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1. Control of DC current in Buck Power Supply
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Control of DC Current in Buck Power Supply

* Inductor current is continuous
* Many different ways to obtain current measurement, literature full of examples

 Set point of inner current loop determined by outer voltage loop

Vfdbk
Vref Verr

PWM | power

a stage lave)
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* Control loop can be implemented using analog or digital techniques
 Standard control problem
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» 2. Control of AC current (no DQ used)
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AC Current Control

* Replace dc load with ac
load a1 Q3

. . H H
Could be resistor, motor @ 11 y @

back emf or ac source ac
. . x| V
* Bipolar voltage applied T . —l I—’l\—r(IL )— I fok
. Vin
across inductor =
filter @
e Current in phase with
Vv
ac Gate lifovg) Gate
 Switch operation drive x2 a“g drive x2
* Q,, PWM’ed for 50% of et - ¥
the time «

Control
* Q, 5 off during this time

* Roles switch for the
other 50% of time
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Issues with AC Current Control in Inductor

* Bandwidth of current feedback filter does not
introduce phase lag in feedback current

¢ fPWM >> fac

 All currents and voltages are now ac

* Bandwidth of Pl loop introduces a phase lag
between | ;and |
* Lagincreases as f,_increases
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Compare Response of Both Circuits

e DC circuit attains steady state with no dc error

e AC circuit always shows a lag
* Increases with frequency
* Amplitude decrease also
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Surface Mounted Permanent Magnet Motor

* Shows phase A only (for clarity)
* B, Care displaced by 120°

* At this angle, the rotor flux ($,) does
not link coil AA’

* Rate of change of flux linkage (Z—i) isa
maximum however

e A:fluxlinking coil=N ¢,

* N : number of turns in coil A

Sinusoidally .
distributed T
windings

laminations

Solid steel

airgap

Sinusoidal
flux
distribution
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Motor Torque Direction

* Torgue direction

Use right hand rule
T=IxB “’7n2
I B are vectors
Point A : I out of the page
Point A : 7’ into the page

e Tis CCW

Force
(tangential
CCW at point A)

rotor
magnetic

field
(vertical)

current
(out of the

page)
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3 Phase Permanent Magnet Motor Speed Control (Surface Magnets)

e Control speed of
motor

* Have current
feedback and
absolute position
feedback

* Feedback methods
are outside present
scope

* Filter delay not
significant
* Motor represents 3
phase balanced
load

@
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Current Control

Will not look at PWM implementation

* Assume commanded voltage is impressed on
motor without any issues

Permanent Magnet Motor

Close ac current loop using |, . directly V I
* Have same problem as single phase case '" Q%}

* Phase lag and amplitude reduction as

frequency increases
* To maximize torque/amp, want currents i Ce I ]
in phase with respective back emfs ws | Control e
* Back emf referenced here is line-neutral, NOT
line-line
» Absolute position sensor needs to be aligned our focus s here

with line-neutral voltage [**]
e [**]: source of confusion

* No field weakening

J
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* 3. Motivation for DQ current control in 3 phase systems
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3 Phase to 2 Phase : Stationary Frame

*V,u =Vysinf
* Vpn, = Vysin(0 — %pi)

. 4 .
* Vo = Vo sin(6 — 3 pi)
c 0 =uwt
* V, depends on speed and magnet strength

* Have 3 phase, balanced system
e Can’t control 3 current independently, only 2
* Reduce from 3 phases to 2 : no vector addition

 Call these axes a, B (using European notation)
e aaligned with a

1 3
* Von = Van — E(Vbn + Vcn) = EVan
V3
¢ V,Bn = 7(Vbn_Vcn)
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2 Phase : Stationary (aB) to Synchronous (dq) .. Finally !

* Vo= (Vzcos8 —Vysin@) ;. 1P
* Vg = (V;sin6 V,cos0)

* note : dropped n subscript on afs b Frame moving
» n subscript not used for d, g |

* [**]V,, V, are peak values \- ’:' q
» Same as peak Vo, Vi, Ven "

Frame
stationary B=wt

[Vb] _ l cos@ sinf ][Va]
Vy —sinf cos61|Vp

Frame is stationary =2 variables change with time ¢ g : torque axis
d : flux axis
[**]

J
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dg Current Loops

* Close current loops as before
* Now have 2 closed loops : d,q

e Structure is the ‘same’ as dc current loop in buck

* e I (avgy lerr e vectors

* Need more detail

Wref Werr Iref Ierr PWM
> Pl > Pl —

Power
stage

Wedbk

| (avg)

IL(avg)

e Outer loop is speed
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dg Current Loops In More Detail

* Now have 2 current loops

* Need Vabc(ref) from Vd(ref)' Vq(ref)

* Need |ygpy Iq(abk) FrOmM Lipe(sabi)

lyrep = 0 3> Vy=0

la(ref) lagerr) v
0 P [ d(ref)
lg(fdbk)
la(fdbk)
PWM labe(fdbk)
Wref Werr Iq(ref) Iq(err) > (6) R Power R
—_ro—> PI —_r(?—» PI Vyeen) | da>abe »| stage + ¥ abc>dq |lgan
- I_ > motor
Wrdbk a(fdok)
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Details of dg = abc Command and abc 2 dqg Feedback
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Wref W, Iq(ref] Iqterr) Power
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- - 1 motor
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Other Axes Transformations

* Presented one way of representing dq / abc transform here

* 2 phase notation
* Stationary
e Europe:af
e US:dsg®
* s:stator
* Synchronous
* Europe:dq
e US:d®g®
* e : excitation
* dg orientation
* Krause, Bose, Lipo : d opposite direction
e DeDoncker, Mohan : swap d, q
* Fitzgerald : same
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* 4. DQ Motor Model and speed control
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Simulink Model

Permanent Magnet Motor with Surface Mounted Magnets
* modeled as three sinusoidal sources in series with inductance
* Inductance is not a function of angle
 Easier to match scope plots with simulation output if abc frame is used
* Many models with pre-built motor blocks represent the motor in the dq frame, not the abc

Model motor as three-phase ac source with series inductance
* Loadisafan: T, X w?

