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Wireless charging
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Short-range distance/
Small-power applications

Mid-range distance/ 
High-power applications

Photo by QualcommPhoto by Engadget
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Wireless power transfer: 
Transmission of electrical energy without wires

Inductive coupling Capacitive coupling
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Wireless Power Transfer Revenue by Application

http://www.navigantresearch.com/wp-content/uploads/2012/07/WPOW-12-Executive-Summary.pdf
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Automation in factory/warehouse
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Photo by Business insider
Photo by Assembly magazine

Photo by AmazonPhoto by Amazon
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q Developing WPT system for automated guided vehicles (AGVs).
q The WPT charging battery for these applications: up to 2 kW.
q We need to reduce the volume and weight of WPT systems for 

AGVs while maintaining high efficiency.

WPT in AGV
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Towards a wireless future:
Bridging between power electronics and needs of 

modern technology

Power Electronics

Miniaturization Wireless 
Technology
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q Increasing switching frequency 
• Reducing energy storage requirements
• Fast response

How to miniaturize power converter

Increasing switching frequency

Foot print: 12 x 12 !!"

February 21, 2020

Foot print: 7 x 7 !!"
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q Increasing power density
q Air-core inductors: No core losses

Advantage of 10’s of MHz operation

Power
Density

Frequency

~500W/in3

~50W/in3
Conventional

Air-Core

~200KHz ~1MHz ~10MHz ~500MHz
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Switching losses at 10’s of MHz

Hard switching operation Soft switching operation

!"#(%) '"(%) !"#(%) '"(%)

t t

Resonant converterConventional converter

(#),+,##(%)

t

(#),+,##(%)

t

Zero voltage switchingTurn on

February 21, 2020 10



University of MinnesotaECE Department

Single-ended resonant inverter
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Class E inverter

Class Φ" inverter

4x#$%

2x#$%

Zero voltage switching
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G D Ewing, ” High-efficiency radio-frequency power amplifiers," In 1965.

J M Rivas, ” A High-Frequency Resonant Inverter Topology With Low-Voltage Stress," In TPEL, 2018.
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q !"#$ in WPT decreases in a linear trend with frequency.

q This limitation is primarily determined by power electronics limitations.

q Thanks to wide band gap devices, !"#$ and () increased 10 times in the 
last 10 years.

Output power vs switching frequency in WPT

February 21, 2020

6.78MHz 13.56MHz 

J. Dai, "A Survey of Wireless Power Transfer and a Critical Comparison of Inductive and Capacitive Coupling for Small Gap 

Applications,” In IEEE Transactions on Power Electronics}, vol. 30, pp. 6017-6029, 2015.
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q The advent of wide band gap materials
• Wider energy bandgap and larger E-field: higher breakdown 

voltage
• Higher electron saturation velocity: higher switching frequencies
• Higher thermal conductivity (e.g., SiC and diamond): improving 

heat spreading

Wide band gap materials

Parameters Si 4H-SiC GaN Diamond
Energy bandgap, !"(eV) 1.1 3.3 3.4 5.5

Critical Electric field, !#(MV/cm) 0.25 2.2 3 10

Electron drift velocity, $%&'(cm/s) 1×10+ ,×-./ ,. ,×-./ ,. /×-./

Thermal conductivity, 1(W/cm-K) 1.5 4.9 1.3 22
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q eGaN FET characteristics
• Low drain-source on-resistance at room temperature
• Low gate capacitance

Enhancement-mode GaN FET
Parameters Si MOSFET

ARF 521
eGAN FET
GS66508P

!"# 500 V 650 V
#$%,'( @ *+,- 560 .Ω 52 01
234,56 @ 150:; - 140 .Ω
-<%% = ->? + ->A 780 pF 200 pF

;544 = ;BC + ;DB 125 pF 67 pF

;E44 = ;DB 7 pF 2 pF

2F 0.56 Ω 1.5 Ω
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q Class Φ"inverter topology: reducing #$%,'() and using single device.

q Inductors : air core inductors.
q With 50 Ω load, +,- = 14503, +456 = 13713 with efficiency of 94% at 

#,- = 280 #, ;< = 13.56 ?@A.
q Power density: 105 3/CDE

Class Φ" Inverter with eGaN FET
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How to increase output power to 2 kW?

