

Use of a Power Monitor with Multiple Inputs to Improve Opportunities for System Accuracy and Power Savings

Mitch Polonsky Microchip Senior Product Marketing Manager Mitch.Polonsky@microchip.com January 25, 2018

Agenda

- Monitoring power and energy why?
- Monitoring power and energy how?
 - Traditional methods
 - A more modern approach
- Current sensor market overview
- Use case to measure multiple voltage rails in a Kaby Lake Intel System
- Discussion

Industry Trends and Insights

- Cell Phones report on application power usage
- Laptops & some tablets report on application power usage

• Windows 10 systems are <u>only 70%</u> accurate <u>without a power monitor IC</u>

ES SOItwale Estimation vs. Haluwale Measurement	E3 Software Estimation vs. Hardware Measureme
---	---

E2 Configuration	Ар	proximate accura	acy per power mod	el
E3 Configuration	CPU	Storage	Display	Network
Software Estimation *	87%	<70%	<70%	<70%
Hardware Measurement **	98%	98%	98%	98%

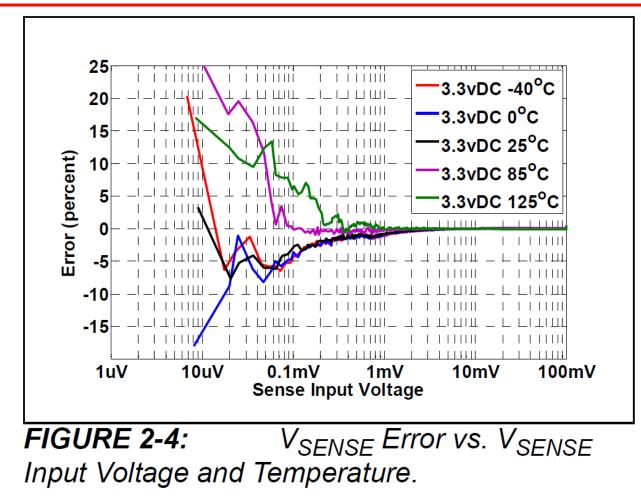
IEEE PELS/Microchip- Use of Power Monitor with Multiple Inputs Improves Accuracy Source: Mici

Source: Microsoft Fall WINHEC 2017 3

Windows PC, Power Measurement and Error

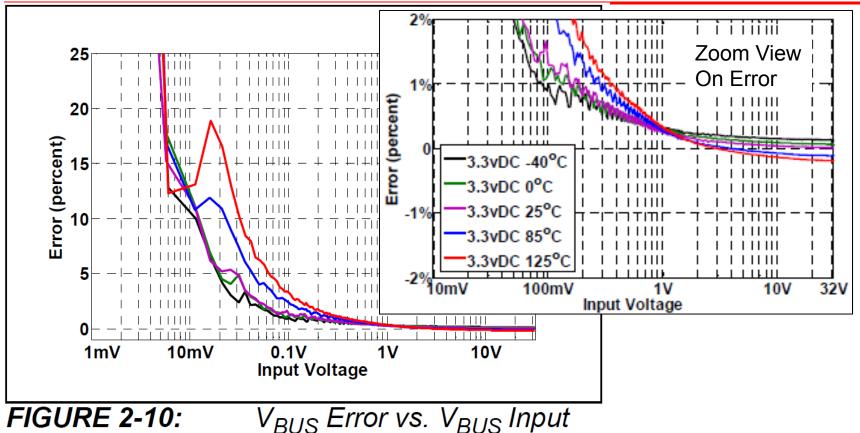
- Software estimation
 - Relies on the CPU measurement
 - Relies on system modeling power in WIN10 OS
- Hardware estimation and requirements
 - Series resistors (1%) are used to measure power
 - Kelvin connectors
 - Sense resistor 2-20 m Ω (for the case of a PC)
 - Value based on the full scale load and current desired
 - Full scale voltage was based on 100mV (in this case)
 - Simultaneous sampling (ADC for V & I desired)
 - Known time stamp and always sampling
 - Synchronizing multi-rail measurement
 - High common mode range up to 20V rail to rail

