

Towards a wireless future: Next-generation power electronics

Jungwon Choi

Assistant Professor

Department of Electrical and Computer Engineering University of Minnesota jwchoi@umn.edu

February 21, 2020

University of Minnesota

Wireless charging

Short-range distance/ Small-power applications

Mid-range distance/ High-power applications

QUALCOMM HALO

Photo by Qualcomm

Wireless power transfer: Transmission of electrical energy without wires

Wireless Power Transfer Revenue by Application

Chart 1.1 Wireless Power Revenue by Application, World Markets: 2012-2020

http://www.navigantresearch.com/wp-content/uploads/2012/07/WPOW-12-Executive-Summary.pdf

Automation in factory/warehouse

ECE Department

February 21, 2020

WPT in AGV

- Developing WPT system for automated guided vehicles (AGVs).
- □ The WPT charging battery for these applications: up to 2 kW.
- We need to reduce the volume and weight of WPT systems for AGVs while maintaining high efficiency.

Towards a wireless future: Bridging between power electronics and needs of modern technology

How to miniaturize power converter

Increasing switching frequency

- Increasing switching frequency
 - Reducing energy storage requirements
 - Fast response

Advantage of 10's of MHz operation

- □ Increasing power density
- Air-core inductors: No core losses

Switching losses at 10's of MHz

ECE Department

University of Minnesota

Single-ended resonant inverter

J M Rivas, " A High-Frequency Resonant Inverter Topology With Low-Voltage Stress," In TPEL, 2018.

Output power vs switching frequency in WPT

- \square *P*_{OUT} in WPT decreases in a linear trend with frequency.
- This limitation is primarily determined by power electronics limitations.
- □ Thanks to wide band gap devices, P_{OUT} and F_S increased 10 times in the last 10 years.

J. Dai, "A Survey of Wireless Power Transfer and a Critical Comparison of Inductive and Capacitive Coupling for Small Gap Applications," In IEEE Transactions on Power Electronics}, vol. 30, pp. 6017-6029, 2015.

Wide band gap materials

Parameters	Si	4H-SiC	GaN	Diamond
Energy bandgap, E_g (eV)	1.1	3.3	3.4	5.5
Critical Electric field, E_C (MV/cm)	0.25	2.2	3	10
Electron drift velocity, v_{sat} (cm/s)	1×10 ⁷	2×10 ⁷	2.2×10 ⁷	2.7×10 ⁷
Thermal conductivity, λ (W/cm-K)	1.5	4.9	1.3	22

□ The advent of wide band gap materials

- Wider energy bandgap and larger E-field: higher breakdown voltage
- Higher electron saturation velocity: higher switching frequencies
- Higher thermal conductivity (e.g., SiC and diamond): improving heat spreading

Enhancement-mode GaN FET

Parameters	Si MOSFET ARF 521	eGAN FET GS66508P
V _{BR}	500 V	650 V
R _{DS,ON} @ 25°C	560 $m\Omega$	52 mΩ
R _{DS,ON} @ 150 ^o C	-	140 $m\Omega$
$C_{ISS} = C_{gs} + C_{gd}$	780 pF	200 pF
$C_{OSS} = C_{ds} + C_{gd}$	125 pF	67 pF
$C_{RSS} = C_{gd}$	7 pF	2 pF
R _G	0.56 Ω	1.5 Ω

eGaN FET characteristics

- Low drain-source on-resistance at room temperature
- Low gate capacitance

Class Φ_2 Inverter with eGaN FET

- **Class** Φ_2 inverter topology: reducing $V_{DS,MAX}$ and using single device.
- Inductors : air core inductors.
- U With 50 Ω load, $P_{IN} = 1450 W$, $P_{OUT} = 1371 W$ with efficiency of 94% at $V_{IN} = 280 V$, $F_s = 13.56 MHz$.

15

D Power density: $105 W/in^3$

How to increase output power to 2 kW?

Approach 1 Approach 2 Gan FET (650 V rating) □ SiC MOSFET (1200 V rating) Push-pull class Φ_2 inverter \Box Single-ended class Φ_2 inverter C_{S1} L_{S1} L_{MR1} C_{MR1} $v_{DSI}(t)$ V_{IN} $v_{GSI}(t)$ + v_{load}(t) Load V_{IN} Cp C_{MR1} v_{GS2} (t) $v_{DS2}(t)$ C_{MR} L_{MR2} $C_{S2}^{\prime \prime}$ L_{S2}

J Choi, et al, "Comparison of SiC and eGaN devices in a 6.78 MHz 2.2 kW resonant inverter for wireless power transfer," 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, 2016, pp. 1-6

