Power Electronics Hardware Design For Manufacturability

Thursday September 15th, 2022

Agenda

- Introduction to PPPEAC and Magna-Power Electronics (MPE)
- History, role of MPE products in test and measurement space
- Presentation focus engineering targeting manufacturing and mass production
- External Manufacturing Constraints and design rules.
- Printed circuit board design w/ emphasis on high power.
- Internal Manufacturing Competency, feedback, efficiency.
- Design for automation
- Record keeping and tracking: Issues, BOMs, firmware, revision/versions
- Firmware and testing
- Electronic and mechanical packaging

Princeton-Philly Power Electronic Advancement Consortium (PPPEAC)

- Founded in 2019
- Joint Chapter: IAS/PELS chapter
- Joint Section: Princeton and Philadelphia
- Joint **Region**: R1and R2
- Visit us at www.*ieee-pppeac.org* to register for the newsletter.
- Factory Tour and General Meeting

Friday September 16th, 4 - 6pm ET 39 Royal Road Flemington, NJ 08822 https://bit.ly/3S9PLbM

TestEquity (Moorpark, CA)

		Bankes .	
		Search F.B.	•
and and an and a second	1		÷.
ene Flaste Deduction	- 12		- 1
TRA NORMALINA MC	- 1		
on Technology Living German	in the second		
/ir fwitescopee		-	
on Dectionation	94 ²		
•	1.8		

Digi-Key

NaturalShrimp, Inc.

Who is Magna-Power Electronics?

- Offers the largest selection of COTS programmable ac-dc power supplies (350,000+) designed for and shipped around the world.
- Rack mount and floor standing power finds applications in automotive, chemical processes, military, academia, renewable, fusion, ... animal science.
- Other power-specific specialty products: electronics loads, blocking diodes, high-accuracy linear regulators, and even cables.

The Team 2022 @ Magna-Power Electronics, Inc. HQ, Flemington, New Jersey

Bloomberg @ General Fusion

President Biden @ NREL

History[2] 1998-2998

1. A. Pitel and G. Pitel, "The History of Magna-Power Electronics: The Path to a Vertically Integrated U.S. Electronics Manufacturer [History]," in IEEE Industry Applications Magazine, vol. 23, no. 1, pp. 7-13, Jan.-Feb. 2017, doi: 10.1109/MIAS.2016.2614392.

Power Supply Manufacturing

Before MPE, high-power supplies were custom designs with the same formula.
(1) Find a power-electronics engineer/firm;
(2) allow one to two years time to design, test;
(3) outsource manufacturing.

MPE rewrote the formula

- Listen to customers. Create a base design that hits the largest customer demographic.
- Parametric BOM definitions
- Parametric testing routines
- Parametric drawings
- Flexible, vertical-integrated production processes and staff. Low-volume high-mix manufacturing.
- Learn from mistakes, iterate, improve, and repeat.

Engineering Challenges

- Expansive BOMs and datasets
 - GIT, ERP, and lots of custom software.
- Rule/parameter-based design and quoting
- Low lead times mean quick response needed form planning, production, and engineering to address materials shortages or missing drawings
- First-time builds may fail test
- Managing product compatibility
- Designing and selecting parts for reuse in multiple assemblies.
- Legacy support

Software Design Constraints in Action

- Power electronics specific PCB design [2]
- For high current, more copper weight introduces drastic tolerance changes in the etching and masking processes.
- For high-voltage, design must manage clearance/creepage distances.
 - Line-to-line, line-to-chassis, and floating
 - Be wary of over constraint and constraint ordering
 - Understand and enable as many design rules as possible

2. G. Pitel and A. Pitel, "Power Electronics Hardware Design for Manufacturability: Employing design principles to ensure manufacturability of complex designs at high-voltage and high-current extremes," in IEEE Power Electronics Magazine, vol. 8, no. 4, pp. 16-22, Dec. 2021, doi: 10.1109/MPEL.2021.3123832.

