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Outline

• What is Power Supply Optimization?
– Performance metrics, optimization tools and co-design methodologies

• System requirements placed on magnetic structures

• Inductor and transformer loss mechanisms
– DC winding loss

– Core loss

– AC winding loss: skin depth, proximity effect & fringe-field losses

– Winding capacitances

• Examining magnetics scaling

• Software tools for whole-converter analysis & optimization

• Case studies

• Conclusions 
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Power Converter Figures of Merit

Cost, cost, cost
Power Density
Reliability
Time to Market
Supply Chain
Passing EMC, UL…
Efficiency
Transient Response

Manufacturing

Specifications

Technology
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What Matters in Switching Power Converters?

Efficiency
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Base Technology

Improved Technology
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How is Design Optimization Done Today?

Pricing/Supply
Digikey

Octopart

Optimization
MATLAB, 

Custom Excel 
Spreadsheet

Loss Models
Power Electronics 

Textbooks

Sim/Control
PSIM, SIMPLIS, 
PLECS, LTSpice
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The Eta Designer Advantage
Eta Designer provides instant, simultaneous design and simulation of power systems

Flexible Schematic Editor

• Create arbitrary topologies
• Parameterize and sweep anything
• Automatically create standard designs

Fast Simulation Engine

• Ultra-fast linear simulation engine
• Instant results – runs in the background
• Control stability and loop response

Powerful Controller Design

• Flexible, intuitive specification
• PWM and variable-frequency designs
• Arbitrarily control each rising/falling edge

Magnetics Optimization

• Custom designed magnetics integrated 
with simulation

• Supports Litz & planar designs
• Complex, high-frequency loss analysis

Efficiency Modeling

• Real-time efficiency estimation based on 
simulated operating conditions

• Modern peer-reviewed loss models
• Free real-time parameter variation

Component Database

• Vast database of component data
• Chooses top-10 devices, shows power loss 

for each one
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System Requirements of Magnetics
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Circuit Requirements

Winding Config

Turns Ratio

Frequency

Volt-Second Product

Peak Currents

Physical Requirements

Mass

Safety Isolation

Cost

PCB Area / Height

Ambient Temperature

Peak Temp. Rise

Transformer Design

Turns Count

Wire size & type

Core Size & Shape

Core Material

Winding Procedure

Isolation Means
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Magnetics Loss Mechanisms
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DC Resistance Loss Core Loss

AC Winding Losses Winding Capacitance Losses

• Incorporates I2R copper losses based on RMS 
currents

• Minimizing DC loss involves choosing a large 
winding window & short turn length, and 
maximizing copper fill factor

• Captures core hysteresis and eddy current losses
• Steinmetz equation:

• Non-linear effects with waveform shape, core 
geometry, and DC bias

• Capacitances between winding turns yields 
additional switching losses in circuit

• EMC concerns from charge injection from primary 
to secondary

• Winding construction and shielding layers can 
mitigate these effects

• Additional winding loss due to high-frequency 
skin effect, external H-fields due to other 
windings (proximity) and core gap (fringing)

• Frequency-dependent; linear with winding 
currents

𝑃𝑣 = 𝑘𝑓𝛼 𝐵𝛽
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Magnetics Loss: DC Resistance
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DC Resistance Loss: 𝑃𝐷𝐶 = 𝐼𝑅𝑀𝑆
2 𝑅𝐷𝐶

DC Resistance impacted by:
• Average turn length
• Number of turns
• Cross-section area of copper

Things to consider:
• Planar cores have smaller window
• PCB windings have low fill factor
• Isolation requirements may reduce 

effective fill-factor
• Margin tape for spacing
• Thick triple-insulated wire
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Magnetics Loss: Core Loss
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Ferroxcube Data Handbook

Core Loss incorporates hysteretic and eddy-
current losses and is a function of Flux 
Density Amplitude and Frequency

Steinmetz Equation:

𝑃𝑣 = 𝑘𝑓𝛼 𝐵𝛽 [kW/m3]

flux density found using either:

𝐵 =
𝑉∆𝑡

2𝑛𝐴𝑒
applied volt-seconds

𝐵 =
𝐿 መ𝐼

𝑛𝐴𝑒
inductance & current ripple

Note: k, α and ß vary with frequency; refer to plots
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Core Loss vs. Frequency

Ferroxcube data handbook

Log-Linear Plot
• Core Loss does get better at higher frequency

• Inductors with “small” ripple get better

• “Large” ripple inductors are a mixed bag:

• Core loss improves

• Skin & proximity effect is worse

• Transformers are impacted more from skin and 
proximity loss; gains are modest

9x

3x

1.7x
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Core Loss: Non-sinusoidal Waveforms
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• Most real power converters don’t run on sinusoids
• Multiple methods:

• Harmonic analysis
• GSE, iGSE, i2GSE… based on instantaneous methods

iGSE is the easiest-to-use accurate method:

Instantaneous loss depends on overall ∆B and dB/dt: 𝑝 𝑡 = 𝑝 ∆𝐵𝑡𝑜𝑡 , Τ𝑑𝐵 𝑑𝑡

B(t)

∆Btot

dB/dt

[ref] Venkatachalam, Sullivan, Abdallah and Tacca, “Accurate Prediction of Ferrite Core Loss with Nonsinusoidal Waveforms using only Steinmetz 
Parameters,” IEEE COMPEL 2002.
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Magnetics Loss: AC Winding Losses
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Additional
copper losses 

Eddy currents 
induced to 
cancel H field

Current in single 
wire or turn

H-field generated by 
nearby turns and 
windings

Fringing H-field 
contributed by core 
gap(s)
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AC Winding Losses: Skin Depth
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At high frequencies, eddy currents generated by the 
magnetic field drive the internal current to zero

Skin Depth: 𝛿 =
1

𝜋𝜎𝜇𝑓

Litz wire or foil can be used to counter skin effect

[Wikipedia]

https://en.wikipedia.org/wiki/Skin_effect
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AC Winding Losses: Proximity Effect
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Eddy currents in conductors are induced to make
H field approach zero inside conductor (like skin effect)

Proximity effect deals with H-field generated
by other windings

Often examined in a 1D stacking of foil windings:
easily conceptualized and can be calculated exactly with
Dowell’s equation for a single winding with M foil layers:

[1] P. L. Dowell, “Effects of Eddy Currents in Transformer Windings,” Proceedings IEE, Aug 1966
[2] L. H. Dixon, “Eddy Current Losses in Transformer Windings and Circuit Wiring,” TI/Unitrode Power Supply Design Seminars
[3] Sullivan, “Computationally Efficient Winding Loss Calculation with Multiple Windings, Arbitrary Waveforms, and Two-Dimensional or Three-Dimensional Field Geometry,” IEEE Trans. 
Power Elec. Jan 2001

2D and 3D proximity effect losses must use field simulation and 
squared-field-derivative method

𝑃𝐴𝐶 + 𝑃𝐷𝐶
𝑃𝐷𝐶

=
ℎ

𝛿
𝐺1

ℎ

𝛿
+
2

3
𝑀2 − 1 𝐺1

ℎ

𝛿
− 2𝐺2

ℎ

𝛿

𝐺1 𝜑 =
sinh 2𝜑 + sin(2𝜑)

cosh 2𝜑 − cos(2𝜑)
𝐺2 𝜑 =

sinh 2𝜑 cos(𝜑) + cosh(𝜑)sin(𝜑)

cosh 2𝜑 − cos(2𝜑)
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Proximity Effect Example
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Rac/Rdc = 4.77 Rac/Rdc = 0.65

𝐹 = ර𝐻𝑑𝑙 = 𝑁𝐼

𝐼(𝑥)

MMF:
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𝐸𝑣 =
1

2
𝑩 ∙ 𝑯

AC Winding Losses: Fringe-Field Effect
Flux Density (B) Field (H)𝑩 = 𝜇𝑯

Current Density (J)

[1] Finite Element Method Magnetics: http://www.femm.info
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Magnetic Structures : H Fields
Distributed gap materials contain flux but distribute fringe field

Example: 120 µH, 45W offline flyback transformer @ 500 kHz, RM8/I core, losses at fundamental current only in FEMM