Measurement Accuracy of Vsense and Vbus


V _{SENSE} Measurement	V _{SENSE} Measurement Accuracy												
V _{SENSE} Gain Accuracy	V _{SENSE} _ GAIN ERR	_	±0.2 ±1	±0.9	% %	At +25°C typical, –40 to +85°C							
V _{SENSE} Offset Accuracy, referenced to input	V _{BUS_} OFFSET_ERR		±0.02 ±0.2	±0.1	m∨ m∨	At +25C° typical, –40 to +85°C							

V _{BUS} Measurement A	V _{BUS} Measurement Accuracy												
V _{BUS} Gain Accuracy	V _{BUS} GAIN ERR	_	±0.02	±0.5	%	At +25°C							
			±0.2		%	typical, –40 to +85°C							
V _{BUS} Offset Accu-	V _{BUS}	—	±1	_	LSB	At +25°C							
racy, referenced to input	OFFSET_ERR		±2		LSB	typical, –40 to +85°C							

- Resistor error and device error should be added linearly for maximum error
- On the following slides we will review the device error


Vsense Error vs Input Voltage and Temperature

- Error converges after 0.5 mV Vsense input voltage
- Data sheet is for a 0 to 32 V common mode voltage

Vbus Error vs Vbus Input Voltage and Temperature

Voltage vs. Temperature.

• Error converges after 0.5 V Vbus input voltage

Measurement Error Example

Actual power = 12V x 1A = 12W

```
Vbus = 12V at I = 1A
```

Vsense = 50mV (Rsense= 50 mohm)

Measured power:

Vbus = 12(1+gain error) +offset = 12(1.005) +976uV = 12.06098V

Vsense = Vsense(1+gain error) + offset = 50mV(1.009)+0.1mV = **50.55mV**

Rsense = .05 ohm (.99) = .0495 ohm [1% resistor]

Current = 50.55mV/(.0495) ohm = 1.0212A

Measured Power = 12.06098 x 1.0212A = 12.31666W Error = .317W = .317/12 = .0264 = 2.64%

PUF

Operating Expense kW per rack

Server Utilization Network Utilization

Storage Utilization Watts per Square Foot

> WUE CUE

Total Carbon

Industry Trends and Insights

Data Center Management

- Cost of server ownership is in the utility cost
- Power Use Effectiveness (PUE)
 - Non-computing energy takes 45% 60% of total energy
 - Top ranked concerns of executives in the industry
 - Thermal and energy management has become a key challenge in the design and operation of data centers.
- Office of Management and Budget (2016) set target PUE <1.5

PUE	DCiE	Efficiency Level
3.0	33%	Very Inefficient
2.5	40%	Inefficient
2.0	50%	Average
1.5	67%	Efficient
1.2	83%	Very Efficient

