Ultrafast Nanoscale Electrothermal Energy Conversion Devices and Measurements

Ali Shakouri Baskin School of Engineering University of California Santa Cruz

Acknowledgement: ONR, DARPA, AFOSR, CEA, NSF, DOE/EFRC, NASA/UCSC National Semiconductor, Intel, Canon, Wyle Lab, SRC-IFC

IEEE Power Electronics Society, Santa Clara Valley Chapter; 16 Feb. 2011

A Future: ~ 3.5 Trillion bbls **Oil Resources**

aurce: Modified from Cambridge Energy Research Associates, Inc. (CERA). The use of this graphic was authorized in ance by CERA. No other use, or redistribution of this information is permitted without written permission by CERA."

400,000 years of greenhouse-gas & temperature history based on bubbles trapped in Antarctic ice

Last time $CO_2 > 300$ ppm was 25 million years ago.

> *Source:* Hansen, *Clim. Change*, **68**, 269, 2005.

John P. Holdren, 2006

US Energy Flow 2008

Energy Use = 99.2 Quad = 105 EJ \rightarrow Power ~3.3 TW

A. Shakouri 2/16/2011

Direct Conversion of Heat into Electricity

Seebeck (1821)

A. Shakouri 2/16/2011

Impact of 15°C temperature increase on IC performance

- Leakage power exponential increase with temperature
 - $60nm \rightarrow 50-70\%$ of total power
 - Potential thermal runaway
- Lifetime exponential decrease with temperature (x ¼) – e.g. electromigration, oxide breakdown
- Interconnect delay (10-15%)
- Crosstalk noise (†up to 25%)

Thermal integrity: a must for low-power-IC digital design, EDN 15 Sept. 2005

Measuring Power and Temperature from Real Processors, Javi Martinez, Jose Renau, et al.The Next Generation Software (NGS) Workshop (NGS08), April 2008

Peltier Effect (1834)

Reverse of Seebeck effect (electric current produces cooling/heating)

Thermoelectric (Peltier) Coolers

$$Z = \frac{S^2 s}{k}$$
$$Z = \frac{(Seebeck)^2 (electrical \ conductivity)}{(thermal \ conductivity)}$$

Conventional thermoelectrics have low efficiencies and low cooling power density <50-100W/cm².

TEs for Telecom Cooling

 Melcor, Marlow and many other TE manufacturers provide coolers specifically designed for Telecom laser-cooling applications

Typical Distributed Feedback Laser: DI /DT=<u>0.1 nm/°C</u>

Heat generation <u>kW/cm²</u>

Cronin Vining, ZT Services

Thermoelectrically-Cooled/Heated Car Seat

A. Shakouri 2/16/2011

Solid-State Thermoelectric Energy **Conversion using** Nanostructured **Materials**

Thermionic Energy Conversion Center

Ali Shakouri, Director

Engineering current and heat flow using nanostructures

Goal: direct conversion of heat into electricity with > 20-30% efficiency

UCSC (Bian, Kobayashi), Berkeley (Majumdar), BSST Inc. (Bell), Delaware (Zide), MIT (Ram), Purdue (Sands), UCSB (Bowers, Gossard)

Funding: DARPA, ONR, DOE, NSF

Two beneficial effects of metal nanoparticles on thermoelectric performance

Metal nanoparticles *scatter phonons* Æ reduced thermal conductivity Metal nanoparticles *donate electrons* Æ enhanced electrical conductivity by increasing electron density in the semiconductor matrix

D. Vashaee and A. Shakouri, *Phys. Rev. Lett.* 92, 106103/1 (2004)

C. Vineis et al. Nano. Thermoelectrics: big efficiency gains from small features, Advanced Materials (2010)15

Thermoelectric figure-of-merit

J. Zide et al. Journal of Applied Physics (Dec. 2010)

The majority of ZT enhancement is from thermal conductivity reduction. 5% power factor enhancement at 800K.

