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Outline
• Application: Drivetrain Power Electronics Architectures
• Composite Converter Architectures
• Optimization of a 1200 V, 125 kW SiC Composite Converter
 Architecture

 Partial-power modules: power-stage and planar magnetics

 Controls for online module and system-level optimization

 Thermal management and packaging

• 1200 V, 125 kW Prototype
 21.3 kW/L density

 99% drive-cycle weighted efficiency
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Colorado Power Electronics Center (CoPEC)

• Luca Corradini, Bob Erickson, Bri-Mathias Hodge, Dragan Maksimovic
• Research projects sponsored by industry and agencies (DOE SETO, 

DOE VTO, ARPA-E, NSF, ONR, DARPA, …)

• Power electronics education
• Fundamentals of Power Electronics 3rd edition
• Undergraduate, MS and PhD programs 
• Comprehensive power electronics curriculum
• Certificates in power electronics and electric drivetrain technology
• Online MS-EE degree and short courses on Coursera 

https://www.colorado.edu/ecee/msee/curriculum/power-electronics
Power Electronics Specialization: 4 short courses
Modeling, Control of Power Electronics Specialization: 5 short courses
Power Electronics Project Course
Algorithms for Battery Management Systems Specialization: 5 short courses

https://www.colorado.edu/ecee/msee/curriculum/power-electronics
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Electric Vehicle and Roadway testbed at USU

Data

Power

Adoption

Transportation

Convergent ASPIRE research thrusts

• More than 50 affiliated institutions and innovation 
partners including industry, national labs, DOTs, …

• Multiple large-scale demonstration projects including 
extreme fast charging and dynamic wireless charging
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• Application: Drivetrain Power Electronics Architectures
• Composite Converter Architectures
• Optimization of a 1200 V, 125 kW SiC Composite Converter
 Architecture

 Partial-power modules: power-stage and planar magnetics

 Controls for online module and system-level optimization

 Thermal management and packaging

• 1200 V, 125 kW Prototype
 21.3 kW/L density

 99% drive-cycle weighted efficiency
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Application: Drivetrain Power Electronics Architecture

• xEV battery voltage Vbatt (200-400 V), bus voltage Vbus (200-800 V)

• In some cases, a Boost dc-dc converter is inserted between the battery and the drive

• Decouples battery system from the electric drive (inverter + machine) system

• Offers system-level efficiency, size and safety advantages

• Enables dynamic online Vbus adjustments in response to operating point

Boost dc-dc converter Inverter Electric machineBattery system

Vbatt Vbus
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xEV Drivetrain Power Electronics: Conventional Realization

• IGBT-based power stage switching at 10’s of kHz

• Boost CAFE*-weighted efficiency: 94.7%

• Boost power density: ~ 4 kW/L, primarily due to large L and C components

Boost dc-dc converter Inverter Electric machineBattery system

Vbatt Vbus

*Corporate average fuel economy (CAFE): a weighted drive cycle defines a typical system operating pattern
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xEV Drivetrain Application: Distribution of Operating Points

• Most of the time spent at relatively low power and at relatively high Vbus/Vbatt step-up ratios
• Efficiency of the Boost converter is fundamentally limited at these operating points
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Q = Pout /Ploss is a Fundamental Measure of the Converter Quality
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density and a small cooling system, 
leading to a converter of small size and 
weight, and of low temperature rise



11University of Colorado Boulder 11

xEV Drivetrain Power Electronics: Conventional Realization

• IGBT-based power stage switching at 10’s of kHz

• Boost CAFE*-weighted efficiency: 94.7%, converter quality factor: Q = 18

• Boost power density: ~ 4 kW/L, primarily due to large L and C components

Boost dc-dc converter Inverter Electric machineBattery system

Vbatt Vbus

*Corporate average fuel economy (CAFE): a weighted drive cycle defines a typical system operating pattern
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Drivetrain Power Electronics: Trends

• Power density and drive-cycle weighted quality factor Q improvements

• Operating voltages in xEV and electrified aircraft drivetrain systems are moving up

• Battery systems moving to Vbatt = 800 V

• Bus voltage: xEV Vbus = 1200 V, electrified aircraft Vbus = medium voltage  (kV’s)

Boost dc-dc converter Inverter Electric machineBattery system

Vbatt Vbus
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Trend (Conventional): Replace IGBT’s with SiC MOSFETs

SiC
conventional boost

Improvements vs. 
IGBT boost

Max output voltage 1200 V 50% higher

Switching frequency 60 kHz 3-6x higher

Magnetics Wire-wound 3x smaller

Capacitors Film same

Power devices 1700 V SiC

SiC semi area 1,600 mm2

CAFE Q 63.5 3x higher

CAFE Efficiency 98.4%

Power density 9.9 kW/L 2x higher

17
0 

m
m

SiC-based 1200 V, 100 kW 
conventional Boost design example

*Corporate average fuel economy (CAFE): a 
weighted drive cycle defines a typical system 

operating pattern
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Is There a Better Boost Architecture?