IEEE PELS/Microchip- Use of Power Monitor with Multiple Inputs Improves Accuracy

Total Facility Power

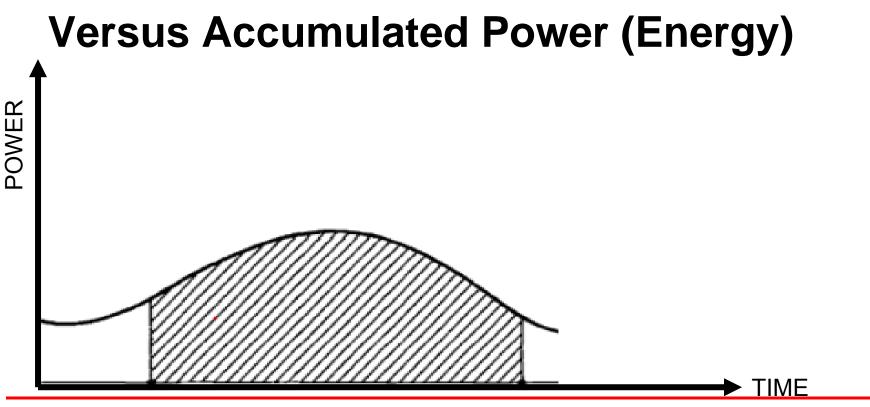
Why DC Power/Energy Monitoring

• Why are companies using this feature

- Actively managing total system power & limits
 - Inform end user and help alter their behavior
 - Running out of power and battery
 - Power providers are assessing out of range conditions
 - C-connectors enable adaptable power scenarios
- Configuring for different run conditions saves power
- Measurement and reporting
 - The laptop, tablet & cellular WIN10 battery utility
 - Monitor efficiency, aging, and faults

Traditional methods

- Use op amp circuits for high side current sensing and voltage monitoring
- Outputs of these circuits are fed to and ADC followed by a processor/controller
- Controller controls the ADC and multiplies current x voltage to get power
- Take many measurements over time
- Store results, and calculate energy usage
- Discrete resistors mean reduced accuracy or expensive calibration

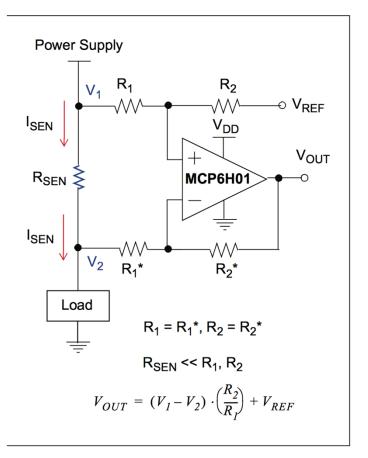


Instantaneous vs Acummulatd Power

Instantaneous Power

Instantaneous power (in watts) : the power at any instant of time

$$\mathbf{p}(t) = \mathbf{v}(t) \times \mathbf{i}(t)$$

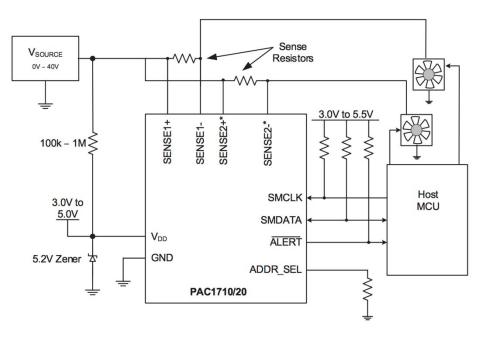


IEEE PELS/Microchip- Use of Power Monitor with Multiple Inputs Improves Accuracy

Measuring Power

• Discrete Current Sense Amplifier example

Discrete resistors add error Requires ADC at output

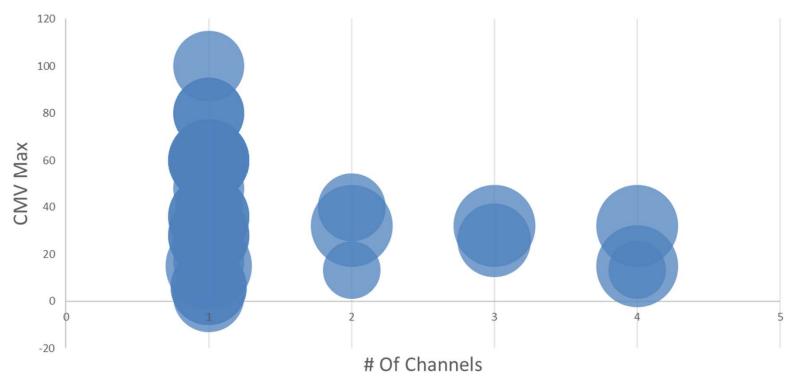

ADC errors also contribute to final error via quantization

A More Modern Approach

• Use a Power Monitoring IC

- Incorporates high side current monitor, bus voltage monitor, and ADC
- Factory calibrated

