Derivation and Real World Use of DQ Transform for Motor Drives

Presented to
IEEE Power Electronics Society
San Francisco Bay Area Chapter

By
Tony O'Gorman
tony@pescinc.com

22 February 2018

Agenda

- 1. Control of DC current
- 2. Control of AC current (no DQ used)
- 3. Motivation for DQ current control in 3 phase systems
- 4. DQ motor model and speed control
- 5. Issues with DQ control
- 6. Induction Motor

1. Control of DC current in Buck Power Supply

Control of DC Current in Buck Power Supply

- Inductor current is continuous
 - Many different ways to obtain current measurement, literature full of examples
- Set point of inner current loop determined by outer voltage loop

- Control loop can be implemented using analog or digital techniques
 - Standard control problem

Agenda

- 1. Control of DC current
- 2. Control of AC current (no DQ used)
- 3. Motivation for DQ current control in 3 phase systems
- 4. DQ Motor Model and speed control
- 5. Issues with DQ control
- 6. Induction Motor

AC Current Control

- Replace dc load with ac load
 - Could be resistor, motor back emf or ac source
- Bipolar voltage applied across inductor
- Current in phase with V_{ac}
- Switch operation
 - Q_{1,4} PWM'ed for 50% of the time
 - Q_{2,3} off during this time
 - Roles switch for the other 50% of time

Issues with AC Current Control in Inductor

- Bandwidth of current feedback filter does not introduce phase lag in feedback current
 - $f_{PWM} >> f_{ac}$
- All currents and voltages are now ac
- Bandwidth of PI loop introduces a phase lag between I_{ref} and I_{L(avg)}
 - Lag increases as f_{ac} increases

Compare Response of Both Circuits

- DC circuit attains steady state with no dc error
- AC circuit always shows a lag
 - Increases with frequency
 - Amplitude decrease also

Surface Mounted Permanent Magnet Motor

- Shows phase A only (for clarity)
 - B, C are displaced by 120°
- At this angle, the rotor flux (φ_r) does not link coil AA'
 - Rate of change of flux linkage $(\frac{d\lambda}{dt})$ is a maximum however
 - λ : flux linking coil = N ϕ_r
 - N: number of turns in coil A

Motor Torque Direction

Torque direction

• Use right hand rule

•
$$T = I x B^{-N}/m^2$$

• *I*, *B* are vectors

• Point A : I out of the page

• Point A : *I'* into the page

• T is CCW

Force (tangential CCW at point A)

3 Phase Permanent Magnet Motor Speed Control (Surface Magnets)

- Control speed of motor
- Have current feedback and absolute position feedback
 - Feedback methods are outside present scope
 - Filter delay not significant
- Motor represents 3 phase balanced load

Current Control

- Will not look at PWM implementation
 - Assume commanded voltage is impressed on motor without any issues
- Close ac current loop using I_{abc} directly
 - Have same problem as single phase case
 - Phase lag and amplitude reduction as frequency increases
- To maximize torque/amp, want currents in phase with respective back emfs
 - Back emf referenced here is line-neutral, NOT line-line
 - Absolute position sensor needs to be aligned with line-neutral voltage [**]
 - [**] : source of confusion
- No field weakening

Agenda

- 1. Control of DC current
- 2. Control of AC current (no DQ used)
- 3. Motivation for DQ current control in 3 phase systems
- 4. DQ Motor Model and speed control
- 5. Issues with DQ control
- 6. Induction Motor

3 Phase to 2 Phase : Stationary Frame

- $V_{an} = V_0 \sin \theta$
- $V_{bn} = V_0 \sin(\theta \frac{2}{3}pi)$
- $V_{cn} = V_0 \sin(\theta \frac{4}{3}pi)$
 - $\theta = \omega t$
 - V_0 depends on speed and magnet strength
- Have 3 phase, balanced system
 - Can't control 3 current independently, only 2
 - Reduce from 3 phases to 2 : no vector addition
- Call these axes α , β (using European notation)
 - α aligned with α

•
$$V_{\alpha n} = V_{an} - \frac{1}{2}(V_{bn} + V_{cn}) = \frac{3}{2}V_{an}$$

•
$$V_{\beta n} = \frac{\sqrt{3}}{2}(V_{bn} - V_{cn})$$

2 Phase : Stationary ($\alpha\beta$) to Synchronous (dq) .. Finally !

- $V_{\alpha} = (V_{q} \cos \theta V_{d} \sin \theta)$
- $V_{\beta} = (V_q \sin \theta \quad V_d \cos \theta)$
 - *note* : dropped n subscript on $\alpha\beta$
 - \triangleright n subscript not used for d, q
 - [**] V_d , V_q are <u>peak</u> values
 - \triangleright Same as peak V_{an} , V_{bn} , V_{cn}

$$\bullet \begin{bmatrix} V_q \\ V_d \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} V_{\alpha} \\ V_{\beta} \end{bmatrix}$$