Iout
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Is There a Better Boost Architecture?
Iout

Averaged-switch 
boost converter 

model

• Indirect power is the amount of power processed by the switches,                            
dc-to-ac by the inverter switch Q1, and ac-to-dc by the rectifier switch Q2

• Fundamental mechanism by which Boost converter develops voltage gain
• Indirect power processing incurs both dc and ac (switching and magnetics) losses
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Construction of a “Better” Boost Converter

IoutReplace with a 
more efficient 
indirect power 
processor
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Composite Approach to Converter Architectures

M = Mboost + NDCX

DC averaged model 
of the standard boost 

converter

Partial-power DCX module: 
efficient indirect power processor

Partial-power boost module operates 
with much reduced step-up ratio
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Composite Approach to Converter Architectures

M = Mboost + NDCX

Composite converters: arrangements of dissimilar partial-power modules

DC averaged model 
of the standard boost 

converter

DAB or LLC based high-efficiency, 
≈ fixed conversion ratio converter, “DCX”
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Composite Converter: Illustration of the Basic Idea

800 V
100 kW

400 V 400 V

400 V

Pass-through (M = 1) Ploss = 50 W

1:1, η = 98% 

Ploss,dcx = 1 kW

System efficiency: 99%
System Q = 95.2

Example
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800 V
100 kW

400 V 400 V

400 V

Pass-through (M = 1) Ploss = 50 W

1:1, η = 98% 

Ploss,dcx = 1 kW

System efficiency: 99%
System Q = 95.2

• Component stresses are 
reduced

• Soft switching enables 
high efficiency at increased 
switching frequency

• Size of magnetics is 
reduced

• Capacitor RMS currents 
are reduced

• Major loss mechanisms 
are addressed

Example

Composite Converter: Illustration of the Basic Idea
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Optimization of a 1200 V, 125 kW SiC Composite Converter

 Architecture
 Partial-power converter modules: power-stage and planar magnetics
 Controls for online module and system-level optimization
 Thermal management and packaging
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Optimization of a 1200 V, 125 kW SiC Composite Converter

 Architecture
 Partial-power converter modules: power-stage and planar magnetics
 Controls for online module and system-level optimization
 Thermal management and packaging

Operating specifications
• Pmax ≥ 100 kW
• Vmout,max = 1200 V
• Vin,nom = 350 V
• Tamb = 65 °C

SiC MOSFETs
• Wolfspeed 900 V SiC-MOSFETs (Gen 3)
• HT-4000 half-bridge package
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Time-domain drive-cycle velocity profiles

Drive-cycle (CAFE) Operating Points
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Distribution of operating points

• Combined FTP-75 & HWFET
• 64 points considered in the design process
• More sampling points in high-probability areas

Comprehensive electro-
mechanical Simulink 

model

Y. Gao, V. Sankaranarayanan, E. M. Dede, A. Ghosh, D. Maksimovic and R. W. Erickson, "Drive-Cycle Optimized 99% 
Efficient SiC Boost Converter Using Planar Inductor with Enhanced Thermal Management," IEEE COMPEL 2019
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Candidate Composite Architectures

Two-leg Composite Boost DC-DC Converter

350 V

1200 V

125 kW

(200-400 V)
(200-1200 V)
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Converter module design
• # of phases
• # of die per switch position
• Inductance
• Core size
• # of stacking cores
• # of turns
• Copper thickness
… (at least) 28 parameters per architecture

Architecture Optimization: Design Space is Very Large
Two-leg composite architecture
• 4 × 4 × 4 × 11 × 2 = 1408 options
• 118 non-redundant options

3 options for each variable: 118 × 328 = 2.7 × 1015 designs to evaluate, not practical! 

Optimization by exhaustive search over parameters
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Hierarchical Data-driven Optimization Approach

• Perform sweeps over design 
variables at the partial-power 
module level

Partial-power module designs and a 
module-level Pareto front
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Hierarchical Data-driven Optimization Approach

• Perform sweeps over design 
variables at the partial-power 
module level

• Capture the module-level Pareto 
front representing Q versus 
Power Density trade-off 

Partial-power module designs and a 
module-level Pareto front
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Hierarchical Data-driven Optimization Approach

• Perform sweeps over design 
variables at the partial-power 
module level

• Capture the module-level Pareto 
front representing Q versus 
Power Density trade-off 

• Combine module-level Pareto-
fronts to identify the optimum 
composite architecture