High-Voltage Clearance / Creepage Rules

Voltage	Minimum Spacing							
Conductors	Bare Board							
Peaks)	81	82	83	84	A5	A6	A7	
0-15	0.05 mm (0.00197 m)	0.1 mm (0.0039 m)	0.1 mm (0.0039 in)	0.05 mm [0.00197 m]	0.13 mm (0.00512 m)	0.13 mm (0.00512 in)	0.13 mm (0.00512 inj	
16-30	0.05 mm (0.00197 m)	0.1 mm (0.0039 m)	0.1 mm (0.0039 inj	0.05 mm [0.00197 m]	0.13 mm (0.00512 ed)	0.25 mm (0.00984 ad)	0.13 mm (0.00512 m)	Creepege
31-50	0.1 mm (0:0039 in)	0.0 mm (0.024 inj	0.6 mm [0.024 m]	0.13 mm [0.00512 m]	0.13 mm (0.00512 in)	0.4 mm (0.010 in)	0.13 mm (0.00512 inj	(in equipment)
51-100	0.1 mm (0.0039 inj	0:6 mm (0.024 m)	1.5 mm (0.0501 in)	0.13 mm (0.00512 in)	0.13 mm (0.00512 in)	0.5 mm (0.020 kit)	0.13 mm (0.00512 in)	Creepage (on P) Clearance
101-150	0.2 mm (0.0079 m)	0.6 mm (0.024 kg	3.2 mm [0.126 m]	0.4 mm (0.016 m)	0.4 mm [0.010 m]	0.8 mm (0.031 m)	0.4 mm (0.016 in)	Creepage (in continuous)
151-170	0.2 mm (0.0079 m]	1.25 mm (0.0492 inf	3.2 mm (0.126 m)	0.4 mm (5.016 m)	0.4 mm (m 810.0)	0.8 mm \$0.031 int	0.4 mm [0.010 in]	Creepaga (nh P)
171-250	0.2 mm (0.0079 inj	1.25 mm (0.0402 in)	6.4 mm [0.252 m]	0.4 mm (0.016 km)	0.4 mm [0.010 m]	0.8 mm (0.031 in)	0.4 mm [0.016 m]	C earon co
251-300	0.2 mm (0:0079 inj	1,25 mm (0.0492 in)	12.5 mm [0.4921 m]	0.4 mm (0.016 m]	0.4 mm (0.016 m)	0.8 mm (0.031 ks)	0.8 mm [0.001 m]	
301-500	0.25 mm (0.00094 in)	2.5 mm (0.0984 m)	12.5 mm [0.4021 m]	0.6 mm (0.031 m)	0.8 mm [0.031 m]	1.5 mm (0.0591 m)	0.8 mm (0.001 m)	
≥ 500 ao para: 0.3 for calo	0.0025 mm /voit	0.005 mm /volt	0.025 mm /volt	0.00305.mm /v0550	0.00005 mm /volt	0.00305 mm /volt	0.00305 mm /volt	64

	Condition	Pollution Degree 1	Polation Degree 2
nibiusut) Ali	Easic Inculation,	0.7 mm	30mm
aga (on PCS)	SJOV,	.07mm	1 Amm
ance	C11>400	0.5mm	0.6mm
iaga uipment)	Easic Insulation,	03mm	1.6mm
aga (on PDE)	190V,	0.72mm	El:35imet
ince CTL sto	CTI S107	0.1 mm	0.2mm

- Default to generous clearances (IPC-2221)
- Apply specific rules when tighter spacing is needed
- Leverage software to store and enforce design rules. Inter-layer violations are hard to see/calculate and sometimes non-obvious.

M – External Conductors, with permanent polymer cooling citry elevation to - External Conductors, with conformal cooling over asserting carly elevation

6 - External Component Isaditermitation, stacated, sea level to 3050 in [10.007 feet]

A7 - External Component lead termination, with conformal coating (any elevation)

Board House and Stencil Fabricators

- Due to fab limitations, solder mask tolerances and minimum trace widths grow with copper weight.
 - 1 oz -> 5 mil minimum trace width
 4 oz -> 15 mil minimum trace width
 - Prevents the mixing of high current with dense logic on the same PCB.
 - Different layers stacks have different design rules.
- Avoid fabrication delays by putting as much details about the build on the Gerber artwork (drill guides, layer stack, stencils, ...)
- Mindful of language barriers and regional holidays
- Run DFM checks before sending
- Keep a healthy and inquisitive dialog with board house.
- Translate their years of experience into design rules.
- Upfront time investment for long-term time savings.

