SiC-Based High-Density Composite Electric Drivetrain Converters

Dragan Maksimovic

Colorado Power Electronics Center ECEE Department, University of Colorado – Boulder maksimov@colorado.edu

IEEE PELS San Francisco Bay Area Chapter Seminar, May 26, 2022

Outline

- Application: Drivetrain Power Electronics Architectures
- Composite Converter Architectures
- Optimization of a 1200 V, 125 kW SiC Composite Converter
 - Architecture
 - Partial-power modules: power-stage and planar magnetics
 - Controls for online module and system-level optimization
 - Thermal management and packaging
- 1200 V, 125 kW Prototype
 - 21.3 kW/L density
 - 99% drive-cycle weighted efficiency

Power Electronics: Enabling Technology for Energy Efficiency and Renewable Energy

Colorado Power Electronics Center (CoPEC)

- Luca Corradini, Bob Erickson, Bri-Mathias Hodge, Dragan Maksimovic
- Research projects sponsored by industry and agencies (DOE SETO, DOE VTO, ARPA-E, NSF, ONR, DARPA, ...)
- Power electronics education
 - Fundamentals of Power Electronics 3rd edition
 - Undergraduate, MS and PhD programs
 - Comprehensive power electronics curriculum
 - Certificates in power electronics and electric drivetrain technology
 - Online MS-EE degree and short courses on Coursera

 <u>https://www.colorado.edu/ecce/msee/curriculum/power-electronics</u>
 Power Electronics Specialization: 4 short courses
 Modeling, Control of Power Electronics Specialization: 5 short courses
 Power Electronics Project Course

Algorithms for Battery Management Systems Specialization: 5 short courses

NSF Engineering Research Center

Advancing Sustainability through Powered Infrastructure for Roadway Electrification

Electric Vehicle and Roadway testbed at USU

Convergent ASPIRE research thrusts

- More than 50 affiliated institutions and innovation partners including industry, national labs, DOTs, ...
- Multiple large-scale demonstration projects including extreme fast charging and dynamic wireless charging

Outline

- Application: Drivetrain Power Electronics Architectures
- Composite Converter Architectures
- Optimization of a 1200 V, 125 kW SiC Composite Converter
 - Architecture
 - Partial-power modules: power-stage and planar magnetics
 - Controls for online module and system-level optimization
 - Thermal management and packaging
- 1200 V, 125 kW Prototype
 - 21.3 kW/L density
 - 99% drive-cycle weighted efficiency

Application: Drivetrain Power Electronics Architecture

- xEV battery voltage V_{batt} (200-400 V), bus voltage V_{bus} (200-800 V)
- In some cases, a Boost dc-dc converter is inserted between the battery and the drive
 - Decouples battery system from the electric drive (inverter + machine) system
 - Offers system-level efficiency, size and safety advantages
 - Enables dynamic online V_{bus} adjustments in response to operating point

xEV Drivetrain Power Electronics: Conventional Realization

- IGBT-based power stage switching at 10's of kHz
- Boost CAFE*-weighted efficiency: 94.7%
- Boost power density: ~ 4 kW/L, primarily due to large L and C components

*Corporate average fuel economy (CAFE): a weighted drive cycle defines a typical system operating pattern

xEV Drivetrain Application: Distribution of Operating Points

- Most of the time spent at relatively low power and at relatively high V_{bus}/V_{batt} step-up ratios
- Efficiency of the Boost converter is fundamentally limited at these operating points

 $Q = P_{out}/P_{loss}$ is a Fundamental Measure of the Converter Quality

Large *Q* implies that the converter elements can be packaged with high density and a small cooling system, leading to a converter of small size and weight, and of low temperature rise

xEV Drivetrain Power Electronics: Conventional Realization

- IGBT-based power stage switching at 10's of kHz
- Boost CAFE*-weighted efficiency: 94.7%, converter quality factor: Q = 18
- Boost power density: ~ 4 kW/L, primarily due to large L and C components

*Corporate average fuel economy (CAFE): a weighted drive cycle defines a typical system operating pattern

Drivetrain Power Electronics: Trends

- Power density and drive-cycle weighted quality factor Q improvements
- Operating voltages in xEV and electrified aircraft drivetrain systems are moving up
 - Battery systems moving to V_{batt} = 800 V
 - Bus voltage: xEV V_{bus} = 1200 V, electrified aircraft V_{bus} = medium voltage (kV's)

Trend (Conventional): Replace IGBT's with SiC MOSFETs

SiC-based 1200 V, 100 kW conventional Boost design example

*Corporate average fuel economy (CAFE): a weighted drive cycle defines a typical system operating pattern

	SiC conventional boost	Improvements vs. IGBT boost
Max output voltage	1200 V	50% higher
Switching frequency	60 kHz	3-6x higher
Magnetics	Wire-wound	3x smaller
Capacitors	Film	same
Power devices	1700 V SiC	
SiC semi area	1,600 mm ²	
CAFE Q	63.5	3x higher
CAFE Efficiency	98.4%	
Power density	9.9 kW/L	2x higher

Is There a Better Boost Architecture?