PAC1720 example Only sense resistors affect accuracy

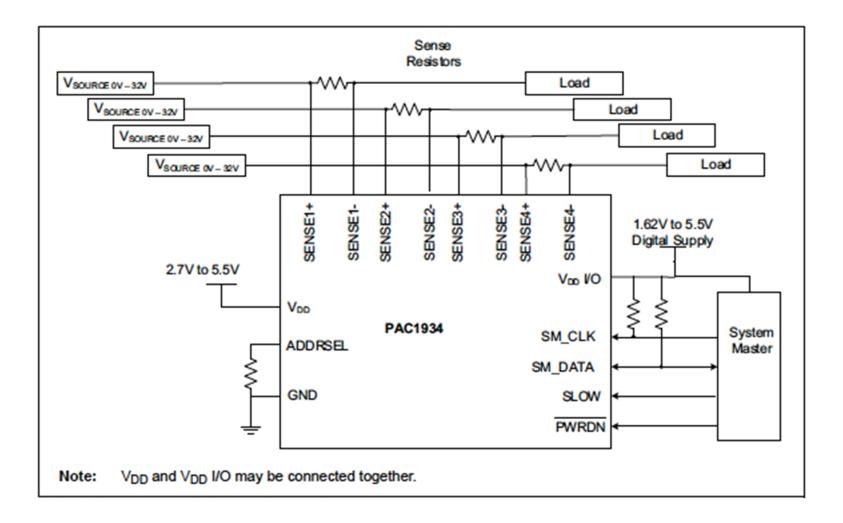

Energy Measurements

- The easy way to do energy measurements: use a power monitoring chip
 - I2C/SMBus interface
 - Most report on current, voltage and power
 - Simplifies energy calculation when used with a known time stamp from the system host
 - Host can command the beginning and end of the integration period
 - There are on the order of 40 I2C current sensor devices in the market
 - This does not include ASSPs (i.e. hot swap controllers)

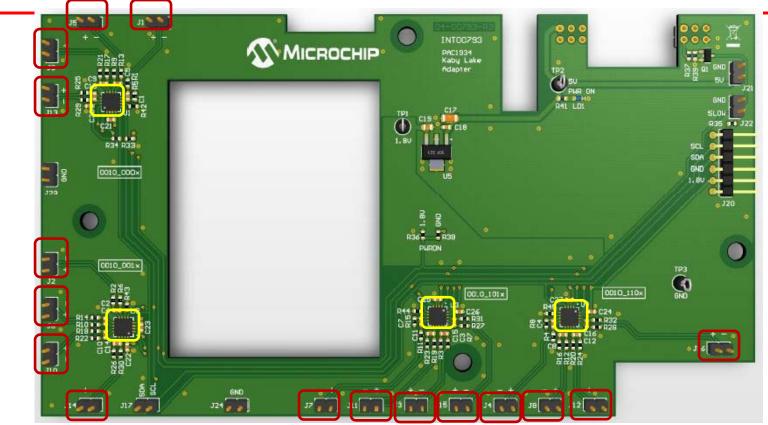
High Level I2C Current Sensor Market Offerings

Common Mode Voltage of Current Sensor

- Circle size is resolution 8 to 18 bits
- Full scale range is normally 10 mV to 100 mV