February 21, 2020

Approach 1

q eGaN FET (650 V rating)
q Push-pull class Φ" inverter

Approach 2

q SiC MOSFET (1200 V rating)
q Single-ended class Φ" inverter

+

− vds(t)
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J Choi, et al, "Comparison of SiC and eGaN devices in a 6.78 MHz 2.2 kW resonant inverter for wireless power transfer," 2016 IEEE Energy Conversion 
Congress and Exposition (ECCE), Milwaukee, WI, 2016, pp. 1-6
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Comparison of eGaN FETs and SiC MOSFETs 

February 21, 2020

Parameters eGaN FET GE SiC MOSFET

Package GaNpx DE-150

!"# 650 V 1200 V
$% 30 A 60 A

&%',)* @ 25./ 55 0Ω 25 23
&%',)* @ 150./ 140 0Ω -

&%',)* @ 175./ - 42 23
/7'' 260 pF 3164 pF
/)'' 65 pF 199 pF

&8 1.5 Ω 1 Ω

Approach 1 Approach 2
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Gate losses in WBG devices
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q Hard switching: !"#$% = '()) * +", * -.
q Sinusoidal switching: !"#$% = 20, * '())1 * +", * -., * 2"
q Trapezoidal switching: !"#$% = '())1 * +", * -. * 2" * ( 456 +

4
58
)

Device GE SiC MOSFET eGaN FET

+": 20 V 10 V

Hard switching 17.2 W 0.27 W

Sinusoidal switching 14.53 W 0.03 W

Trapezoidal switching 12.1 W 0.02 W

Device GE SiC MOSFET eGaN FET

+": 20 V 10 V

Hard switching 8.6 W 0.18 W

Sinusoidal switching 5.7 W 0.03 W

Trapezoidal switching 6 W 0.02 W

;< = =>. @A BCD

;< = A. EF BCD
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Push-pull inverter performance at !"# = 200 !

February 21, 2020

Parameter Measured Simulated

!'(,*+, 407 V 414 V

!-./,0*( 310 V 320 V

1-./ 1927 W 2120 W

Efficiency 96% 96%
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Single inverter performance at !"# = 440 !
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Parameter Measured Simulated

!'(,*+, 940 V 942 V

!-./,0*( 332 V 333 V

1-./ 2204 W 2224 W

Efficiency 93% 96%
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Performance comparison

February 21, 2020

eGaN FETs in push-pull inverter

q Higher efficiency, small input 
current ripple

q Lower power density, complicated 
gate driver

SiC MOSFET in single inverter

q Simple topology, easier gate 
driving, higher power density

q Lower efficiency, higher input 
current ripple
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Miniaturization

Increasing 
switching frequency 

Resonant Inverter WBG devices

Increasing 
output power

Push-pull inverter
with eGaN FET

Single inverter
with SiC MOSFET
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Towards a wireless future:
Bridging between power electronics and needs of 

modern technology

Power Electronics

Miniaturization Wireless 
Technology
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Inductive coupling

February 21, 2020

Using Magnetic field to transmit power

Wikipedia
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q Magnetic resonant coupling (MRC): Magnetic field + resonance

q Efficiency: above 90%, delivering power over a wide range of air gaps.

q High-power applications: Breakdown voltage of capacitor is important.

Mid-range distance, high-power WPT

February 21, 2020

Receiving coil

Transmitting coil
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q Each consists of two coils having a resonant inter-coil capacitance.

q We can adjust a coil resonant frequency by changing conductor size 
and/or separation between coils.

Open-type MRC coils

J. Choi, "13.56 MHz 1.3 kW resonant converter with GaN FET for wireless power transfer,” In Wireless Power Transfer Conference (WPTC), 
IEEE, 2015.
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Coil diameter=300mm 

Distance=270mm 

February 21, 2020

MRC coils with class Φ" inverter
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Distance variations in different AGVs

February 21, 2020

!" !#
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Alignment variations in dynamic charging
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Misalignment between transmitting and receiving coils while driving
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Alignment variations in MRC coils

q Distance or alignment variations→ Coil impedance "#$ variations
q Resonant inverters are designed for a specific load value and 

sensitive to the load variations.

February 21, 2020

Transmitter LT

Receiver LR

Misalignment

"#$′ = '()′ + + , -#$′
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q Compression network can transform and transfer all provided energy 
from input to the resistive load without losses.

q Example
• A 100:1 variation in R around the center → 5.05:1 variation in "#$.

q "% = '% + )*% = "% ∠,%, "- = '- + )*- = "- ∠,-

Resistance compression network (RCN)

Y. Han, O. Leitermann, D. A. Jackson, J. M. Rivas and D. J. Perreault, "Resistance Compression Networks for Radio-Frequency Power 
Conversion," in IEEE Transactions on Power Electronics, vol. 22, no. 1, pp. 41-53, Jan. 2007.

"%

"-
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q Assuming that two coil impedances are the same. 

!" = !$ = !% = &% + ()% = !% ∠+%
!,- = !",/0- ∥ !$,/0- = (23/0- + !% ∥ 1

(25/0-
+ !% = |!78|∠+,-

RCN with MRC coils
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q PCN compresses phase shifts in the coil impedance.

q The load line is marked on the Smith chart.

Phase compression network (PCN)

Transmitter LT

Receiver LR

Misalignment

0 mm

40 mm

80 mm

0 mm 40 mm 80 mm

!"#
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q By adding the passive components in  series  or  parallel,  the  load  line  
can  be  rotated  to  the  real axis  on  the  Smith  chart.