Is There a Better Boost Architecture?

- Indirect power is the amount of power processed by the switches, dc-to-ac by the inverter switch Q₁, and ac-to-dc by the rectifier switch Q₂
- Fundamental mechanism by which Boost converter develops voltage gain
- Indirect power processing incurs both dc and ac (switching and magnetics) losses

Construction of a "Better" Boost Converter

Replace with a more efficient indirect power processor

Composite Approach to Converter Architectures

DC averaged model of the standard boost converter

Partial-power boost module operates with much reduced step-up ratio

$$M = M_{boost} + N_{DCX}$$

Partial-power DCX module:

Composite Approach to Converter Architectures

Composite converters: arrangements of *dissimilar* partial-power modules

Composite Converter: Illustration of the Basic Idea

Composite Converter: Illustration of the Basic Idea

Optimization of a 1200 V, 125 kW SiC Composite Converter

- Architecture
- Partial-power converter modules: power-stage and planar magnetics
- Controls for online module and system-level optimization
- Thermal management and packaging

Optimization of a 1200 V, 125 kW SiC Composite Converter

Architecture

- Partial-power converter modules: power-stage and planar magnetics
- Controls for online module and system-level optimization
- Thermal management and packaging


```
Operating specifications
```

- *P*_{max} ≥ 100 kW
 - *V*_{mout,max} = 1200 V

• $T_{\text{amb}} = 65 \text{ °C}$

SiC MOSFETs

- Wolfspeed 900 V SiC-MOSFETs (Gen 3)
- HT-4000 half-bridge package

Drive-cycle (CAFE) Operating Points

Time-domain drive-cycle velocity profiles

Comprehensive electromechanical Simulink model Distribution of operating points

- Combined FTP-75 & HWFET
- 64 points considered in the design process
- More sampling points in high-probability areas

Y. Gao, V. Sankaranarayanan, E. M. Dede, A. Ghosh, D. Maksimovic and R. W. Erickson, "Drive-Cycle Optimized 99% Efficient SiC Boost Converter Using Planar Inductor with Enhanced Thermal Management," IEEE COMPEL 2019

Candidate Composite Architectures

Two-leg Composite Boost DC-DC Converter

Architecture Optimization: Design Space is Very Large

Two-leg composite architecture

- 4 × 4 × 4 × 11 × 2 = 1408 options
- 118 non-redundant options

Converter module design

- # of phases
- # of die per switch position
- Inductance
- Core size
 - # of stacking cores
 - # of turns
 - Copper thickness
 - ... (at least) 28 parameters per architecture

Optimization by exhaustive search over parameters

3 options for each variable: $118 \times 3^{28} = 2.7 \times 10^{15}$ designs to evaluate, not practical!

 Perform sweeps over design variables at the partial-power module level

- Perform sweeps over design variables at the partial-power module level
- Capture the module-level Pareto front representing Q versus Power Density trade-off

- Perform sweeps over design variables at the partial-power module level
- Capture the module-level Pareto front representing Q versus Power Density trade-off
- Combine module-level Paretofronts to identify the optimum composite architecture

Architecture-Level Optimization Goals: Q > 60, Power Density > 20 kW/L

٦٦

The Selected Composite Converter Architecture

				Parameter	Performance
Film caps:				CAFE Q	96.0
3×22.0 μF, 450 V 3×12.0 μF, 450 V	Film caps: 11×3.3 μF,	630 V	Film caps: 7×3.3 μF, 630	Power density	21.3 kW/L
1×10.0 μF, 450 V fint 1 die per switch EILP 43×2 core 3-phase Buck-boost V_{bat} 2 die per switch EILP 43×2 core gift = 1 2 die per switch EILP 43×2 core gift = 1 2 die per switch EILP 43×2 core gift = 1 2 die per switch EILP 43×2 core)]) [2 die per switch	CAFE-weighted MTTF	1,095 khrs
	1 die per switch		EILP 64×2 core 4:4 turns, 10 oz \pm	Maximum power	126 kW
	4 μ H, 3 turns, 5 oz		Magnetizing: EILP 43×2 core	Maximum output voltage	1,200 V
	F	<u>۲</u>	100 μ H, 10 turns V_{bus}	Number of SiC-MOSFET die	44
	dia nan awitah		Film caps:	Number of SiC modules	14
	EILP 43×2 core		$7 \times 3.3 \ \mu\text{F}, 630 \ \text{V}$	System volume	5.9 L
4-phase Boost				Film capacitor specific density	0.22 J/kW
				Ferrite core specific density	2.6 mL/kW