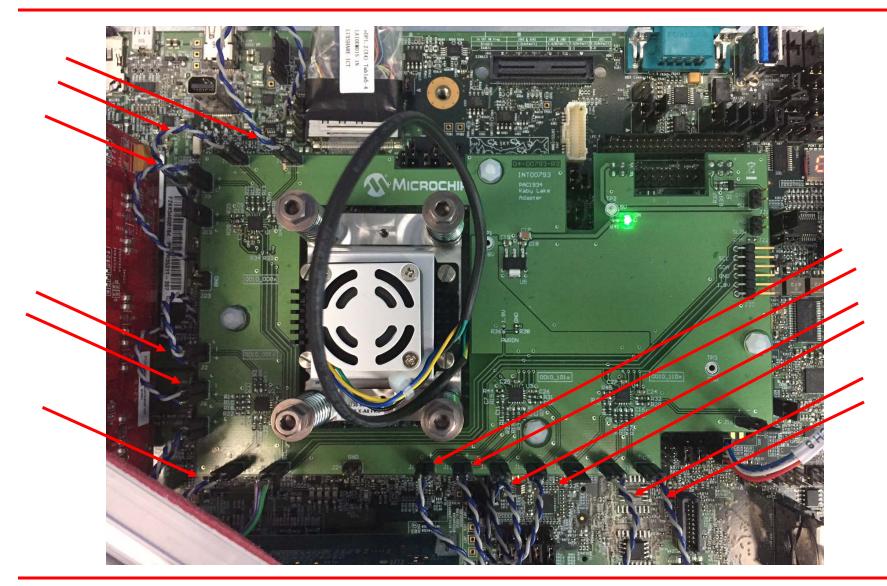


Tracking Power in Intel Reference Design


- 4x PAC1934 installed on an add-on board for Intel Kaby Lake validation system
- Sense resistors on the motherboard are wired to the add-on board
- Windows 10 driver used to facilitate data collection and interface to Windows E3 application via Energy Metering Interface
- These acronyms are explained shortly

Basic Applications Circuit

Kaby Lake Modification to Read 12 Current Sensors


The square hole fits over the heatsink on the processor. The two pin terminals around the outside are for the pairs of sense resistor wires.

- QFNs are 4 channel PAC1934 devices

IEEE PELS/Microchip- Use of Power Monitor with Multiple Inputs Improves Accuracy

MICROCHIP

Image: A x 4 channels = Only 12MICROCHIP4 x 4 channels = Only 12Channels Used

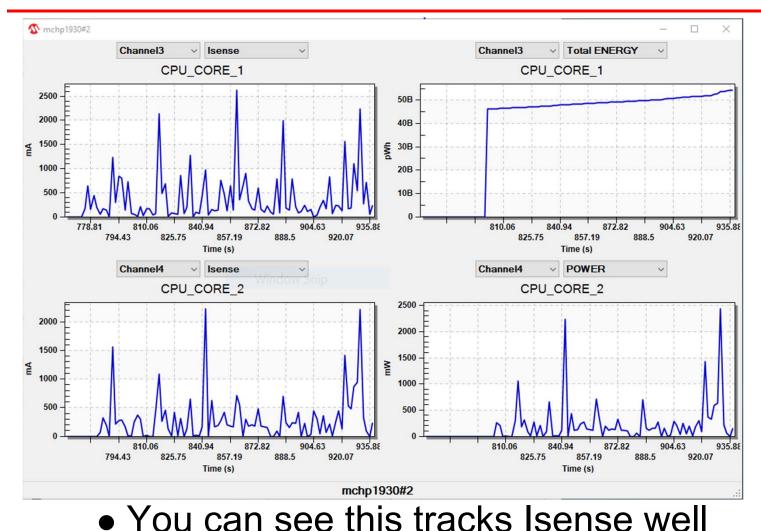
IEEE PELS/Microchip- Use of Power Monitor with Multiple Inputs Improves Accuracy

PAC1934 EMI Utilityмісвоснір(Energy Metering Interface)