- Frame is stationary → variables change with time
- Frame is synchronous → variables constant with time

q: torque axis
d: flux axis
[**]

dq Current Loops

- Close current loops as before
 - Now have 2 closed loops : d,q
- Structure is the 'same' as dc current loop in buck
 - I_{ref}, I_{L(avg)}, I_{err} are vectors
 - Need more detail

• Outer loop is speed

dq Current Loops In More Detail

Now have 2 current loops

Details of $dq \rightarrow abc$ Command and $abc \rightarrow dq$ Feedback

$$\bullet \begin{bmatrix} I_{q} \\ I_{d} \end{bmatrix} = \frac{2}{3} \begin{bmatrix} \cos\theta & \frac{\sqrt{3}}{2}\sin\theta & -\frac{\sqrt{3}}{2}\sin\theta \\ -\sin\theta & \frac{\sqrt{3}}{2}\cos\theta & -\frac{\sqrt{3}}{2}\cos\theta \end{bmatrix} \begin{bmatrix} I_{a} \\ I_{b} \\ I_{c} \end{bmatrix}$$

$$\bullet \begin{bmatrix} V_a \\ V_b \\ V_c \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ \frac{1}{\sqrt{3}}\sin\theta & \frac{1}{\sqrt{3}}\cos\theta \\ \frac{-1}{\sqrt{3}}\sin\theta & \frac{-1}{\sqrt{3}}\cos\theta \end{bmatrix} \begin{bmatrix} V_q \\ V_d \end{bmatrix}$$

Other Axes Transformations

- Presented one way of representing dq / abc transform here
- 2 phase notation
 - Stationary
 - Europe : αβ
 - US : dsqs
 - s:stator
 - Synchronous
 - Europe : dq
 - US : deqe
 - e: excitation
- *dq* orientation
 - Krause, Bose, Lipo : d opposite direction
 - DeDoncker, Mohan: swap d, q
 - Fitzgerald : same

Agenda

- 1. Control of DC current
- 2. Control of AC current (no DQ used)
- 3. Motivation for DQ current control in 3 phase systems
- 4. DQ Motor Model and speed control
- 5. Issues with DQ control
- 6. Induction Motor

Simulink Model

- Permanent Magnet Motor with Surface Mounted Magnets
 - modeled as three sinusoidal sources in series with inductance
 - Inductance is not a function of angle
 - Easier to match scope plots with simulation output if abc frame is used
 - Many models with pre-built motor blocks represent the motor in the dq frame, not the abc
- Model motor as three-phase ac source with series inductance
 - Load is a fan : $T_{load} \propto \omega^2$
- Drive motor with ideal sinusoidal source
 - Represents a PWM source whose frequency >> ac waveform
- No PWM used
 - Assume PWM effects are negligible
 - Valid if f_{elec} << f_{PWM}

Motor

$abc \rightarrow dq$ and $dq \rightarrow abc$

Steady State I_{abc} , $I_{\alpha\beta}$, I_{dq}

Agenda

- 1. Control of DC current
- 2. Control of AC current (no DQ used)
- 3. Motivation for DQ current control in 3 phase systems
- 4. DQ Motor Model and speed control
- 5. Issues with DQ control
- 6. Induction Motor

Transient I_{abc} , $I_{\alpha\beta}$, I_{dq}

V_d Not Fixed

- I_d changes during transient
 - dq current control not as simple as it first appears .. there goes our free lunch!
- V_d not fixed
 - Changes with speed and current
 - Increase load by 10 (speed change at 0.5secs still occurs)

Agenda

- 1. Control of DC current
- 2. Control of AC current (no DQ used)
- 3. Motivation for DQ current control in 3 phase systems
- 4. DQ Motor Model and speed control
- 5. Issues with DQ control
- 6. Induction Motor

Motor Model in DQ (Rotor Frame) : Want v_{dq} in terms of λ_{dq}

Saw this earlier:

•
$$\begin{bmatrix} V_q \\ V_d \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} V_\alpha \\ V_\beta \end{bmatrix} = T \begin{bmatrix} V_\alpha \\ V_\beta \end{bmatrix}$$

- In $\alpha\beta$ frame, the motor equations are
 - $v_{\alpha\beta} = \frac{d}{dt} \lambda_{\alpha\beta}$ $v_{dq} \times \frac{d}{dt} \lambda_{dq}$
 - λ : flux linkage
 - Ignored Resistance
 - Good approximation
 - Ignored leakage flux
 - For surface PM, not a good approximation
 - Do it here anyway, simplifies explanation

