Common Mode EMI Analysis and Mitigation Methods in Three-Phase Inverters

Giovanna Oriti, PhD Professor of Electrical Engineering giovanna.oriti@ieee.org

Overview

Conducted EMI in Power Converters

- Definitions
- Common Mode EMI and Solutions
- Modeling Common Mode Emissions
- Eliminating Common Mode Voltage in Three-Phase Inverters
 - Meeting the Common Mode Emission Limits in MIL-STD-461G
 - Grid-Forming Inverters with Sigma-Delta Modulation
 - Grid-Following Inverters with PDM
 - Application to Motor Drives
- Conclusions and Future Work
- References

Definitions

- Electromagnetic Interference (EMI) degradation of the performance of an equipment, transmission channel or system caused by an electromagnetic disturbance
 - can be conducted current that couples into other parts of an electrical system
 - or radiated electrical and magnetic fields that can potentially couple into nearby circuits
- Electromagnetic compatibility (EMC) ability of an equipment or system to function satisfactorily in its electromagnetic environment without introducing intolerable electromagnetic disturbances to anything in that environment

Differential Mode vs Common Mode

- Differential mode (DM) currents flow from and return to their source of origin and contain undesired high frequency components
- Common mode (CM) currents flow in the same direction through capacitive coupling to ground

CM Voltage in Three–Phase Inverters

- The CM voltage generated by switching power converters can cause unwanted currents to circulate in ground paths
- CM currents can trip ground faults relays, damage motor bearings and produce radiated emissions

Limits and Standards

- Conducted EMI limits for commercial products are set by the FCC in the US and by CISPR and IEC in Europe, as examples
- Specific standards for commercial transportation applications include automotive (SAE J1113 and IEC CISPR25) and aviation (RTO -D0160-G)
- Military Standard 461G regulates conducted and radiated EMI for shipboard and aerospace applications, with the most stringent EMI limits
- Power converters onboard military ships must meet simultaneously the CE limits in MIL-STD-461G as well as the power quality limits in MIL-STD-1399, part 300 section 1 for low voltage AC applications, as examples

MIL-STD-1399 Section 300 Part 1

 Shipboard power systems use three-phase four-wire service for unbalanced and non-linear loads to meet the power quality requirements in MIL-STD-1399 section 300 part 1 "Low Voltage Electric Current, Alternating Power" – Sep 2018

Characteristics	Туре І	Type II	Type III
Frequency			
1. Nominal Frequency	60 Hz	400 Hz	400 Hz
2. Frequency Modulation	0.5%	0.5%	0.5%
3. Frequency Tolerance	$\pm 3\%$ (Submarines: $\pm 5\%$)	±5%	±0.5%
4. Frequency Transient Tolerance	±4%	±4%	±1%
	+		
Voltage			
7. Designated Nominal User Voltage	440, 115, 115/200 V _{rms}	$440,115~\mathrm{V_{rms}}$	440, 115, 115/200 V _{rms}
8. Line-to-Line Voltage Unbalance	3% (Submarines: 0.5% for 440 V _{rms} ; 1% for 115 V _{rms})	3%	2%
9. Voltage Modulation	2%	2%	1%
10. Average Line-to-Line Voltage from Nominal Tolerance	±5%	±5%	±2%

MIL-STD-461G "Requirements for the Control of EMI characteristics of subsystems and equipment" –2015

Solutions to Reduce Conducted CM EMI

Background

- The four-leg inverter is an alternative topology to the traditional three-leg threephase voltage source inverter (VSI)
- In the late-1990s a four-leg inverter was demonstrated* to suppress CM conducted emissions when the appropriate modulation strategy is adopted
- Pulse density modulation (PDM) was typically used for soft-switching inverters and today we are revisiting its application to hard-switching inverters thanks to the availability of wide bandgap devices (WBG)
- The goal is to increase the power density of power converters by eliminating large CM chokes and bypass capacitors and still meet the conducted EMI limits in MIL-STD-461G

*A.L. Julian, G. Oriti, T.A. Lipo, "Elimination of common mode voltage in three phase sinusoidal power converters", IEEE Trans. on Power Electronics, Vol.14, No 5, Sep.1999.