AC device list refresh								
rgy Metering Interfaces (EMI) F	AC devices and registers							
PAC device list		Status and Configuration I	Registers					
\\?\acpi#mchp1930#1#	Report Select				Display Form	at Selector		
\\?\acpi#mch\1930#2# \\?\acpi#mchp1930#3# \\?\acpi#mchp1930#4#	Current Va	lues	O SLOW Sna	pshot Values	Operation Decimal V		O HEX Value	es
	CH1 Device Regis	sters	CH2 Device Regis	iters	CH3 Device Regi	sters	CH4 Device Regis	sters
	Vbus:	1.211	Vbus:	1.208	Vbus:	1.002	Vbus:	3.330
	Vsense:	0.279	Vsense:	0.388	Vsense:	0.554	Vsense:	0.119
	Vbus AVG:	1.203	Vbus AVG:	1.203	Vbus AVG:	0.998	Vbus AVG:	3.325
	Vsense AVG:	0.183	Vsense AVG	0.189	Vsense AVG:	0.476	Vsense AVG:	0.011
	POW:	169.039	POW:	233.889	POW:	276.947	POW:	198.030
	ACC:	215,486,145	ACC:	202.079.153	ACC:	466.667.080	ACC:	44,434.977
	Computed		Computed		Computed		Computed	
	Isense:	0.140	Isense:	0.194	Isense:	0.277	Isense:	0.060
	ENERGY:	89,964,429,185.000	ENERGY:	84,965,431,909.000	ENERGY:	196,925,498,811.000		20,164,266,028.000
	EMI energy:	ergy: 89,964,429,185.000 EMI	EMI energy:	84,965,431,909.00	EMI energy:	196,925,498,811.000		20,164,266,028.000
	Sample Count	ters	TIMESTAMP		Measurement	Units		
	ACC_COUNT			29,854,656,281	-			
		2,092	OVERFLOW		POWER:		Vbus [AVG]:	
	SOFT COUN	T 9.130.950	ACT: 0	UPDATE	PWR ACC:	mW ~	Vsense [AVG]:	mV ~
		9,130,950	LAT: 0	CLEAR	ENERGY:	pWh \vee	Isense:	A ~
	Data refresh	Refresh with Accumu		Auto Refresh Period (sec)	EMI Channel Names	and the second sec	oue measure a	
	REFRESH_V	REFRESH	REFRESH G	1.0	CH1: CPU_REMAINI CH2: MAINMEM	NG_4	CH3: SYSTEM_2 CH4: SYSTEM_3	
		LI neser our Accum	iurdio(5		and further and		ana la cananza	

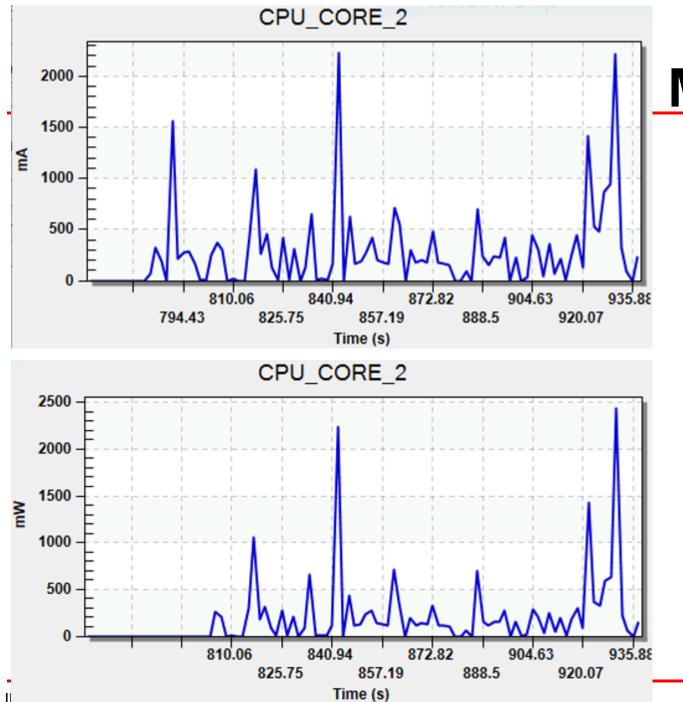
This Metering Reports tab lists all PAC devices in the system at upper left.

Detailed results are shown for all four channels of the selected devices.