ECE Department

February 21, 2020

Comparison of eGaN FETs and SiC MOSFETs

	Approach 1	Approach 2
Parameters	eGaN FET	GE SIC MOSFET
Package	GaNpx	DE-150
	GS66508P	GET2N45RF GET2N45RF 0949 PHILIPPINES
V _{BR}	650 V	1200 V
I _D	30 A	60 A
R _{DS,ON} @ 25 ^o C	$55m\Omega$	25 mΩ
R _{DS,ON} @ 150 ^o C	140 $m\Omega$	-
R _{DS,ON} @ 175 ^o C	-	42 mΩ
C _{ISS}	260 pF	3164 pF
C _{OSS}	65 pF	199 pF
R _G	1.5 Ω	1Ω

Gate losses in WBG devices

u Hard switching: $P_{GATE} = C_{iss} \cdot V_G^2 \cdot f_s$

□ Sinusoidal switching: $P_{GATE} = 2\pi^2 \cdot C_{iss}^2 \cdot V_G^2 \cdot f_s^2 \cdot R_G$

Trapezoidal switching: $P_{GATE} = C_{iss}^2 \cdot V_G^2 \cdot f_s \cdot R_G \cdot (\frac{1}{t_r} + \frac{1}{t_f})$

Device	GE SIC MOSFET	eGaN FET
V _{GS}	20 V	10 V
Hard switching	17.2 W	0.27 W
Sinusoidal switching	14.53 W	0.03 W
Trapezoidal switching	12.1 W	0.02 W

 $F_{S} = 13.56 MHz$

$F_{S} = 6.78 MHz$

Device	GE SIC MOSFET	eGaN FET
V_{GS}	20 V	10 V
Hard switching	8.6 W	0.18 W
Sinusoidal switching	5.7 W	0.03 W
Trapezoidal switching	6 W	0.02 W

Push-pull inverter performance at $V_{IN} = 200 V$

Parameter	Measured	Simulated	
V _{DS,MAX}	407 V	414 V	
V _{OUT,RMS}	310 V	320 V	
P _{OUT}	1927 W	2120 W	
Efficiency	96%	96%	

Single inverter performance at $V_{IN} = 440 V$

Parameter	Measured	Simulated	
V _{DS,MAX}	940 V	942 V	
V _{OUT,RMS}	332 V	333 V	
P _{OUT}	2204 W	2224 W	
Efficiency	93%	96%	

Performance comparison

eGaN FETs in push-pull inverter

- Higher efficiency, small input current ripple
- Lower power density, complicated gate driver

SiC MOSFET in single inverter

- □ Simple topology, easier gate driving, higher power density
- Lower efficiency, higher input current ripple

Towards a wireless future: Bridging between power electronics and needs of modern technology

Inductive coupling

Using Magnetic field to transmit power

Mid-range distance, high-power WPT

- □ Magnetic resonant coupling (MRC): Magnetic field + resonance
- Efficiency: above 90%, delivering power over a wide range of air gaps.
- High-power applications: Breakdown voltage of capacitor is important.

Open-type MRC coils

Each consists of two coils having a resonant inter-coil capacitance.

We can adjust a coil resonant frequency by changing conductor size and/or separation between coils.

J. Choi, "13.56 MHz 1.3 kW resonant converter with GaN FET for wireless power transfer," In Wireless Power Transfer Conference (WPTC), IEEE, 2015.

MRC coils with class Φ_2 inverter

Distance variations in different AGVs

Alignment variations in dynamic charging

Misalignment between transmitting and receiving coils while driving

Alignment variations in MRC coils

- □ Distance or alignment variations \rightarrow Coil impedance (Z_{IN}) variations
- Resonant inverters are designed for a specific load value and sensitive to the load variations.

Resistance compression network (RCN)

- Compression network can transform and transfer all provided energy from input to the resistive load without losses.
- Example
 - A 100:1 variation in R around the center \rightarrow 5.05:1 variation in Z_{IN} .

 $\Box \ Z_1 = R_1 + jX_1 = |Z_1| \angle \theta_1, Z_2 = R_2 + jX_2 = |Z_2| \angle \theta_2$

Y. Han, O. Leitermann, D. A. Jackson, J. M. Rivas and D. J. Perreault, "Resistance Compression Networks for Radio-Frequency Power Conversion," in *IEEE Transactions on Power Electronics*, vol. 22, no. 1, pp. 41-53, Jan. 2007.

RCN with MRC coils

Assuming that two coil impedances are the same.

$$Z_1 = Z_2 = Z_L = R_L + jX_L = |Z_L| \angle \theta_L$$
$$Z_{IN} = Z_{1,RCN} \parallel Z_{2,RCN} = (jwL_{RCN} + Z_L) \parallel \left(\frac{1}{jwC_{RCN}} + Z_L\right) = |Z_{in}| \angle \theta_{IN}$$

Phase compression network (PCN)

- PCN compresses phase shifts in the coil impedance.
- □ The load line is marked on the Smith chart.