Modeling to Include CM

- Three-phase, four-wire VSI without CM Voltage ullet
- CM, DM filters and LISN

 Δ

 v_m

 $K_{\mathfrak{c}}$

LISN 2

State spa ullet

ace equations of AC bus:

$$\mathbf{x} = \begin{bmatrix} i_1 & i_2 & i_3 & i_4 & i_a & i_b & i_c & v_{an} & v_{bn} & v_{cn} & v_{ng} \end{bmatrix}^T$$

$$\mathbf{u} = \begin{bmatrix} v_{1g} & v_{2g} & v_{3g} & v_{4g} \end{bmatrix}^T$$

$$\mathbf{u} = \begin{bmatrix} v_{1g} & v_{2g} & v_{3g} & v_{4g} \end{bmatrix}^T$$

$$\mathbf{x} = \mathbf{Ax} + \mathbf{Bu}$$

$$\mathbf{y} = \mathbf{Cx} + \mathbf{Du}$$

$$\mathbf{y} = \mathbf{Cx} + \mathbf{Du}$$

DM filter

MIL-STD-461G General Setup

State Space Model of DC Input and LISNs

LISN 1

CM Voltage Elimination Strategies

- Pulsed Density Modulation (PDM)
 - PDM allows simultaneous switching transitions in all 4 inverter legs to output zero CM voltage
- Prototyping for Experimental Validation
- Grid-Forming Inverter for AC power distribution
 - Must meet power quality requirements in MIL-STD-1399
- Grid-Following Converter to interface Distributed Energy Resources
- Application to Motor Drives

Low-Cost Rapid Prototyping

Grid-Forming System Architecture

Line Impedance Stabilization Network from MIL-STD-461G The CM voltage is the sum of the four inverter pole voltages, and it is controlled to zero by switching two top devices on and two bottom devices on

Control System

- The switch selection algorithm sets the two phases with the largest error to +Vdc/2 and the two phases with the smallest error to – Vdc/2.
- If any phase current exceeds the limit, then the switch selection modifies the next switch state to reduce the overcurrent

Ranking Algorithm

Experimental Setup

- Power Converters built with 1200 V SiC Infineon MOSFETs
- AC 200 Vrms line-to-line, 10 A rating
- The DC source is a three-phase diode rectifier fed by the AC laboratory grid
- Small bypass capacitors and clip-on chokes were added to meet the limits

CIRCUIT PARAMETERS

V_{dc}	340V
modulation index	0.95
L_{dm}	$750\mu H$
C_{dm}	$20\mu F$
L_n	$10\mu H$
R_n	100mΩ
Z_1, Z_2, Z_3	29 Ω
Z_3 (unbalanced)	38.7 Ω
C_{bp}	200nF

Laboratory Setup

Experimental Measurements

 The measured THD was 2% with either balanced or unbalanced load, meeting the 3% limit specified in MIL-STD-1399

Conducted EMI Measurements

LISN current spectrum versus CE101 limit

LISN voltage spectrum versus CE102 limit

Intermediate CE102 Measurements

Switching Events and CM Voltage

Simultaneous Transition with current in 2 diodes or 2 transistors.

Delayed Transition due to blanking time with current in 1 transistor and 1 diode.

Simultaneous Transitions with current in 2 diodes and 2 transistors.

Grid-Following Architecture

- Delta Modulation or Model Predictive Control (MPC) demonstrated with similar performance
- Novel switch selection algorithm does not require the arctangent function for MPC

Line Impedance Stabilization Network from MIL-STD-461G

Control System – Delta Modulation

- Alternative to Sigma-Delta modulation used in grid-forming inverters
- The switch selection algorithm sorts the current errors [e1...e4] from largest to smallest so that the two phases with the largest errors are switched high (top device on), while the other two are switched low (bottom device on)