Soldering and Reflow

- Solder mask slivers starve joints of solder.
 - Bad joints and bridges flagged by AOI
 - Rework increases labor costs and lead times
- Reflow and wave solder process expose all joints to the same temperature and dwell time.
 - Thermal reliefs increase thermal resistance that evens heat distribution and improves solder wetting.
 - Balance electrical conduction and thermal conduction

Automated Assembly

- Be mindful of labor and equipment (benefits of insourcing)
- Alignment fiducials, bad board marks, tooling holes.
- Array PCB designs to reduce handling and tool change time.
- Assembly likely traveling by conveyor
 - Include rails for griping
 - Watch for gaps/obstructions on leading edge
- Edge-of-board clearance for de-paneling and mechanical inserts.
- Board flex, bounce back

Engineering Prototype Management

- Nature of the business requires regular prototype runs.
 - Treat as standard production board to accelerate completion
- Differentiate from normal work orders
 - Tracking: Issue tickets, color router holder, work order notes
 - Revision numbers, revision states (active, pending, inactive)
 - May have incomplete work instructions, operations, missing/wrong materials
- Quick turn needed to clear blocks in design validation
 - Escalate in job work queue
 - Expedite purchase parts
 - Engineer responsible for clearing any obstacles
- Bring prototypes (BOMs, drawings, etc.) to a near production-ready state.
 - Exercises documents to identify problem with design or production process
 - Low-volume runs to test out recipes, tooling, and machine programming.
 - Material purchasing and kitting follow standard processes – all handled for engineering

Data Driven Engineering and Prototype Planning

- Single central database. Sophisticated queries on production, sales, and engineering.
- API exposure to engineering design software
- Export design to production software (AOI, P&P)
 - Recipe construction and on-the-fly componentlevel validation.
- Labor tracking identify bottle necks.
- ERP Manage purchasing, jobs, shipping

📑 116k dl 422 PhDor 🗉 🛄 116k dl 412 St (0 👘 🗧	Components							***
1, 🖶 📕 📚 📥 📕 🔳 🛤 🔍 A, ∩.)	Y MULTINING							= =
	q. Seam							•
N _{av}	M stasscode.code							
300 3149	then purches - Library Rat	itam dancetos	limits gyothed	1 Bolethics	-	mitant	hooppiles that	
	- RES. THICK PILM							
1.577	TITIN RESISTON	NERVENT						
MON BUS AFTER ASSEMBLY.	NUM RESISTOR	SMID40100SFE			IDM		02556C06400-580e1	
	52107 RESISTOR-H	ILPT/KSAIDGITE					H152513-H1574C	
	12988 4E5(5108	CIME/P2512F2/0K				200	HE525(2)	
	1008P RESISTOR	CHGP2512E390K				2W		
	 RES, THIN FILM 							
	LINE HISISTON	CRU-BUNUTUROW				1/497	HE51200	
	Totalo. Resistion	ERU-INTERVIEW				1,000		
	13823 48511700					1////	8511206	
* * * * * * * * *	13824 4258708	ERO-BEINF1087%				12444		
a a a a a a a	Hases RESIGION	EQUISION 1110N				Millie		
1 1100V 1100V 1100V 1100V 1100V 1100V 1100V	10223 - 112-11							
	Selected Component Details							
Iditor 1144-0-002	Components Propetties							

- Encourage intelligent component reuse
 - Volume pricing
 - Reduced vendor/manufacture vetting effort
 - Inventory/planning simplifications
 - Job optimization reduces tool change over
- Automate record keeping processes when possible.

Document and Software Management

- Adopted the tracking/processes used by software developers
- When production or customer encounter an issue.
 - Document problem and how to repeat it in an issue tracking system.
 - Issues are searchable visible to all within the company. Tied to multiple tertiary services. Stays in system until closed.
 - Issues can pass freely from support, engineering, production, and testing.
 - Ticket evolves. Establish accountability, priority, and ownership.
 - Resolving file change(s) linked together with issue.
- Permanent record of problem and resolution (source for many of the images in this presentation)

Hardware-Firmware-Software Compatibility

	Product Explorer		_ 🗆 ×
æ	Firmware Upgrade		, ,
	19809448 VESSON 0.055-36200 6.065-30160 0.055-36200 6.069-42922 0.055-36200 6.059-41775	MADAACTHE VERDON 0.047 0.042 0.041 0.039 0.041 0.038	UPCRACE
MAG	NACTRL		MAGNA-POWER

- #1 Required launch feature firmware flashing
- Platform, future proofing, support continuous improvements
- Firmware, hardware, and software features.
- Manage changes/fixes in hardware, protocol, and EEPROM.
- Multi-chip, multi-product flashing
- Forward compatibility, Backwards compatibility
- Cross-product compatibility (ALx, DBx, SLx)
- Compatibility breaks 😕

