

Optimizing Custom Magnetics for High-Performance Power Supplies

Michael Seeman, Ph.D. Founder / CEO — Eta One Power, Inc. *mike@eta1power.com*

April 2018 PELS Seminar

Outline

- What is *Power Supply Optimization*?
 - Performance metrics, optimization tools and co-design methodologies
- System requirements placed on magnetic structures
- Inductor and transformer loss mechanisms
 - DC winding loss

- Core loss
- AC winding loss: skin depth, proximity effect & fringe-field losses
- Winding capacitances
- Examining magnetics scaling
- Software tools for whole-converter analysis & optimization
- Case studies
- Conclusions

Power Converter Figures of Merit

Cost, cost, cost **Power Density** Reliability Time to Market Supply Chain Passing EMC, UL... Efficiency **Transient Response**

Eta **One** Power, Inc

Technology

Specifications

Manufacturing

What Matters in Switching Power Converters?

Eta **One** Power, Inc

How is Design Optimization Done Today?

© 2018 Eta One Power, Inc.

The Eta Designer Advantage

Eta Designer provides instant, simultaneous design and simulation of power systems

Eta **One** Power, Inc

System Requirements of Magnetics

Magnetics Loss Mechanisms

DC Resistance Loss

- Incorporates I²R copper losses based on RMS currents
- Minimizing DC loss involves choosing a large winding window & short turn length, and maximizing copper fill factor

AC Winding Losses

- Additional winding loss due to high-frequency skin effect, external H-fields due to other windings (proximity) and core gap (fringing)
- Frequency-dependent; linear with winding currents

Eta **One** Power, Inc

Core Loss

- Captures core hysteresis and eddy current losses
- Steinmetz equation:
- Non-linear effects with waveform shape, \widehat{core} geometry, and DC bias

Winding Capacitance Losses

- Capacitances between winding turns yields additional switching losses in circuit
- EMC concerns from charge injection from primary to secondary
- Winding construction and shielding layers can mitigate these effects

Magnetics Loss: DC Resistance

DC Resistance Loss:

$$P_{DC} = I_{RMS}^2 R_{DC}$$

DC Resistance impacted by:

- Average turn length
- Number of turns
- Cross-section area of copper

Things to consider:

- Planar cores have smaller window
- PCB windings have low fill factor
- Isolation requirements may reduce effective fill-factor
 - Margin tape for spacing
 - Thick triple-insulated wire

Magnetics Loss: Core Loss

Core Loss incorporates *hysteretic* and *eddycurrent losses* and is a function of Flux Density Amplitude and Frequency

Steinmetz Equation:

$$P_{v} = k f^{\alpha} \hat{B}^{\beta}$$
 [kW/m³]

flux density found using either:

Note: $k,\,\alpha$ and β vary with frequency; refer to plots

Ferroxcube Data Handbook

Core Loss vs. Frequency

.

- Core Loss does get better at higher frequency
- Inductors with "small" ripple get better
 - "Large" ripple inductors are a mixed bag:
 - Core loss improves
 - Skin & proximity effect is worse
- Transformers are impacted more from skin and proximity loss; gains are modest

Core Loss: Non-sinusoidal Waveforms

- Most real power converters don't run on sinusoids
- Multiple methods:

Eta **One** Power, Inc

- Harmonic analysis
- GSE, iGSE, i²GSE... based on instantaneous methods

iGSE is the easiest-to-use accurate method:

[ref] Venkatachalam, Sullivan, Abdallah and Tacca, "Accurate Prediction of Ferrite Core Loss with Nonsinusoidal Waveforms using only Steinmetz Parameters," IEEE COMPEL 2002.

Magnetics Loss: AC Winding Losses

© 2018 Eta One Power, Inc.

AC Winding Losses: Skin Depth

At high frequencies, eddy currents generated by the magnetic field drive the internal current to zero

Skin Depth:

Eta One Power, Inc

$$\delta = \frac{1}{\sqrt{\pi \sigma \mu f}}$$

1

 Image: Wikipedia

100

AC Winding Losses: Proximity Effect

Eddy currents in conductors are induced to make H field approach zero inside conductor (like skin effect)