Control System – Model Predictive Control

 $\begin{bmatrix} V_a^*(k) \\ V_b^*(k) \\ V_c^*(k) \end{bmatrix} = \\ \begin{bmatrix} \frac{L_{dm}}{T_s} & 0 & 0 \\ 0 & \frac{L_{dm}}{T_s} & 0 \\ 0 & 0 & \frac{L_{dm}}{T_s} \end{bmatrix} \begin{bmatrix} i_a^*(k+1) - i_a(k) \\ i_b^*(k+1) - i_b(k) \\ i_c^*(k+1) - i_c(k) \end{bmatrix}$ (1) + $\begin{bmatrix} R_{dm} & 0 & 0 \\ 0 & R_{dm} & 0 \\ 0 & 0 & R_{dm} \end{bmatrix} \begin{bmatrix} i_a(k) \\ i_b(k) \\ i_c(k) \end{bmatrix}$ (1)

The reference voltages computed with (1) are transformed from the a - b - c to the α - β - γ frame using (2).

$$\begin{bmatrix} V_{\alpha}^{*}(k) \\ V_{\beta}^{*}(k) \\ V_{\gamma}^{*}(k) \end{bmatrix} = \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} V_{a}^{*}(k) \\ V_{b}^{*}(k) \\ V_{c}^{*}(k) \end{bmatrix}$$
(2)

Model Predictive Control – Switch Selection

- The appropriate prism is chosen by the angle of the α and β components
- This novel switch selection algorithm only requires lookup tables and is executed by the FPGA in a single clock cycle

Simulations MIL-STD-461G CE101

- Grid-following application
- 20dB relaxation for converters rated 10 A_{rms}

3D SVM with a 2 mH CM choke

 ΔM and no CM choke

MPC and no CM choke

Simulations MIL-STD-461G CE102

- Grid-following inverter
- 9dB relaxation for nominal EUT source voltage 220 Vrms

3D SVM with a 2 mH CM choke

 ΔM and no CM choke

MPC and no CM choke

Simulations of Differential Mode Performance

• The simulated DM performance is comparable for all three methods

Control Method	v _{an} THD	i ₁ THD
ΔM	0.58%	0.87%
MPC	0.56%	0.98%
3D SVM	0.2%	2.32%

 The line-to-line rms voltages obtained with the three control methods show that 3D
 SVM has lower harmonics in the 1kHz-10kHz range in the DM voltage compared to the PDM controllers

Differential Mode Simulated Waveforms

3D SVM with CM choke

NAVAL POSTGRADUATE SCHOOL

REALTING TER SCIENTING

ΔM and no CM choke

MPC and no CM choke

Control Method	v _{an} THD	i ₁ THD
ΔM	0.58%	0.87%
MPC	0.56%	0.98%
3D SVM	0.2%	2.32%

Experimental Setup

- Power Converters built with 1200V 36A SiC
 Infineon MOSFETs
- AC 200Vrms line-to-line, 10A rating

PARAMETERS FOR THE EXPERIMENTAL MEASUREMENTS

Symbol	Description	Value
C_{dc}	DC bus capacitance	1.2mF
V_{dc}	DC bus voltage	380 V
L_{dm1}	DM inductance 1	$500 \mu H$
L_{dm2}	DM inductance 2	$400 \mu H$
C_{dm}	DM capacitance	$20\mu F$
R_{dcload}	DC load resistance	170Ω
C_{bp}	Bypass capacitance	240nF

Laboratory Set-Up

Conducted EMI Measurements

LISN current spectrum versus CE101 limit.

LISN voltage spectrum versus CE102 limit.

CMVs

GaN Inverter at Baylor Laboratory

Four-leg inverter realizes balanced three-phase output voltages to prevent CMV (now sum of four legs, where fourth leg connects to load/motor neutral)

 $V_{1g} + V_{2g} + V_{3g} + V_{4g} = 0$

Fourth leg enables 16 switching states including states with 0 CMV

Using GaN Systems: 4x GaN 650V 2kW half bridge daughter boards 4x GaN universal evaluation boards

Four-leg inverter with WBG devices enables using Pulse Density Modulation (PDM) at higher switching frequencies while minimizing power losses due to faster turn-on/off times

EUT v_{bn} C_a C_b C_a aN

Switching States

1111

1110, 1101, 1011, 0111

1100, 1001, 0011, 0101, 1010, 0110 0001, 0010, 0100, 1000 0000

Keep two top switches on and two bottom switches on for 0 CMV

Baylor Testbed with Typhoon HIL 402

- GaN devices, four 650V, 2kW half bridge modules with high switching frequency capabilities (> 10 MHz)
- The switching frequency of the GaN module in the four-leg inverter at step of 1 µs is ~84kHz
- Typhoon HIL 402 is capable of 0.5 μs simulation step
- Models have different execution rates, including FPGA solvers. All execution rate related computations are completed within the defined 1 µs simulation step
- Thus, the $\Sigma \Delta M$ is updating every 1 μs
- The LISNs and grounding plane were implemented according to MIL standard