N87 material used for all magnetic cores

All gate drivers are standard low-side drivers with aux supplies and digital isolators

18.7 kW/kg

Gravimetric power density

Module-Level Design: Planar Magnetics

- Thermal management enhancement strategies
- Enable scaling of planar magnetics to 10's of kW

Y. Gao et al., "Modeling and Design of High-Power, High-Current-Ripple Planar Inductors," in IEEE Transactions on Power Electronics, vol. 37, no. 5, pp. 5816-5832, May 2022

- 2. Thermally-conductive ceramic shim
- 3. Side thermal vias
- 4. Aluminum bracket for the I core
- 5. Center thermal vias

رمك

Planar Magnetics Optimization and Implementation

Thermal management enhancements enable substantially higher power density:

- 11× compared to passive cooling
- 2.3× compared to fan cooling
- 2.5× compared to off-the-shelf cold plate

Composite Converter Control Architecture

System-level controller

- Bus reference commands
- Mode transitions
- System-level diagnostics, fault handling etc.

Module-level controller

- Current and voltage regulation
- Module-level protections
- Online efficiency optimization

Hierarchical distributed control architecture using TMS320F2837xD dual-core microcontrollers

V. Sankaranarayanan, Y. Gao, R. Erickson and D. Maksimovic, "Online Efficiency Optimization of a Closed-Loop Controlled SiC-Based Bidirectional Boost Converter," IEEE Trans. on Power El, 2021.

Module-Level Efficiency-Optimized Control: Minimum-Conduction ZVS-QSW

Timing parameters (f_{sw} , t_{df}) adjusted online in response to changes in operating conditions (input voltage, output voltage, and average current)

Minimum-Conduction ZVS-QSW Waveforms

System-Level Control: Operating Modes

Experimental Results: Mode Transitions

High-Density System Packaging and Thermal Management

- Double-sided liquid-cooled manifold microchannel (MMC) cold plate
- Planar magnetics on one side, SiC modules on the other

Details of mounting planar magnetics on the cold plate

The system is capable of continuous operation at up to 125 kW with 65° coolant temperature

E. M. Dede et al., "Thermal Design, Optimization, and Packaging of Planar Magnetic Components," in *IEEE Transactions* on *Components, Packaging and Manufacturing Technology*, vol. 11, no. 9, pp. 1480-1488, Sept. 2021

125 kW, 21.3 KW/L Composite Converter Prototype

System Experimental Results: Operating Waveforms

1_{L,phase1}

1.00,05

L,phase3

13.60 V

947.152kHz 13:20:37

$$V_{in} = 350 \text{ V}, V_{out} = 975 \text{ V}, P_{out} = 51 \text{ kW}, \eta = 98.4\%, Q = 62$$

250 V

3+25.0 A

10.0 V

4 +25.0 A

4

module

Gr

Experimental Results: Boost Module CAFE-weighted Q

- 55 step-up points
 9 pass-through points
- Efficiency-optimized control, including phase-shedding
- Averaged power: 12.8 kW
- Averaged loss: 95.8 W
- CAFE Q: 133.1

Experimental Results: Buck-Boost Module CAFE-weighted Q

- 6 step-up/down points
 34 pass-through points
 24 shut-down points
- Efficiency-optimized control, including phase-shedding
- Averaged power: 4.4 kW
- Averaged loss: 6.9 W
- CAFE Q: 642.4 (168.9 for step-up/down points)

Experimental Results: DAB DCX Module CAFE-weighted Q

- 34 nominal 1:1 (350 V) points
 6 non-350 V points
 24 shut-down points
- Averaged power: 4.4 kW
- Averaged loss: 71.5 W
- CAFE Q: 62.1

Drive-cycle CAFE-weighted System Q and Efficiency

	Averaged power	Averaged loss	CAFE Q
Boost	12.75 kW	95.8 W	133.1
Buck-boost	4.43 kW	6.9 W	642.4
DCX	4.43 kW	71.5 W	62.1
System	17.19 kW	174.2 W	98.6
			$\eta = 99\%$

*Corporate average fuel economy (CAFE): a weighted drive cycle defines a typical system operating pattern

Comparison of SiC based Converters for Electric Drivetrain Applications

	SiC conventional boost	SiC composite boost	Improvements over conventional
Max output voltage	1200 V	1200 V	
Switching frequency	60 kHz	100 – 350 kHz	2-5x higher
Magnetics	Wire-wound	Planar	2x smaller
Capacitors	Film	Film	4x smaller
Power devices	1700 V SiC	900 V SiC	
SiC semi area	1,600 mm ²	1,400 mm ²	≈ same
CAFE Q	63.5	98.6	1.5x higher
CAFE Efficiency	98.4%	99.0%	
Power density	9.9 kW/L	21.3 kW/L	2.2x higher
Calculated MTTF	304 khrs	1,095 khrs	3.6x higher