Proximity effect deals with H-field generated by *other windings*

Often examined in a 1D stacking of foil windings: easily conceptualized and can be calculated exactly with Dowell's equation for a single winding with M foil layers:

$$\frac{P_{AC} + P_{DC}}{P_{DC}} = \frac{h}{\delta} \left[G_1 \left(\frac{h}{\delta} \right) + \frac{2}{3} (M^2 - 1) \left(G_1 \left(\frac{h}{\delta} \right) - 2G_2 \left(\frac{h}{\delta} \right) \right) \right]$$
$$G_1(\varphi) = \frac{\sinh(2\varphi) + \sin(2\varphi)}{\cosh(2\varphi) - \cos(2\varphi)} \quad G_2(\varphi) = \frac{\sinh(2\varphi)\cos(\varphi) + \cosh(\varphi)\sin(\varphi)}{\cosh(2\varphi) - \cos(2\varphi)}$$

2D and 3D proximity effect losses must use field simulation and squared-field-derivative method

[1] P. L. Dowell, "Effects of Eddy Currents in Transformer Windings," Proceedings IEE, Aug 1966

[2] L. H. Dixon, "Eddy Current Losses in Transformer Windings and Circuit Wiring," TI/Unitrode Power Supply Design Seminars

[3] Sullivan, "Computationally Efficient Winding Loss Calculation with Multiple Windings, Arbitrary Waveforms, and Two-Dimensional or Three-Dimensional Field Geometry," IEEE Trans.

Power Elec. Jan 2001

 $F = \oint Hdl = NI$

I(x)

MMF:

Proximity Effect Example

Rac/Rdc = 0.65

- Single gap can cause large fringing losses in nearby windings
- Distributed gap effective at reducing fringing fields and losses while keeping flux contained in core
- Ungapped material (e.g. powdered iron) not effective in Pot-core shapes in constraining flux.
 - Fringing fields extend into window, not near gap Example: 120 uH, 45W offline flyback transformer @ 500 kHz, RM8/I core, losses at fundamental current only in FEMM
 - Likely much better in toroid geometries

Examining Winding Location: Eta Designer

85-265 VAC to 20V/2.25A Flyback @ 500 kHz

Winding Loss: 544 mW

Eta **One** Power, Inc

Winding Loss: 382 mW

Winding Loss: 308 mW

See [2]: Hu, Sullivan, "Optimization of shapes for round-wire high-frequency gapped-inductor windings," IEEE Ind. Appl. Soc. Annual Meeting 1998.

Examining Winding Location: FEMM

85-265 VAC to 20V/2.25A Flyback @ 500 kHz

See [2]: Hu, Sullivan, "Optimization of shapes for round-wire high-frequency gapped-inductor windings," IEEE Ind. Appl. Soc. Annual Meeting 1998.

Eta One Power, Inc

Approach to Simulating Fringe-Field (& Proximity) Losses

- 1) Determine H field at wire / winding turn locations
- 2) Compute AC loss for specific wire given H field [3-5]

$$P_{ext} = \frac{\hat{G}(geometry)}{\sigma} \hat{H}^2$$

3) Add in skin depth loss, DC Loss, core loss

Eta **One** Power, Inc

4) Evaluate and optimize magnetic structure...

[4] Nan, Sullivan, "Simplified High-Accuracy Calculation of Eddy-Current Loss in Round-Wire Windings," IEEE PESC 2004

[5] Zimmanck, Sullivan, "Efficient Calculation of Winding-Loss Resistance Matrices for Magnetic Components," IEEE COMPEL 2010

DC FEM Simulation determines external H

Winding Capacitances

Intrawinding capacitance:

- Distributed capacitance between turns of same winding
- "Lumped" capacitance falls across switching node, adds to switching loss
- Leads to ringing in circuit and other resonant modes

Interwinding capacitance:

- Distributed capacitance between different windings
- Capacitive charge injection across barrier
- Leads to common-mode noise injected into output, trouble at the EMC lab

Reducing Winding Capacitance

Reducing intrawinding capacitance:

- Reduce ΔV between adjacent turns
- Single-layer windings
- Wind two-layer windings in same direction
- Stagger-wind to avoid large overlap ΔV

Reducing interwinding capacitance:

- Minimize interleaving between windings
 - Counter to minimizing proximity loss
- Space windings apart with tape / insulation
- Add shielding layer

Buck Converter: Inductor Scaling

Magnetics scaling: Generalization

Goal: Create a representation of power capability (via V-A product) for a general magnetic

$$VA = V \cdot I = (NfB_0A_c) \begin{pmatrix} J_0A_w \\ N \end{pmatrix} = f(B_0J_0)(A_cA_w)$$

Max current density in winding window

Max flux in core

Power handling capability

Eta **One** Power, Inc

Applied voltage & winding current

For low frequency operation, saturation limited and for a linear dimension α :