Partial-power module designs and a 
module-level Pareto front
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Architecture-Level Optimization Goals: Q > 60, Power Density > 20 kW/L

1

2

3

4
1

3

2

4

The optimal architecture

Optimal: ndcx = 1
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The Selected Composite Converter Architecture

Parameter Performance

CAFE Q 96.0

Power density 21.3 kW/L

CAFE-weighted MTTF 1,095 khrs

Maximum power 126 kW

Maximum output voltage 1,200 V

Number of SiC-MOSFET die 44

Number of SiC modules 14

System volume 5.9 L

Film capacitor specific density 0.22 J/kW

Ferrite core specific density 2.6 mL/kW

Gravimetric power density 18.7 kW/kg

N87 material used for all magnetic cores
All gate drivers are standard low-side drivers with aux supplies and digital isolators



31University of Colorado Boulder 31

Module-Level Design: Planar Magnetics

1. Custom aluminum cold plate
2. Thermally-conductive ceramic shim
3. Side thermal vias
4. Aluminum bracket for the I core
5. Center thermal vias

Enhancements 
in vertical 

thermal flow

• Thermal management enhancement strategies 
• Enable scaling of planar magnetics to 10’s of kW 

Y. Gao et al., "Modeling and Design of High-Power, High-Current-Ripple Planar Inductors," in IEEE 
Transactions on Power Electronics, vol. 37, no. 5, pp. 5816-5832, May 2022
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Planar Magnetics Optimization and Implementation

Thermal management enhancements enable 
substantially higher power density:
• 11× compared to passive cooling
• 2.3× compared to fan cooling
• 2.5× compared to off-the-shelf cold plate
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Composite Converter Control Architecture

Module-level controller
• Current and voltage regulation
• Module-level protections
• Online efficiency optimization

System-level controller
• Bus reference commands
• Mode transitions
• System-level diagnostics, fault handling etc.

Hierarchical distributed control architecture using TMS320F2837xD dual-core microcontrollers
V. Sankaranarayanan, Y. Gao, R. Erickson and D. Maksimovic, "Online Efficiency Optimization of a Closed-Loop Controlled SiC-Based Bidirectional Boost Converter," IEEE Trans. on Power El, 2021.
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Module-Level Efficiency-Optimized Control: Minimum-Conduction ZVS-QSW

Timing parameters (fsw, tdf) adjusted online in response to changes in 
operating conditions (input voltage, output voltage, and average current)
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Minimum-Conduction ZVS-QSW Waveforms 

350 → 500 V, m = 1.4, 8.0 kW

vDS

500 → 350 V, m = 0.7, −8.0 kW

Forward 
power 
flow

Reverse 
power 
flow

iL

vGS1 vGS2

Waveforms for a half-bridge 
module with 7.6 µH inductor

vDS vDS
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System-Level Control: Operating Modes

Parameter Description Value

Mboost,max Maximum conversion ratio for boost 2.5

Ndcx DCX fixed conversion ratio 1

Vq,max Maximum output voltage for each module 600V

Mmax Maximum system conversion ratio (Vbus <= 1200V) 5

mbuckboost Conversion ratio range for buck-boost 0.5 - 2.5

Partial-power module constraintsComposite converter vin,vout plane
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Experimental Results: Mode Transitions

Vbus regulated at 700V with vBATT varying from 200V to 400V 

𝑣𝑣𝑏𝑏𝑏𝑏𝑏𝑏

𝑣𝑣𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑣𝑣𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑
(𝑣𝑣𝑏𝑏𝑏𝑏𝑑𝑑𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)

Closed-loop 2-ph operation of boost and buck-boost partial-
power modules with module-level efficiency optimization

Mode-2 Mode-2Mode-1

M=2 M=2



38University of Colorado Boulder 38

High-Density System Packaging and Thermal Management

• Double-sided liquid-cooled manifold 
microchannel (MMC) cold plate

• Planar magnetics on one side, SiC 
modules on the other 

Details of mounting planar 
magnetics on the cold plate

E. M. Dede et al., "Thermal Design, Optimization, and Packaging of Planar Magnetic Components," in IEEE Transactions 
on Components, Packaging and Manufacturing Technology, vol. 11, no. 9, pp. 1480-1488, Sept. 2021

The system is capable of continuous operation at up to 125 kW with 65o coolant temperature



39University of Colorado Boulder 39

125 kW, 21.3 KW/L Composite Converter Prototype
80

 m
m
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Vin = 350 V, Vout = 975 V, Pout = 26 kW, η = 98.7%, Q = 76

Vin = 350 V, Vout = 975 V, Pout = 51 kW, η = 98.4%, Q = 62

System Experimental Results: Operating Waveforms

DCX
DAB
module

DCX
DAB
module

Boost 
module
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Experimental Results: Boost Module CAFE-weighted Q