Loss: 337mW Loss: 188mW

Standard Ferrite Distributed Gap Powdered Material

Loss: 360mW
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• Single gap can cause large fringing losses in nearby windings

• Distributed gap effective at reducing fringing fields and losses while keeping flux contained in core

• Ungapped material (e.g. powdered iron) not effective in Pot-core shapes in constraining flux.
• Fringing fields extend into window, not near gap

• Likely much better in toroid geometries
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Examining Winding Location: Eta Designer

Winding Loss: 382 mWWinding Loss: 544 mW Winding Loss: 308 mW

See [2]: Hu, Sullivan, “Optimization of shapes for round-wire high-frequency gapped-inductor windings,” IEEE Ind. Appl. Soc. Annual Meeting 1998.

© 2018 Eta One Power, Inc. 19

85-265 VAC to 20V/2.25A Flyback @ 500 kHz
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Examining Winding Location: FEMM

Winding Loss: 337 mWWinding Loss: 560 mW Winding Loss: 226 mW

See [2]: Hu, Sullivan, “Optimization of shapes for round-wire high-frequency gapped-inductor windings,” IEEE Ind. Appl. Soc. Annual Meeting 1998.

© 2018 Eta One Power, Inc. 20

85-265 VAC to 20V/2.25A Flyback @ 500 kHz
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Approach to Simulating Fringe-Field (& Proximity) Losses

1) Determine H field at wire / winding turn locations
2) Compute AC loss for specific wire given H field [3-5]

DC FEM Simulation determines external H

𝑃𝑒𝑥𝑡 =
𝐺(𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦)

𝜎
𝐻2

3) Add in skin depth loss, DC Loss, core loss
4) Evaluate and optimize magnetic structure…

[3] Sullivan, “Computationally Efficient Winding Loss Calculation with Multiple Windings, Arbitrary 
Waveforms, and Two-Dimensional or Three-Dimensional Field Geometry,” IEEE Trans. Power. Elec. Jan 
2001
[4] Nan, Sullivan, “Simplified High-Accuracy Calculation of Eddy-Current Loss in Round-Wire Windings,” 
IEEE PESC 2004
[5] Zimmanck, Sullivan, “Efficient Calculation of Winding-Loss Resistance Matrices for Magnetic 
Components,” IEEE COMPEL 2010
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Winding Capacitances
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+
–

VIN IOUT

Intrawinding capacitance:
• Distributed capacitance between turns of same 

winding
• “Lumped” capacitance falls across switching node, 

adds to switching loss
• Leads to ringing in circuit and other resonant modes

Interwinding capacitance:
• Distributed capacitance between different windings
• Capacitive charge injection across barrier
• Leads to common-mode noise injected into output, 

trouble at the EMC lab
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Reducing Winding Capacitance
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Reducing intrawinding capacitance:
• Reduce ∆V between adjacent turns
• Single-layer windings
• Wind two-layer windings in same direction
• Stagger-wind to avoid large overlap ∆V

Reducing interwinding capacitance:
• Minimize interleaving between windings

• Counter to minimizing proximity loss

• Space windings apart with tape / insulation
• Add shielding layer
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Buck Converter: Inductor Scaling

Frequency
%

 R
ip

p
le Larger Cores

Saturation Limited:
• Core Loss is a small % of total

• Smaller gap and lower flux ripple

• Fringing effects minimal

Core Loss Limited:
• Significant ripple and energy stored in core

• Fringing and skin effects must be considered
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Magnetics scaling: Generalization
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Goal: Create a representation of power capability (via V-A product) for a general magnetic

ref: Sullivan, et. al. “On Size and Magnetics: Why Small Efficient Power Inductors are Rare,” IEEE 3D-PEIM 2016

𝑉𝐴 = 𝑉 ∙ 𝐼 = 𝑁𝑓𝐵0𝐴𝑐
𝐽0𝐴𝑤
𝑁

= 𝑓(𝐵0𝐽0)(𝐴𝑐𝐴𝑤)

Power handling capability

Applied voltage & winding current

Max current density in winding window

Max flux in core

For low frequency operation, saturation limited and for a linear dimension α:

• Power is proportional to α4 – power density improves with magnetic size

• Power is proportional to frequency f (B0 = Bsat)



Eta One Power, Inc

Magnetics Scaling: Frequency
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Operating Condition Power Density
by Size

Power Density
by Frequency

Low freq, saturation limited, fixed temp rise α1 f1

Low freq, core loss limited, fixed temp rise α0 to α0.2 * f B0(f)

High freq, core loss limited, fixed temp rise α-0.5 to α-0.3 * ∼f0.5 B0(f)

ref: Sullivan, et. al. “On Size and Magnetics: Why Small Efficient Power Inductors are Rare,” IEEE 3D-PEIM 2016

* based on Steinmetz β for core material @ frequency (β = 2 to 3)

Material performance factor
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CASE STUDY:
FLYBACK CONVERTER
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Modeling a Flyback Converter in Eta Designer
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Modeling a Flyback Converter in Eta Designer (2)
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Designing Flyback Magnetics

© 2018 Eta One Power, Inc. 30

1. Choose core 
geometry and 
material

2. Choose gap size, 
mag. inductance 
and/or turn count

3. Add an auxiliary 
winding

4. Edit windings as 
needed

5. Drag windings and add 
tape to arrange as 
desired



Eta One Power, Inc

Flyback: Simulation vs. Bench
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65W Universal AC to 19V Flyback Converter
LM5023 Valley-mode flyback controller EVM
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Total Loss: 2.68 W @ 3 A
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Flyback: Simulation vs. Bench (2)
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Measured: From EVM Datasheet

Simulated: From Eta Designer

78%

80%

82%

84%

86%

88%

90%

92%

0.5 1 1.5 2 2.5 3 3.5

Ef
fi

ci
en

cy
 

Output Current [A]

115 VAC
230 VAC

Sim w/o AC losses

Sim w/ AC losses

Measured results
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CASE STUDY: LLC CONVERTER
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Fringing Loss in LLC/Resonant Converters 

Resonant Capacitors

Resonant Inductor (+Leakage)

Magnetizing Inductance
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Examine transformer design in 500W, 380V to 12V LLC running at 300 kHz
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LLC: Initial Design Decisions
Magnetizing Current:

• Determines dead-time and ZVS
• Adds additional circulating current

Resonant Frequency:

• Sets typical operating frequency
• Sets approximate component size

Q:

• Sets regulation capability
• Determines necessary resonant components

𝐼𝑚,𝑝𝑘 =
𝑉𝐼𝑁

8𝐿𝑚𝑓𝑠𝑤

𝑓𝑟 =
1

2𝜋 𝐿𝑟𝐶𝑟

𝑄 =
Τ𝐿𝑟 𝐶𝑟

𝑛2 Τ𝑉𝑂𝑈𝑇 𝐼𝑂𝑈𝑇
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LLC Waveforms (at resonance)

Primary switch-node voltage
Primary resonant current

Secondary-side currents

Gating Waveforms

ZVSZVS

ZCS
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LLC Silicon vs. GaN: Magnetic Effects
Silicon Version:

70 mΩ 650V Superjunction
Cr: 24nF, Lr: 10µH, Lm: 50µH

GaN Version:
67 mΩ 650V e-mode GaN

Cr: 24nF, Lr: 10µH, Lm: 200µH

16:1CT on 8L x 140 um PCB in EQ25+PLT-3F36

Total Winding Loss: 5.43 W
16:1CT on 8L x 140 um PCB in EQ25+PLT-3F36

Total Winding Loss: 2.991 W
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Conclusions
• Magnetics design is complex with many tradeoffs

– Custom designs are needed for almost every power supply

• Magnetic design comes down to understanding losses and their 
tradeoff in the context of the specific power converter
– Easy: DC winding loss
– Medium: Core loss (but non-sinusoidal waveforms are hard)
– Hard: Skin-depth, proximity and fringe-field losses

• Understanding the trends in magnetics design can help drive 
converter design decisions

• Software like Eta Designer helps designers understand the tradeoffs 
easily to quickly develop an optimized solution.
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