•
$$v_{dq} = Tv_{\alpha\beta} = T\frac{d}{dt}\lambda_{\alpha\beta} = T\frac{d}{dt}T^{-1}\lambda_{dq}$$

Motor Model in DQ

$$\bullet \begin{bmatrix} V_q \\ V_d \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} V_\alpha \\ V_\beta \end{bmatrix} = T \begin{bmatrix} V_\alpha \\ V_\beta \end{bmatrix}$$

•
$$v_{qd} = Tv_{\alpha\beta} = T\frac{d}{dt}\lambda_{\alpha\beta} = T\frac{d}{dt}T^{-1}\lambda_{qd}$$

•
$$= \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \frac{d}{dt} \left\{ \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \lambda_{qd} \right\}$$

• Recall that θ is a function of time, as is λ_{qd}

Motor Model in DQ

Recall that

•
$$\frac{d}{dt}(f(t)*g(t) = \dot{f}*g + gf*\dot{g}$$

•
$$v_{qd} = \begin{bmatrix} cos\theta & sin\theta \\ -sin\theta & cos\theta \end{bmatrix} \{ \omega \lambda_{qd} \begin{bmatrix} -sin\theta & -cos\theta \\ cos\theta & -sin\theta \end{bmatrix} + \begin{bmatrix} cos\theta & sin\theta \\ -sin\theta & cos\theta \end{bmatrix} \frac{d}{dt} \lambda_{qd} \}$$

•
$$= \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \omega \begin{bmatrix} \lambda_q \\ \lambda_d \end{bmatrix} + \begin{bmatrix} \dot{\lambda}_q \\ \dot{\lambda}_d \end{bmatrix}$$

• \rightarrow dq axes cross-coupled

Stator Equivalent Circuit

•
$$v_{qd} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \omega \lambda_{qd}$$

DQ Motor Equivalent Circuit (Rotor)

- Magnetic flux in d axis only
- Model permanent magnet as current source into an inductance
 - Called magnetizing inductance (L_m)
 - $L_m = L_d = L_q$
- L_m appears in q axis also, but no flux linkage from rotor

Equivalent Circuit of Complete Motor

- $\lambda_q = L_m * i_q$
- $\lambda_d = L_m * (I_{d mag} + i_d)$
- In steady state, i_d = 0
 - I_{d mag} = constant
 - note $:\lambda_d >> \lambda_a$
- $v_q = \omega \lambda_d + L_m \frac{d}{dt} i_q$ $v_d = -\omega \lambda_q + L_m \frac{d}{dt} i_d$ • λ_d , λ_q as given above
- Details change somewhat when leakage is included
 - Does not change concepts involved

Agenda

- 1. Control of DC current
- 2. Control of AC current (no DQ used)
- 3. Motivation for DQ current control in 3 phase systems
- 4. DQ Motor Model and speed control
- 5. Issues with DQ control
- 6. Induction Motor

Induction Motor

- Rotor field is induced
 - Rotor consists of shorted bars (i.e. ends of bars are shorted)
 - No magnet to produce it
- Stator must produce I_q (torque) and I_d(flux)
 - Still need I_a in phase with back emf
- I_d is not fixed, as it is for the PM
 - Dynamics are more complex
- PM doesn't have any rotor current
 - IM has to have I_{dr} or there will be no flux
 - Adds complexity in equivalent circuit
- Same concepts of axes cross-coupling exists
- Need to know rotor position only for dq \rightarrow abc and for abc \rightarrow dq
 - Derive rotor speed from position
 - "Analysis of Electric Machinery", Krause .. Good reference

Induction Motor

- Induction motor airgap << PM airgap
 - Permeability of magnets close to unity
- Induction motor L_m >> PM L_m
 - Easy to field weaken IM
 - · Tough to field weaken PM
- IM and PM are non-salient rotors
 - $L_d = L_q$
- IM has 4 current components in qd reference frame
 - Stator : I_{qs}, I_{ds}
 - Rotor: I_{qr}, I_{qr}
- PM dq transformation uses rotor frame
- IM dq transformation can be excitation frame or rotor frame
 - Excitation frame is synchronous ; rotor frame has slip → is not synchronous

IM Equivalent Circuit

- Rotor reference frame
- Includes leakage components
- v_{qr} , $v_{dr} = 0$

https://www.intechopen.com/books/induction-motors-modelling-and-control/modelling-and-analysis-of-squirrel-cage-induction-motor-with-leading-reactive-power-injection

Questions

- Thank you for attending
- tony@pescinc.com