Phase compression network (PCN)

By adding the passive components in series or parallel, the load line can be rotated to the real axis on the Smith chart.

Impedance compression network (ICN)

J. Choi and J. Rivas, "Implementing an impedance compression network to correct misalignment in a wireless power transfer system," 2017 *IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL)*, Stanford, CA, 2017, pp. 1-8.

February 21, 2020

University of Minnesota

Experimental results of MRC coils with ICN

Parameter	Value	Parameter	Value
L ₁	1.68 µH	<i>C</i> ₁	82 pF
L_2	1.68 µH	<i>C</i> ₂	83 pF
L_3	2.02 µH	<i>C</i> ₃	71 pF
L_4	2.02 µH	C_4	73 pF

- Horizontal alignment varies from 0 mm to 80mm.
- Distance: 100 mm
- Resonant frequency: 13.56MHz
- Copper tube

Measured coil impedance with horizontal misalignments

The horizontal alignment between coils varies from 0 mm to 80 mm.

 $\frac{|Z_{IN}| @0 mm}{|Z_{IN}| @80 mm} = 3.07 \text{ without ICN}, \quad \frac{|Z_{IN}| @0 mm}{|Z_{IN}| @80 mm} = 1.85 \text{ with ICN}$

The phase of the coil impedance is well-compressed with the ICN.

Simulated results of ICN with class Φ_2 inverter

- Cannot maintain ZVS
- Efficiency decreases from 95% to 88%.

- Maintain ZVS
- Efficiency: constant at 95%

Dc-to-dc resonant converter with MRC coils and ICN

Dc-to-dc resonant converter

- Class Φ_2 inverter with eGaN FET
- Impedance compression network
- Magnetic resonant coupling coils
- Class DE rectifier

February 21, 2020

Experimental results of dc-to-dc converter with ICN

- □ With the ICN, the class Φ_2 inverter maintain ZVS and the drain waveforms are identical each other.
- **D**c-to-dc system efficiency \approx 76%.
- □ Inverter efficiency \approx 95%.

Towards a wireless future: Bridging between power electronics and needs of modern technology

WPT in AGV

Optimizing WPT system for automated guided vehicles (AGV) and automated guided forklift (AGF).

42

Dynamic charging: EVs to charge themselves during driving.

WPT in small-power applications

- Replace wires to coils to deliver power in joints or any rotational components in robots
- Many biomedical devices require miniaturized WPT technology.
 - Pace maker, Stimulators
 - Blood clot prevention

S. Kikuchi, T. Sakata, E. Takahashi and H. Kanno, "Development of wireless power transfer system for robot arm with rotary and linear movement," 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Banff, AB, 2016, pp. 1616-1621.

P. Abiri, A. Abiri, R. Packard, Y. Ding, A. Yousefi, J. Ma, M. Bershon, K. Nguyen, D. Markovic, S. Moloudi and T. Hsiai, "Inductively powered wireless pacing via a miniature pacemaker and remote stimulation control system," *Scientific Reports volume 7, Article number: 6180 (2017).*

Plasma generation

Semiconductor thin-film processes for etching, chemical vapor deposition (CVD) and physical vapor deposition (PVD).

44

- □ The size and efficiency of RF power generator has to improved.
- Very high frequency operation (above 30 MHz) and the impedance matching with variable loads are required.

http://www.daihen.co.jp/en/products/fineplasma/

Switching device study

- Wide band gap devices such as eGaN FETs or SiC MOSFETs have a lot of potential to improve performance of high-frequency, high-power converters.
- However, performance of these devices have not been well proved yet to operate at VHF.
- **Developing** Ga_2O_3 devices, ultra wide-bandgap (UWBG) devices.

Safety issues in wireless power transfer

- □ Human exposure issue is one of the major concerns in WPT systems.
- Left: ICNIRP reference levels for exposure to time-varying electric and magnetic fields.
- Right: IEEE Reference levels for exposure to time-varying electric and magnetic fields.
- Need to study the maximum limits of output power at MHz frequency.

Summary

- Overcoming technical limitations of dc-to-ac inverters by designing high-power (above 2 kW) and high-efficiency (above 90%) systems to operate at 10's of MHz switching frequency.
- Using Wideband gap devices such as SiC MOSFETs or eGaN FETs to reduce the size and weight of the entire WPT systems and improve system performance.
- Designing an open-type 4-coil unit to eliminate need for external capacitors in high-power operation.
- Implementing an impedance compression network (ICN) to compensate for distance and alignment variations between coils in a WPT system without controlling or tracking systems.
- Extending this approach to various industrial applications such as EVs, plasma generation, robotics and biomedical devices

Thank you!