress

Excess Ripple Current

Charging\Discharging Cycles

High Ambient Temperature

High Ambient Temperature

High Ambient Temperature

Prolonged Use -Nominal Degradation

Prolonged Use -Nominal Degradation

Aging in the 

dielectric material

Prolonged Use 

Electrical Stress



Capacitor Degradation Model
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• Decrease in electrolyte volume :

• Capacitance (C) ): Physics-Based Model:

• Electrolyte evaporation dominant degradation phenomenon

– First principles: Capacitance degradation as a function of electrolyte loss 

Capacitance Degradation Model



Dynamic Model of Capacitance

As

dA dsdC
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Dynamic Model of Capacitance



• Decrease in electrolyte volume :

• ESR

– Based on mechanical structure and electrochemistry.

– With changes in RE (electrolyte resistance )

Dynamic Model of ESR



Physics-based /

Empirical 

Degradation models
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• Derived physics-based degradation model 

• The following system structure is implemented for 

state estimation 

• The state variable (xk) is the current health state at 

aging time (tp)

Unscented Kalman Filter for State Estimation

Process noise was estimated from the model regression for the empirical model

Measurement noise was estimated from the EIS measurements 
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RUL and Validation – Capacitance Degradation Model 
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RUL and Validation –ESR Degradation Model  
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CASE STUDY II: LI-ION 

BATTERIES



Battery Modeling

− Equivalent Circuit Empirical Models

▪ Most common approach

▪ Various model complexities used 

▪ Difficulty in incorporating aging effects



▪ An equivalent circuit battery model is used 

to represent the battery terminal voltage 

as a function of current and the charge 

stored in 3 capacitive elements

▪ Two laboratory loading experiments are 

used to fit the following parameterization 

coefficients
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Discharge

Reduction at pos. electrode:

Li1-nCoO2 + nLi+ + ne-
→ LiCoO2

Oxidation at neg. electrode:

LinC→ nLi+ + ne- + C

Current flows + to –

Electrons flow – to +

Lithium ions flow – to +

Charge

Oxidation at pos. electrode:

LiCoO2 → Li1-nCoO2 + nLi+ + ne-

Reduction at neg. electrode:

nLi+ + ne- + C → LinC

Current flows – to +

Electrons flow + to –

Lithium ions flow + to –

− Electrochemical Models vs. Empirical Models
▪ Battery physics models enable more direct representation of age-related 

changes in battery dynamics than empirical models

▪ Typically have a higher computational cost and more unknown parameters

Battery Modeling



Electrochemical Li-ion Model

• Lumped-parameter, ordinary differential equations

• Capture voltage contributions from different sources

– Equilibrium potential →Nernst equation with Redlich-Kister

expansion

– Concentration overpotential→ split electrodes into surface 

and bulk control volumes

– Surface overpotential→

Butler-Volmer equation 

applied at surface layers

– Ohmic overpotential→

Constant lumped resistance 

accounting for current 

collector resistances, 

electrolyte resistance, 

solid-phase ohmic resistances



Battery Aging

• Contributions from both decrease in mobile Li 

ions (lost due to side reactions related to 

aging) and increase in internal resistance

– Modeled with decrease in “qmax” parameter, 

used to compute mole fraction

– Modeled with increase in “Ro” parameter 

capturing lumped resistances

Simulated
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Edge UAV Use Case

• Piloted and autonomous 

missions, visiting waypoints

• Require 2-minute warning 

for EOD so pilot/autopilot 

has sufficient time to land 

safely

– Depends on battery age

– Need to track both current 

level of charge and current 

battery age

– Based on current battery 

state, current battery age, and 

expected future usage, can 

predict EOD and correctly 

issue 2-minute warning
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Predication over Flight Plan

• Measured and predicted 

battery current, voltage 

and SOC different time 

steps

• The min, max and median 

predictions are plotted 

from each sample time 

until the predicated SOC 

reaches 30%

• Predictions for remaining flight time for entire 

flight plan

• Overestimate till parasitic load is injected

• Once the parasitic load is detected the 

remaining flying time time prediction shifts down.

Ref : E. Hogge et al, “Verification of a Remaining Flying Time Prediction System for Small Electric Aircraft”, PHM 2015



Performance Requirements

• Accuracy requirements for the two minute warning were specified as:

– The prognostic algorithm shall raise an alarm no later than two minutes 

before the lowest battery SOC estimate falls below 30% for at least 90% of 

verification trial runs.

– The prognostic algorithm shall raise an alarm no earlier than three minutes 

before the lowest battery SOC estimate falls below 30% for at least 90% of 

verification trial runs.

– Verification trial statistics must be computed using at least 20 experimental 

runs



CLOSING REMARKS



Remarks (1/2)

• Electrical and Electronics PHM Maturity - scientific 

and engineering challenges

• Research approach challenges

– Balance lack of knowledge of the system vs own expertise 

on particular PHM tools

– Data-driven or model-based?

• Data is always needed but more important, 

information about degradation/aging processes 

is key

• Experiments and field data
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Remarks (2/2)

• Aging systems as a research tool

– Value in terms of exploration of precursors of failure and 

their measurements is evident

– Still an open question on how degradation models and 

algorithms are translated to the real usage timescale

• Validate models and algorithms with data from 

experiments and fielded systems

• A success in developing PHM methodologies in an 

real usage application will require the right team
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