Channel 1 Zoomed In

CH1	
Device Regis	iters
Vbus:	1.211
Vsense:	0.279
Vbus AVG:	1.203
Vsense AVG:	0.183
POW:	169.039
ACC:	215,486.145
Computed	
lsense:	0.140
ENERGY:	89,964,429,185.000
EMI energy:	89,964,429,185.000
Sample Count	ers
ACC_COUNT	
and a second on a	2,092
SOFT COUN	т
	9,130,950


- Vbus
- Vsense
- Power
- Accumulated Power
 - EMI Energy can be shown in a windows PC OS
 - Soft Count is an ongoing count of samples after a refresh

PAC1934 Energy Metering Interface Utility

This Utility has versatile plotting capabilities.

You can see that power tracks Isense well, but Energy tells a a different story.

Energy <u>Metering</u> Utility

ZOOM Image

Tracks Isense with power

MICROCHIP MICROCHIP MICROCHIP Single Application Use Data

	EnergyLoss	CPU	So	c Display Disk	N	etwo	rk MBB	Other E	mi		Total	(mil	lijoules)						
View	0	995780	0	924564 82402	42	609	0	0 0	1		20453	55							
Tien	Log File	Compare+	X	 AppID 		Sc	reenOn	OnBatte	ery	E	atterySav	er							
	e3report-e	stimated-1) ~ (~	ALI	LY	ALL	~	A	LL	~							
🛄 1 🌘	Tier1 %	Tier2 %	A	Арр		Oc	TimeInM	Microwat	tts I	En	CPU	Sc	Display	Disk	Netwo	MBB	Other	Emi	Total
42.6 % CI	U 95.8 % D	SK 4.2 %	Mi	Microsoft.ZuneVideo_10).1	9	540001	1614871	.08	0	835516	0	0	36516	0	0	0	О	87203
24.4 % DI	SP 100 % C	PU 0%	\D L	LogonUI.exe		10	599987	830584	.66	0	100	0	498240	0	0	0	0	0	49834
18.3 % DI	SP 98.9 % C	PU 1.1 %	\D T	Taskmgr.exe		8	479991	778872	.94	0	4015	0	369837	0	0	0	0	0	37385
8 % CI	U 74.3 % N	ET 25.7 %	\D s	svchost.exe [NetworkSe	rvi	10	599987	273540	.93	0	121861	0	0	1	42259	0	0	0	16412
2 % DI	SK 89.5 % C	PU 9.6 %	Sy: S	System		10	599987	67926	.47	0	3919	0	0	36486	350	0	0	0	4075
1.8 % DI	SP 94.9 % DI	SK 4.9 %	\D c	conhost.exe		2	119996	310735	.36	0	61	0	35403	1823	0	0	0	0	3728
0.8 % DI	SP 77.8 % DI	SK <mark>1</mark> 6.9 %	\D c	doublecmd.exe		2	119996	132262	.74	0	840	0	12345	2686	0	0	0	0	1587
0.7 % CI	U 99.5 % DI	SK 0.5 %	\D c	dwm.exe		20	1199974	1224	1.1	0	14614	0	0	75	0	0	0	0	1468
0.5 % DI	SP 90.7 % C	PU 9.2 %	\D e	explorer.exe		10	599987	153	362	0	846	0	8357	14	0	0	0	0	921

- Consolidated essential data on the next slide
- WIN10 allows for isolating the power consumed by key sources plus identified energy metering interface (EMI)

MICROCHIP MICROCHIP MICROCHIP Single Application Use Data

- Power view
 - Reports in millijoules
 - CPU, SOC, display, disk, network, MBB, other, EMI
- Selected rows show total
 - Listening to music on headphones, network being assessed, and having the web open

Resource Application	CPU	SOC	Disp	Disk	Ntwk	MBB	Othr	EMI	Total millijoules
System	995780	0	924564	824564	42609	0	0	0	2045355
ZuneVideo	835516	0	0	<mark>36516</mark>	0	0	0	0	872032
svchost	121861	0	0	0	<mark>42259</mark>	0	0	0	164121
Explorer	846	0	<mark>8357</mark>	14	0	0	0	0	9217