Four-leg inverter testbed for 230V/460V applications with various load options (balanced and unbalanced resistive loads and 5hp motor load with neutral access)

For motor load control, an ABB bidirectional/regenerative VFD is used to provide the proper current to the loading machine, to apply the desired torque to the motor under test

Experimental 230V 5hp Motor at 50% Load

- Verification of sigma-delta PDM control of four-leg inverter for motor load applications
- Note the PDM voltages (reduced filtering requirements, $600\mu H$, 22nF LC filter) compared to square wave PWM (below)

enine en la companya de la companya

Courtesy of Prof. Annette von Jouanne – Baylor University

Conducted EMI on 5hp Motor at 50% Load

CE 101 and CE 102 limits are both met with no common mode choke

Conclusions and Future Work

- Physics-based models of power converters with CM paths are useful to predict conducted CM EMI and to explore mitigation strategies
- Three-phase inverters with a fourth leg and with PDM produce theoretically zero CM voltage
- CME methods simulated and experimentally validated for grid-forming and grid-following inverters using WBG devices
 - High frequency EMI not entirely eliminated, but easily suppressed with small passive filters
- Future work includes
 - Apply high frequency EMI modeling (from literature and collaborations) to improve predictions
 - Blanking time compensation methods to address high frequency EMI
 - PDM on multilevel converters

Acknowledgments

- Sponsor: Office of Naval Research 33 Capt. L J Petersen
- Dr. Alexander Julian Consultant
- LT Matt Storm, US Navy, NPS MSEE with Distinction Dec 2022
 - NPS ECE Outstanding Thesis Award
 - Surface Navy Association's Award
- LT Ethan Foster, US Navy, NPS MSEE with Distinction June 2022
- Capt Rob Tubbs, USMC, NPS MSEE expected Sep 2023

Collaborators at Baylor University

- Prof. Annette von Jouanne
- Prof. Emmanuel Agamloh
- Prof. Alex Yokochi
- Mr. Caleb Li, PhD candidate

References

- A. L. Julian and G. Oriti, "Novel Common Mode Voltage Elimination Methods in Three-Phase Four-Wire Grid-Connected Inverters," in *IEEE Transactions on Industry Applications*, 2022, doi: 10.1109/TIA.2022.3211910.
- M. P. Storm, A. L. Julian, and G. Oriti, "Hardware implementation of a sic three-phase four-leg vsi with sigmadelta modulation to comply with the military standards 1399 and 461," in Proc. of the 2022 IEEE Energy Conversion Congress and Exposition (ECCE), 2022.
- E. B. Foster, A. L. Julian, G. Oriti, M. P. Storm, "Rapid Prototyping of Model Predictive Control in a Grid-Following Three-Phase Inverter to Meet the Conducted EMI Limits in MIL-STD-461G" in Proc.of the 2022 IEEE Energy Conversion Congress and Exposition (ECCE), 2022.
- C. Li, A. von Jouanne, G. Oriti, A. Julian, E. Agamloh, A. Yokochi, "GaN Four-leg Inverter Implementing Novel Common Mode Elimination using a Hardware-in-the-loop System-Level Controller" in Proc. of 2022 IEEE Energy Conversion Congress and Exposition (ECCE), 2022.
- A. L. Julian, G. Oriti, "Novel Common Mode Voltage Elimination Methods in Three-Phase Four-Wire Grid-Connected Inverters" in Proc. of IEEE 13th Energy Conversion Congress and Expo (ECCE) 2021, 10-14- Oct 2021.
- A. L. Julian, G. Oriti, A. J. Krener, "Eliminating Common Mode Conducted Emissions in Three-Phase Four-Leg Inverters" in Proc. of IEEE 2021 Electric Ship Technologies (Virtual) Symposium, August 2021.

Thank you!

Questions?