- Power is proportional to α^4 power density improves with magnetic size
- Power is proportional to frequency f (B₀ = B_{sat})

ref: Sullivan, et. al. "On Size and Magnetics: Why Small Efficient Power Inductors are Rare," IEEE 3D-PEIM 2016

Magnetics Scaling: Frequency

Operating Condition	Power Density by Size	Power Density by Frequency
Low freq, saturation limited, fixed temp rise	α ¹	f ¹
Low freq, core loss limited, fixed temp rise	α^0 to $\alpha^{0.2}^*$	fB ₀ (f)
High freq, core loss limited, fixed temp rise	$lpha^{-0.5}$ to $lpha^{-0.3}$ *	∼́f ^{0.5} B _o (f)

Material performance factor

* based on Steinmetz β for core material @ frequency (β = 2 to 3)

ref: Sullivan, et. al. "On Size and Magnetics: Why Small Efficient Power Inductors are Rare," IEEE 3D-PEIM 2016

Eta **One** Power, Inc

CASE STUDY: FLYBACK CONVERTER

Modeling a Flyback Converter in Eta Designer

ັ<mark>ດ</mark>1 Eta **One** Power, Inc

Modeling a Flyback Converter in Eta Designer (2)

Vds,max	≥ 600		and s 1.17	'968k		E
Manufacturer ¥	P/N	Vds,max	Rds(on) typ	1k Price	Part Loss	Efficiency
GaN Systems	GS66506T	650V	0.0670	777	889 mW	89.63%
Infineon Tech	IPB60R199CP	600V	0.18Ω	777	777 mW	89.61%
E Infinean Tech	IPB60R385CP	600V	0.35Ω	777	545 mW	90,31%
Infinean Tech	IPL60R199CP	600V	0.18Ω	\$1.510	777.mW	89.61%
Infinean Tech	IPL60R385CP	600V	0.350	777	545 mW	90.31%
Infinean Tech	IPL65R070C7	650V	0.062Ω	\$8.210	646 mW	90.08%
Infineon Tech	IPL65R130C7	650V	0.115Ω	\$1.690	588 mW	90.33%
Infinean Tech	IPP60R199CP	600V	0.18Ω	77?	777 mW	89.61%
8 Infineon Tech	IPP65R065C7	650V	0.058Ω	\$5.120	661 mW	90.02%
B Infinean Tech	IPP65R125C7	650V	0.1110	\$2.790	594 mW	90.31%

Eta One Power, Inc

Designing Flyback Magnetics

- Choose core geometry and material
- 2. Choose gap size, mag. inductance and/or turn count
- 3. Add an auxiliary winding

Flyback: Simulation vs. Bench

Designer:

Eta

C

65W Universal AC to 19V Flyback Converter LM5023 Valley-mode flyback controller EVM

Total Loss: 2.68 W @ 3 A

Flyback: Simulation vs. Bench (2)

CASE STUDY: LLC CONVERTER

Fringing Loss in LLC/Resonant Converters

LLC: Initial Design Decisions

Eta One Power, Inc

$I_{m,pk} = \frac{V_{IN}}{8L_m f_s}$

- Determines dead-time and ZVS
- Adds additional circulating current

Resonant Frequency:

$$f_r = \frac{1}{2\pi\sqrt{L_r C_r}}$$

- Sets typical operating frequency
- Sets approximate component size

Q:

$$Q = \frac{\sqrt{L_r/C_r}}{n^2 V_{OUT}/I_{OUT}}$$

- Sets regulation capability
- Determines necessary resonant components

LLC Waveforms (at resonance)

© 2018 Eta One Power, Inc.

LLC Silicon vs. GaN: Magnetic Effects

Silicon Version: 70 mΩ 650V Superjunction Cr: 24nF, Lr: 10µH, **Lm: 50µH**

GaN Version: 67 mΩ 650V e-mode GaN Cr: 24nF, Lr: 10μH, **Lm: 200μH**

16:1CT on 8L x 140 um PCB in EQ25+PLT-3F36 Total Winding Loss: 5.43 W 16:1CT on 8L x 140 um PCB in EQ25+PLT-3F36 Total Winding Loss: 2.991 W

Conclusions

- Magnetics design is complex with many tradeoffs
 - Custom designs are needed for almost every power supply
- Magnetic design comes down to understanding losses and their tradeoff in the context of the specific power converter
 - Easy: DC winding loss

- Medium: Core loss (but non-sinusoidal waveforms are hard)
- Hard: Skin-depth, proximity and fringe-field losses
- Understanding the trends in magnetics design can help drive converter design decisions
- Software like Eta Designer helps designers understand the tradeoffs easily to quickly develop an optimized solution.