MICROCHIP

Microsoft Power View Apps Show EMI Utility Use

		Energyl	oss	CPU	Sc	c Display	Disk	Ne	twork	MBB	Other	Emi		Total	(mil	lijoule:)						
Viev		0		2443536	0	1796150	73297	426	590	0	0	5351	516	97072	89							
VIEV	W.	Log	File	Compare+	X	✓ A	AppID	1	Scree	enOn	OnB	attery		BatterySav	er							
		e3repo	rt-pac	1934-10	n ~			-	ALL	~	ALL	~	A	LL	~						\frown	
1		Tier1 %	۲	Tier2 %	Aj	A	рр	0	Oc Tir	nelnM	Micro	watts	En	CPU	Sc	Display	Disk	Netwo	MBB	Other	Emi	Total
21.2 %	CPU	98.3 %	DIS	K 1.7 %	Mi	Microsoft.Zu	neVideo_10.	1	10 5	599995	3424	085.2	0	2019467	0	0	34967	0	0	0	0	2054434
18.5 %	EMI	100 %		0%	ΕN	EMI_DISPLA	_BACKLIGH	Г	10 5	59 <mark>99</mark> 95	29936	5 <mark>18.</mark> 28	0	0	0	0	0	0	0	0	1796156	1796156
9.7 %	EMI	100 %		0%	EN	EMI_CPU_CC	DRE_1		10 5	5 <mark>9999</mark> 5	15658	336.38	0	0	0	0	0	0	0	0	939494	939494
9.7 %	DISP	100 %	CPU	J 0%	١D	LogonUI.exe			10 5	599995	1563	169.69	0	284	0	937610	0	0	0	0	0	937894
9.1 %	EMI	100 %		0%	EN	EMI_CPU_CC	DRE_2		10 5	599995	146	7448.9	0	0	0	0	0	0	0	0	880462	880462
8.4 %	DISP	98.8 %	CPU	J 1.2 %	\D	Taskmgr.exe			9 5	539991	15153	341.92	0	10047	0	808224	0	0	0	0	0	818271
7.2 %	EMI	100 %		0%	EN	EMI_SYSTEM	1_1		10 5	599995	11683	399.74	0	0	0	0	0	0	0	0	701034	701034
3.8 %	EMI	100 %		0%	EN	EMI_CPU_RE	MAINING_3		10 5	599995	608	3023.4	0	0	0	0	0	0	0	0	364811	364811
3.4 %	CPU	87 %	NET	13 %	\D	svchost.exe	NetworkSen	vi	10 5	599995	5458	371.22	0	284843	0	0	9	42668	0	0	0	327520

We are now able to separate and read the individual voltage rails on the EMI (energy metering interface)

MICROCHIP MICROCHIP MICROCHIP Single Application Use Data

- Power view
- Selected rows now show measurements for the
 - Display Backlight
 - CPU Core 1

Resource Application	CPU	SOC	Disp	Disk	Ntwk	MBB	Othr	EMI	Total millijoules
System	2443536	0	1796150	73297	42690	0	0	5351616	9707289
ZuneVideo	2019467	0	0	<mark>34967</mark>	0	0	0	0	2054434
EMI_Display _Backlight	0	0	0	0	0	0	0	<mark>1796156</mark>	1796156
EMI_CPU_Cor e_1	0	0	0	0	0	0	0	<mark>939494</mark>	939494
svchost	284843	0	0	9	<mark>49668</mark>	0	0	0	327520

Accurate Knowledge by MICROCHIP Software Application Enabled

- The Kaby Lake modification uses sense resistors and a power monitoring IC to measure exact voltage rails
- A WIN10 driver and energy metering interface communicates specified rails to the OS
- These voltage rail can now be seen by Microsoft power view utility to report power by software application

- Adding a power monitoring IC enhances our ability to collect measurements and minimize measurement error.
- If you use a power monitor with an accumulator it enables you to see the energy use by rail over time

The power monitoring system demonstrated by this case study greatly enhanced visibility and understanding of power/energy utilization in key loads/subsystems.

Discussion/Q&A

• Thank you! Questions?