MTTF Calculations

SIC MOSFET

Time-dependent dielectric breakdown (TDDB)

$$MTTF_{TDDB} = \exp\left[\frac{E_a}{k}\left(\frac{1}{T} - \frac{1}{T_{base,sw}}\right)\right] MTTF_{base}$$

Temperature cycling effect (failure of bonding wires)

- Requires time-domain information
- Only considered in the final optimization stage

Number of cycles to fail: $N_f = A \cdot \Delta T_j^{-\alpha} \cdot \exp\left[\frac{E_a}{k \cdot T_{j,avg}}\right]$

Example: simulated boost converter switch T_j in the highway drive cycle

Gate driver IC

- Based on manufacturer published data
- Temperature dependent to switching frequency & number of die

$$MTTF_{ic} = \exp\left[\frac{E_a}{k}\left(\frac{1}{T} - \frac{1}{T_{base,ic}}\right)\right] MTTF_{ic,40^{\circ}\text{C}}$$

Capacitors

- Based on manufacturer published data
- With consideration of the voltage utilization rate and temperature rise

$$MTTF_{cap} = \left[\sum_{i} \frac{\pi_{v,i} \pi_{t,i}}{MTTF_{cap,unit}}\right]^{-1}$$

Conclusions: High-Density, High-Efficiency Power Electronics

- Architectures that make best use of wide-bandgap device capabilities
- Design optimization and control techniques
- Packaging and system integration techniques
- Power and voltage scaling of composite architectures and planar magnetics
- "Simple" may not always be the best approach in power electronics

Acknowledgments

ARPA-E CIRCUITS program directed by Dr. Isik Kizilyalli

References

- Y. Gao et al., "Modeling and Design of High-Power, High-Current-Ripple Planar Inductors," in IEEE Transactions on Power Electronics, vol. 37, no. 5, pp. 5816-5832, May 2022.
- V. Sankaranarayanan, Y. Gao, R. W. Erickson and D. Maksimovic, "Online Efficiency Optimization of a Closed-Loop Controlled SiC-Based Bidirectional Boost Converter," in IEEE Transactions on Power Electronics, vol. 37, no. 4, pp. 4008-4021, April 2022.
- E. M. Dede et al., "Thermal Design, Optimization, and Packaging of Planar Magnetic Components," in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 11, no. 9, pp. 1480-1488, Sept. 2021.
- Y. Gao, V. Sankaranarayanan, R. W. Erickson and D. Maksimovic, "Soft Startup Strategies for DAB-Based DCX in Composite Converters," 2020 IEEE Energy Conversion Congress and Exposition (ECCE), 2020, pp. 6130-6135.
- Y. Gao, V. Sankaranarayanan, R. W. Erickson and D. Maksimovic, "Analysis and Attenuation of Differential-Mode Resonances due to Winding Capacitances in High-Power Planar Transformers," 2020 IEEE Applied Power Electronics Conference and Exposition (APEC).
- V. Sankaranarayanan, Y. Gao, R. W. Erickson and D. Maksimovic, "Online Efficiency Optimization of a Closed-Loop Controlled SiC-Based Boost Converter," 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 285-291.
- V. Sankaranarayanan, M. Shirazi, Y. Gao, A. Ghosh, R. W. Erickson and D. Maksimovic, "Controller Hardware-in-the-Loop Validation of a Modular Control Architecture for a Composite DC-DC Converter," 2019 20th Workshop on Control and Modeling for Power Electronics (COMPEL).
- Y. Gao, V. Sankaranarayanan, E. M. Dede, A. Ghosh, D. Maksimovic and R. W. Erickson, "Drive-Cycle Optimized 99% Efficient SiC Boost Converter Using Planar Inductor with Enhanced Thermal Management," 2019 20th Workshop on Control and Modeling for Power Electronics (COMPEL).
- H. Kim et al., "SiC-MOSFET composite boost converter with 22 kW/L power density for electric vehicle application," 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), 2017.
- H. Chen, H. Kim, R. Erickson and D. Maksimović, "Electrified Automotive Powertrain Architecture Using Composite DC–DC Converters," in IEEE Transactions on Power Electronics, vol. 32, no. 1, pp. 98-116, Jan. 2017.
- H. Chen, K. Sabi, H. Kim, T. Harada, R. Erickson and D. Maksimovic, "A 98.7% Efficient Composite Converter Architecture With Application-Tailored Efficiency Characteristic," in IEEE Transactions on Power Electronics, vol. 31, no. 1, pp. 101-110, Jan. 2016.

Thank you!

50