• 55 step-up points
9 pass-through points

• Efficiency-optimized control, 
including phase-shedding

• Averaged power: 12.8 kW
• Averaged loss: 95.8 W
• CAFE Q: 133.1



42University of Colorado Boulder 42

Experimental Results: Buck-Boost Module CAFE-weighted Q

• 6 step-up/down points
34 pass-through points
24 shut-down points

• Efficiency-optimized control, 
including phase-shedding

• Averaged power: 4.4 kW
• Averaged loss: 6.9 W
• CAFE Q: 642.4

(168.9 for step-up/down points)

Vout = 400
η = 99.3 % Vout = 360

η = 99.4 %

Vout = 340
η = 99.5 %

Vout = 290
η = 99.2 %

Vout = 330
η = 99.6 %

Vout = 330
η = 99.5 %

Vout = 350 V
Buck-boost in 
pass-through

Buck-boost 
shut down
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Vout = 400
η = 98.6 % Vout = 360

η = 98.5 %

Vout = 340
η = 98.0 %

Vout = 290
η = 97.5 %

Vout = 330
η = 98.6 %

Vout = 330
η = 98.7 %

Vout = 350 V
nominal 1:1 operating 

points

DCX shut down

Experimental Results: DAB DCX Module CAFE-weighted Q

• 34 nominal 1:1 (350 V) points
6 non-350 V points
24 shut-down points

• Averaged power: 4.4 kW
• Averaged loss: 71.5 W
• CAFE Q: 62.1
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Drive-cycle CAFE-weighted System Q and Efficiency

Averaged power Averaged loss CAFE Q

Boost 12.75 kW 95.8 W 133.1

Buck-boost 4.43 kW 6.9 W 642.4

DCX 4.43 kW 71.5 W 62.1

System 17.19 kW 174.2 W 98.6

𝜼𝜼 = 𝟗𝟗𝟗𝟗𝟗

*Corporate average fuel economy (CAFE): a weighted drive cycle defines a typical system operating pattern
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Comparison of SiC based Converters for Electric Drivetrain Applications
SiC

conventional boost
SiC composite 

boost
Improvements 

over conventional 

Max output voltage 1200 V 1200 V

Switching frequency 60 kHz 100 – 350 kHz 2-5x higher

Magnetics Wire-wound Planar 2x smaller

Capacitors Film Film 4x smaller

Power devices 1700 V SiC 900 V SiC

SiC semi area 1,600 mm2 1,400 mm2 ≈ same

CAFE Q 63.5 98.6 1.5x higher

CAFE Efficiency 98.4% 99.0%

Power density 9.9 kW/L 21.3 kW/L 2.2x higher

Calculated MTTF 304 khrs 1,095 khrs 3.6x higher
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MTTF Calculations

Gate driver ICSiC MOSFET

Time-dependent dielectric breakdown (TDDB)

𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = exp
𝐸𝐸𝑏𝑏
𝑘𝑘

1
𝑀𝑀
−

1
𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑏𝑏𝑠𝑠

𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

• Based on manufacturer published data
• Temperature dependent to switching 

frequency & number of die

𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝑖𝑖𝑑𝑑 = exp
𝐸𝐸𝑏𝑏
𝑘𝑘

1
𝑀𝑀
−

1
𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑖𝑖𝑑𝑑

𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝑖𝑖𝑑𝑑,40℃

Capacitors

• Based on manufacturer published data
• With consideration of the voltage 

utilization rate and temperature rise

𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝑑𝑑𝑏𝑏𝑐𝑐 = �
𝑖𝑖

𝜋𝜋𝑣𝑣,𝑖𝑖𝜋𝜋𝑏𝑏,𝑖𝑖

𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝑑𝑑𝑏𝑏𝑐𝑐,𝑏𝑏𝑢𝑢𝑖𝑖𝑏𝑏

−1

Temperature cycling effect (failure of bonding wires)
• Requires time-domain information
• Only considered in the final optimization stage

𝑁𝑁𝑓𝑓 = 𝐴𝐴 ⋅ Δ𝑀𝑀𝑗𝑗−𝛼𝛼 ⋅ exp
𝐸𝐸𝑏𝑏

𝑘𝑘 ⋅ 𝑀𝑀𝑗𝑗,𝑏𝑏𝑣𝑣𝑎𝑎
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◀ Example: simulated 
boost converter switch Tj
in the highway drive 
cycle

Number of cycles to fail:
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Conclusions: High-Density, High-Efficiency Power Electronics 
 Architectures that make best use of wide-bandgap device capabilities
 Design optimization and control techniques 
 Packaging and system integration techniques
 Power and voltage scaling of composite architectures and planar magnetics
 “Simple” may not always be the best approach in power electronics
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