Module power generation results

400 elements (10-20 microns ErAs:InGaAlAs thin films, 120x120mm²), array size 6x6 mm²

Co-optimization of thermoelectric module with heat sinks

K. Yazawa and A. Shakouri, Int. Conf. on Thermoelectrics 2010, IMECE 2010

Material cost of TE power generation

UC SANTA CRUZ A. Shakouri 2/16/2011

Today's TE power generation cost: \$1-2/W

Potential to bring this down to: \$0.1/W

system

K. Yazawa and A. Shakouri, International Mechanical Engineering Congress Nov. 2010

Microrefrigerators on a chip

Hot Electron

<u>Heterostructure Integrated Thermionic Coolers;</u> A. Shakouri and John Bowers, **Appl. Phys. Lett.** 1997

Nanoscale heat transport and microrefrigerators on a chip; A. Shakouri, **Proceedings of IEEE**, July 2006

Microrefrigerators on a chip

Nanoscale heat transport and microrefrigerators on a chip; A. Shakouri, **Proceedings of IEEE**, July 2006

Featured in Nature Science Update, Physics Today, AIP April 2001 21

High resolution thermal imaging of microcoolers

- Temperature resolution: 0.006°C
- Spatial resolution: submicron
- 256 channel lock-in camera <20kHz, 123dB (1sec)

Transient thermal imaging

Reason: Interface Peltier cooling and distributed Joule

Thin Film Microrefrigerator Optimization

 10 microns thick, 50x50m² monolithic microrefrigerator with ZT~0.5 can cool a 1000W/cm² hot spot by >15C.

Younes Ezzahri, Ali Shakouri et al. InterPACK07, Vancouver, Canada

Ultrafast Thermal Characterization and Simulations Techniques

High Power MOSFET Transistor Array

"Thermal Characterization of High Power Transistor Arrays", K. Maize et al, 25th IEEE SEMI-THERM Symposium, 2009.

A. Shakouri 2/16/2011

Thermal image vs. simulation at low bias

Array heating at low & high current densities

"Thermal Characterization of High Power Transistor Arrays", K. Maize et al, 25th IEEE SEMI-THERM Symposium, 2009.

Through-substrate thermoreflectance – Comparing topside and backside heating

Shakouri 2/16/201

Heating in Electro Static Discharge Devices

Snapback current =1.22A.

K. Maize, V. Vashchenko et al, To be presented at IRPS, 2011.

A. Shakouri 2/16/2011

High Speed Thermal Imaging (800ps) IC SAMA CRUZ

Study of heating in submicron interconnect vias

J. Christofferson et al., Proceedings of Int. Heat Transfer Conf., August 2010

Thermoreflectance Imaging for Reliability Characterization of Copper Vias

Shila Alavi, Glenn B Alers, Kaz Yazawa and Ali Shakouri

Department of Electrical Engineering University of California, Santa Cruz

Advanced Studies Laboratory University of California, Santa Cruz

Copper via chains

S. Alavi et al, To be presented at SemiTHERM, 2011.

Resistance shift for different via chains after aging at 200C

Thermal map of 10 via chain under bias

0 hour

83 hours

S. Alavi et al, SemiTHERM, 2011.

Thermal map of 10 via chain under bias

0 hour

120 hours

S. Alavi et al, SemiTHERM, 2011.

Thermal/ electroluminescence imaging of

Optical

Electroluminescence/ Optical Thermal/Optical

D. Kendig et al, *To be* presented at SemiTHERM, 2011

A. Shakouri 2/16/2011

Thermal/ electroluminescence imaging of Solar cells

Figure 4. a) forward and b) rev solar cell mini-r

D. Kendig et al, IPRS 2010

Figure 6. a) optical image of a defect in poly-Si, b) optical image with EL combined to show the location of the EL on the defect, c) EL signal in reverse bias, d) Thermal image of defect at 30V reverse bias

Technology Transition: Stand alone thermoreflectance imaging system (resolution: 200nm, 100ns, 0.2C, pixels: 1024x1022)

Ultrafast Thermal Simulation Techniques

THERMAL SIMULATION APPROACHES

Power Map

Temperature Profile

VHeat Equation

$$rc_{p} \frac{\P T}{\P t} = k \frac{\P^{2} T}{\P x^{2}} + k \frac{\P^{2} T}{\P y^{2}} + k \frac{\P^{2} T}{\P z^{2}} + q^{*}$$

- T =temperature t =time
- k = thermal conductivity
- $\rho = \text{density}$
- c_p = heat capacity
- q^* = heat generation rate per unit volume

Approaches

- ✓Finite Difference Method
- Finite Element Method
- VGreen's Function Method
- => Analogy with image blurring (power blurring)

T. Kemper, Y. Zhang, Z. Bian, A. Shakouri, 12th International Workshop on THERMAL INVESTIGATIONS of ICs and SYSTEMS (THERMINIC), Nice, France, 27-29 September 2006 HEAT SPREADING FUNCTION (THERMAL MASK)

Finite Element Analysis

Package Model

A. Shakouri 2/16/2011

BOUNDARY EFFECTS USANIA CRUZA. Shakouri 2/16/2011

Due to the finite dimension of the Si-Chip, boundary effect is important. => simplification: Use Method of Images and uniform heat compensation