Phase compression network (PCN)

Load Impedance

With PCN

February 21, 2020

!"#$

%"#$
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Impedance compression network (ICN)

J. Choi and J. Rivas, "Implementing an impedance compression network to correct misalignment in a wireless power transfer system," 2017 
IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL), Stanford, CA, 2017, pp. 1-8.
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Experimental results of MRC coils with ICN

Parameter Value Parameter Value

!" 1.68 µH )" 82 pF

!* 1.68 µH )* 83 pF

!+ 2.02 µH )+ 71 pF

!. 2.02 µH ). 73 pF

250 mm

100 mm

q Horizontal alignment varies 
from 0 mm to 80mm.

q Distance: 100 mm
q Resonant frequency: 13.56MHz
q Copper tube
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q The horizontal alignment between coils varies from 0 mm to 80 mm.

q
!"# @%&&
!"# @'%&& = 3.07 -./ℎ12/ 345, !"# @%&&

!"# @'%&& = 1.85 -./ℎ 345

q The phase of the coil impedance is well-compressed with the ICN.

Measured coil impedance with horizontal misalignments
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q Cannot maintain ZVS 

q Efficiency decreases from 
95% to 88%.

Simulated results of ICN with class Φ" inverter

q Maintain ZVS 
q Efficiency: constant at 95%
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Dc-to-dc resonant converter with MRC coils and ICN

Inverter RectifierICN+
-
VIN +

-
VOUT

Dc-to-dc resonant converter
• Class Φ" inverter with eGaN FET
• Impedance compression network
• Magnetic resonant coupling coils
• Class DE rectifier
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q With the ICN, the class Φ" inverter maintain ZVS and the drain waveforms 
are identical each other.

q Dc-to-dc system efficiency ≈ 76%.

q Inverter efficiency ≈ 95%.

Experimental results of dc-to-dc converter with ICN

February 21, 2020 40
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Towards a wireless future:
Bridging between power electronics and needs of 

modern technology

Power Electronics

Miniaturization Wireless 
Technology
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q Optimizing WPT system for automated guided vehicles (AGV) and 
automated guided forklift (AGF).

q Dynamic charging: EVs to charge themselves during driving.

WPT in AGV

February 21, 2020

Photo by Assembly magazine Photo by Amazon
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WPT in small-power applications

February 21, 2020

q Replace wires to coils to deliver power in joints or any rotational 
components in robots

q Many biomedical devices require miniaturized WPT technology.
• Pace maker, Stimulators
• Blood clot prevention

S. Kikuchi, T. Sakata, E. Takahashi and H. Kanno, "Development of wireless power transfer system for robot arm with rotary and linear 
movement," 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Banff, AB, 2016, pp. 1616-1621.

P. Abiri, A. Abiri, R. Packard, Y. Ding, A. Yousefi, J. Ma, M. Bershon, K. Nguyen, D. Markovic, S. Moloudi and T. Hsiai, " Inductively powered 
wireless pacing via a miniature pacemaker and remote stimulation control system," Scientific Reports volume 7, Article number: 6180 (2017).
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q Semiconductor thin-film processes for etching, chemical vapor deposition 
(CVD) and physical vapor deposition (PVD).

q The size and efficiency of RF power generator has to improved.

q Very high frequency operation (above 30 MHz) and the impedance 
matching with variable loads are required.

Plasma generation

February 21, 2020

http://www.daihen.co.jp/en/products/fineplasma/
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q Wide band gap devices such as eGaN FETs or SiC MOSFETs have a lot 
of potential to improve performance of high-frequency, high-power 
converters.

q However,  performance of these devices have not been well proved yet to 
operate at VHF.

q Developing !"#$% devices, ultra wide-bandgap (UWBG) devices.

Switching device study
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q Human exposure issue is one of the major concerns in WPT systems.
q Left: ICNIRP reference levels for exposure to time-varying electric and 

magnetic fields.
q Right: IEEE Reference levels for exposure to time-varying electric and 

magnetic fields.
q Need to study the maximum limits of output power at MHz frequency.

Safety issues in wireless power transfer
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Summary

February 21, 2020

q Overcoming technical limitations of dc-to-ac inverters by designing 

high-power (above 2 kW) and high-efficiency (above 90%) systems to 

operate at 10's of MHz switching frequency.

q Using Wideband gap devices such as SiC MOSFETs or eGaN FETs to 

reduce the size and weight of the entire WPT systems and improve 

system performance.

q Designing an open-type 4-coil unit to eliminate need for external 

capacitors in high-power operation.

q Implementing an impedance compression network (ICN) to 

compensate for distance and alignment variations between coils in a 

WPT system without controlling or tracking systems.

q Extending this approach to various industrial applications such as EVs, 

plasma generation, robotics and biomedical devices
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Thank you!
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