Items	Changes	Date	Snapshot
23080R27, 23717R10, 23742R5, 23746R6, 24283R16, 25040R14, 25750R7, 25768R3, 25769R6, 25912R10, 28206R0.012, 28207R0.045, 28208R0.024, 28431R0.014, 29448R0.023, 29468R0.101	hw: change transceiver U2 to a SSOP16 package to address hw: fix footprints TH1, VR1, C22, remove C34, remove +48V connection on JA2 hw: common mode choked added cg2: bootloader can respond to status message requests cg2: fan speed turns off gently to prevent aux power reset cg2: fix rheostat mode tripping by changing order of linear module cg2: prevent shorting switch from turning on during initialization ivi: first release (built through cis)	2019-02-26	36
23080R28, 23717R10, 23742R5, 23746R6, 24283R16, 25040R15, 25750R7, 25768R3, 25769R6, 25912R10, 28206R0.012, 28207R0.046, 28208R0.025, 28431R0.014, 29448R0.024, 29468R0.101	hw: digital IO buffers controlled by gatedrv only hw: increased current to power rocker opto hw: input capacitance to flyback reduced to speed up startup hw: current increased to opto to improve turn on cg2: bootloader can respond to status message requests	2019-03-19	37

Design for Test

- Provide simple visual debugging for testers (inexpensive)
- Consider test point accessibility and visibility
- Prevent redundancy in testing (functional vs electrical)
- Balancing
 - Test duration
 - Probability for failure
 - Time needed to address problem
- Configurable products need configurable testing.

Extensible Testing

- One testing station many combinations
- Sales order acts as inputs for tests.
- Tests automatically added or removed from suite based on those inputs.
 - Extra tests loaded for detected firmware or hardware changes, when breakage is most probable.
 - Discover feature breaks before shipment.
- Object orientated test programming

def test_analog_output(self):

Version Control for Engineering Documents

- Common practice for software development facilitate parallel effort
- Trace when and who made changes. Help production direct questions.
- Backup, recovery, and centralized access
- Most engineering files binary (schematic, layouts, and drawings) limited support conflict resolution.
- Careful selection on when to tag/version engineering documents in production process.
 - Layouts, transformers, and metal
- Compare between versions to trace/identify cause of defect.

9	for triggering build	27 Jul 2022 11:31	vpatel-mpe <vpatel@magi< th=""><th colspan="2">2f1e3a09e</th></vpatel@magi<>	2f1e3a09e	
0	O 🚺 master 🔰 🚺 origin/master 🔡 🚺	26 Jul 2022 11:02	cis-mpe <cis@magna-po< td=""><td>cde3f4245</td></cis@magna-po<>	cde3f4245	
+	commit to trigger cis build	25 Jul 2022 18:00	pdesai-mpe <pdesai@mac< td=""><td>2de72dd9f</td></pdesai@mac<>	2de72dd9f	
- 1	D origin/GEN2-3625 Merge remote-	25 Jul 2022 15:07	pdesai-mpe <pdesai@mag< td=""><td>9f6c5addf</td></pdesai@mag<>	9f6c5addf	
1	firmware codebase successfully passed t	28 Jun 2022 17:27	cis-mpe <cis@magna-pow< td=""><td>c8c0379f5</td></cis@magna-pow<>	c8c0379f5	
	Merged in GEN2-3626 (pull request #6)	28 Jun 2022 16:18	Andrew Hollabaugh <aholl< td=""><td>5ec63ce8c</td></aholl<>	5ec63ce8c	
4	firmware codebase successfully passed t	28 Jun 2022 14:53	cis-mpe <cis@magna-pow< td=""><td>cb9a6697c</td></cis@magna-pow<>	cb9a6697c	

Electronic and Mechanical Packaging

- Parametric (solid) modeling (new to MPE)
- More complicated drawings (keypad)
- We find ~¾ of the component manufacturers provide 3D models
- Check form/fit before physical prototype
- Boost working efficiency between electrical and mechanical teams.
- Assembly drawings for production
- Configurable drawings
- Importance of clearly defined wire harnesses.

Prototype Production

- Treat as standard production (drawings, BOMs, identification), limited communication -> faster builds
- In past relied heavily on past designs, pictures, and back-and-forth communications with engineering and production.
- Has become at lot less laborious to create assembly drawings for production
 - High availability of 3D component models from manufacturers
 - Evolution of internal part libraries
 - Build up of new models
- CAM and bends embedded in solid model
- Keep prototype volumes low, heavily scrutinized, and be conservative with revision status.
 - Active = Ready for Mass Production

Conclusion & Questions

Looking for critical feedback on talk, please reach out: gpitel@magna-power.com

General PPPEAC Meeting and Magna-Power Factory Tour

Factory Tour and General Meeting Friday September 16th, 4 - 6pm ET 39 Royal Road Flemington, NJ 08822

https://bit.ly/3S9PLbM