V. Heriz, J.-H. Park, T. Kemper, S.-M. Kang, A. Shakouri, International Workshop on Thermal Investigation of ICs and Systems (Therminic), pp.18-25 Sept. 2007 *A. Shakouri et al. US Patent 7,627,841*

Inverse problem (temperature -> power) [[SAMA CRU]

Inverse problem (temperature -> power) [[SAIIA CRI]

Transient Temperature Change in IC

A. Shakouri 2/16/2011

Transient temperature at the chip center

A. Shakouri 2/16/2011

Virginia Martin Heriz, A. Shakouri et al. THERMINIC 2007

ADAPTIVE POWER BLURRING

Average execution time for PB, APB_I, APB_II, ANSYS: 0.04s, 0.16s, 0.83s, 16s

Architecture level thermal simulations

50

3D Chip Thermal Simulation

Cross-section temperature profiles

Je-Hyoung Park, Ali Shakouri, and Sung-Mo Kang, "Fast Thermal Analysis of Vertically Integrated Circuits (3-D ICs) Using Power Blurring Method," *Proceedings of the InterPACK Conference,* San Francisco, July 19-23, 2009.

A. Shakouri 2/16/2011

VISIT OUR WEB SITE

http://quantum.soe.ucsc.edu/

Thermal Characterization Lab at NASA Ames Research Center

300 sq feet space for optical/thermal characterization system Resolution: 6mK temperature, 500 nm spatial, DC/Transient -100ns

Santa Cruz Campus

Exclusive research collaboration Sharing and transferring our techniques and tools via industrial affiliate program

Major Equipment

High Temperature Cryostat System (4-1000K) Raman and Luminescence Spectroscopy System Thermal Imaging Camera Femto/Picosecond Laser Atomic Force Microscope Mid/Near-infrared Thermal Imaging (InSb, InGaAs cameras) OLYMPUS FluoView FV1000-Confocal Microscope

A. Shakouri 2/10

Summary

- Metal / semiconductor nanocomposites can improve thermoelectric energy conversion
 - Mid/long wavelength phonon scattering, Hot electron energy filtering
- Micro Refrigerators on a Chip (need ZT~0.5 on chip to cool 1kW/cm² hot spots by 10-15C)
- Fast transient thermal imaging (~200nm, 0.2C, 800ps)
- Thermal characterization of high power transistors, ESD devices, solar cells, LEDs and copper vias
- Fast thermal simulation of packaged IC chips (adaptive power blurring) –T-dependent material properties

A. Shakouri and M. Zeberjadi, "Chapter 9: Nanoengineered Materials for Thermoelectric Energy Conversion," in: *Thermal Nanosystems and Nanomaterials*, ed. by S. Volz, Springer, pp. 225-299 (2009)

Acknowledgement

Senior Researchers: Zhixi Bian, Kaz Yazawa, James Christofferson

Postdocs/Graduate Students: Kerry Maize, Hiro Onishi, Tela Favaloro, Paul Abumov, Phil Jackson, Oxana Pantchenko, Amirkoushyar Ziabari, Bjorn Vermeersch, Gilles Pernot, Shila Alavi, Je-Hyeong Bahk

Collaborators: John Bowers, Art Gossard, Chris Palmstrom (UCSB), Tim Sands (Purdue), Rajeev Ram (MIT), Venky Narayanamurti (Harvard), Arun Majumdar (Berkeley), Yogi Joshi, Andrei Federov (Georgia Tech), Kevin Pipe (Michigan), Josh Zide (Delaware), Lon Bell (BSST), Stefan Dilhaire (Bordeaux), Natalio Mingo (CEA), Sriram Shastry, Nobby Kobayashi, Joel Kubby, Ronnie Lipschutz, Melanie Dupuis, Steve Gliessman, Ben Crow (UCSC), Bryan Jenkins, Susan Kauzlarich (Davis), Steve Kang (Merced)

Alumni: Younes Ezzahri (Prof. Univ. Poitier), Daryoosh Vashaee (Prof. Oklahoma State), Zhixi Bian (Adj. Prof. UCSC), Yan Zhang (Tessera), Rajeev Singh (Sun Power), James Christofferson (Microsanj), Kazuhiko Fukutani (Canon), Je-Hyoung Park (Samsung), Javad Shabani (postdoc, Harvard), Mona Zebarjadi (postdoc, MIT), Xi Wang (postdoc, UCSB), Helene Michel (CEA), Tammy Humphrey