Drive motor with ideal sinusoidal source
* Represents a PWM source whose frequency >> ac waveform

No PWM used
* Assume PWM effects are negligible
* Valid if f . << f

lec PWM
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abc =2 dg and dg—=>abc

h 4

|_abc

h

u(1) - {u2) + u(3))2 2/3
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h 4
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ta q
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Steady State |, lo lgq
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e 5. Issues with DQ control
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Transient | ., log, lyq
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V, Not Fixed

* |4 changes during transient

* dqg current control not as simple as
it first appears .. there goes our free
lunch !

* V, not fixed

e Changes with speed and current

* Increase load by 10 (speed change
at 0.5secs still occurs)

1.5
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e 5. Issues with DQ control
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Motor Model in DQ (Rotor Frame) : Want v, in terms of A,

* Saw this earlier :
[ l cos@ Sin9 l [ ]
vy —siné cos@ Vg Vg

* In o frame, the motor equations are

* Vap = %Aaﬁ vdq%%ldq
e A:fluxlinkage
* Ignored Resistance
* Good approximation
* Ignored leakage flux
* For surface PM, not a good approximation
* Do it here anyway, simplifies explanation

d d ,_
* qu = Tvaﬁ = Ta/la'g = TET 1/1dq
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Motor Model in DQ
b B

COSO sind ] Voc] _ T[ oc]
cos6l1 Vg Vg

[Vd] —sin6
* Vgq = TVag =T =gy = T=T"12
Vga = [ Vap = 7B — b gt qd
. l cosf sinf 1d lcos@ — Siﬂ@])L ) o
—sin@ cos@ldt “lsind cosf 179 weren
* Recall that 0 is a function of time, as is 444
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Motor Model in DQ

e Recall that
c 2O g =Ffrg+gf+g
cosf sinf ] ( v l—sin@ —COSQ] cosb sinHl d Aqd}

—_— . . 4
ad —sin@ cos6 cos@ — sin6 —sin@ cos6

dt

b B

-y el -

at wt
I

* = dqg axes cross-coupled _ ]
- - [’

Frame |

stationary B=wt

[=A }

a
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Stator Equivalent Circuit

* Vgg = [21 é] wAgq

I
| f
O




DQ Motor Equivalent Circuit (Rotor)

* Magnetic flux in d axis only

* Model permanent magnet as current source

into an inductance

* Called magnetizing inductance (L.,)
* Ly=Llg=L,

* L, appears in g axis also, but no flux linkage

from rotor
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Equivalent Circuit of Complete Motor

* ;=L * g
* Ag=Ly * (Id_mag +ig)

In steady state, iy =0
* Iy mag = CONstant
* note :4, >>4,

Uq =a)/1d+Lmdt q

* 14,4 4 as given above

Details change somewhat when
leakage is included

* Does not change concepts involved

Iq WAq

— +O-

T I
Vg Aq ng\
| | °
]

N
A L l4_mag
€
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3. Motivation for DQ current control in 3 phase systems
4. DQ Motor Model and speed control
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6. Induction Motor
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Induction Motor

Rotor field is induced
* Rotor consists of shorted bars (i.e. ends of bars are shorted)
* No magnet to produce it

Stator must produce |, (torque) and I4(flux)
* Still need I, in phase with back emf

|4 is not fixed, as it is for the PM
* Dynamics are more complex

PM doesn’t have any rotor current
* IM has to have I, or there will be no flux
* Adds complexity in equivalent circuit

» Same concepts of axes cross-coupling exists

Need to know rotor position only for dq = abc and for abc 2 dq
* Derive rotor speed from position
* “Analysis of Electric Machinery”, Krause .. Good reference
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Induction Motor

Induction motor airgap << PM airgap
* Permeability of magnets close to unity

Induction motor L, >>PM L,
* Easy to field weaken IM
* Tough to field weaken PM

IM and PM are non-salient rotors
* Ly=1L,

IM has 4 current components in gd reference frame
* Stator: |y, Iy
* Rotor: 1, |y

PM dq transformation uses rotor frame

IM dq transformation can be excitation frame or rotor frame
* Excitation frame is synchronous ; rotor frame has slip =» is not synchronous
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IM Equivalent Circuit

* Rotor reference frame

* Includes leakage components A Ly, (e g,

* Vg Vg =0 i
ar ar Vq$1 * E'—m ' IV‘Qr

Lls |—‘Ir

%‘F vy VY +W

https://www.intechopen.com/books/induction-motors-modelling-and-control/modelling-and-analysis-of-squirrel-cage-induction-motor-with-leading-reactive-power-injection
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Questions

* Thank you for attending

* tony@pescinc.com

Y@&)p

L,
\/ \:
| SR
1990 S.M. Joshi

“Don't you just love underdamped systems?”’
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