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The U.S. Power Grid
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Upcoming Challenges

" Increasing number of outages:

A 126 % increase in non-disaster
related blackouts affecting at least
50,000 customers

41 (1991-95) — 92 (2001-05)

36 in 2006 alone!
U.S. electricity blackouts

skyrocketing, CNN, Aug. 9, 2010
= Reduced Transmission $$'s
$5 B in 1975
$2.5 B in 2000

Department of Energy

" Renewable Energy Penetration
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The New “Smarter” Grid

SMART GRID Smart appliances
Demand management

A vision for the future — a network Can shut off in response to
of integrated microgrids that can frequency fluctuations. a 7 Use can be shifted to off-
t ¥ peak times to save money.

maonitor and heal itself.

Solar panels

&

(L. Disturbance
J inthe grid

Catect fluctuations and
disturbances, and can signal
for areas to be isolated,

"-'o-.‘hfﬂ;_'l r

Execute special protection
schemes in macroseconds.

Energy generated at off-
| peak times could be stored
in batterkes for later use,

:Eentral pawer
plan

Energy from small generators
and solar panels can reduce
overall dermand on the grid.

3 Industrial
prant

Consumer Energy Report
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Smart Grid — opportunity for MEMS

" Smart Grid = the need for many sensors

PG&E alone estimate the need for 900,000 sensors
15 million customers = 1 sensor /15 people

CA - 2.2 million units
U.S. — 19 million units

" Present voltage/current sensing technologies:
State of the art: $3,000 per - 3-phase test point
Clamp-on meters: $100 - $200 per phase
Wireless solutions: ~ $75 per phase
Low-end sensor: $21.99 residential sub-metering
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MEMS Power Systems Sensing

" Project one-two order of magnitude lower cost
Batch processing
Wafer-level integration
Novel materials

Reduce installation cost
Small, easy to install (stick-on)
Can be embedded in new equipment

Self-powered
Low-power MEMS sensors and radios
Longevity

Imagine the possibilities !
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Our Self-Powered Wireless MEMS Sensor
Module Concept

*AC Current

; *\oltage
S *Power
Hermetic : *Diagnostic
(wafer level) packaging MEMS Proximity ) .
Sensing *MEMS Design
\ Ny o *Mesoscale
/ MEMS AC Energy
(Printed) Scavenging
Energy storage
\

Radio Mote
/ sLow-power wireless mesh network
*Tl eZ430-F2013
' *Dust networks

*Pico cube
*|[EEE 802.15.4 protocol

V. 2.0

1.5cm

Paprotny et al, ECCE 2010
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Self-Powered Wireless Sensor
Module V 1.0

sensor  amplifier power conditioning energy
- - - Prevu { = i
die circuit and storage harvester 4.99 V 436 V
. 7.3 seconds ———>|
discharge of .
10 mF supercapacitor

current sensor
response

(@D 200mv €@ 200mV J(100s 1.00k5/s & 5 237V
10k points

Leland E.S., Sherman C.T. , Minor P., Wright P.K., and White. R.M. PowerMEMS 2009
Leland E.S., Sherman C.T., Wright P.K., and White. R.M. tSensors 2010
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Long term Goal

Ubiquitous Power Systems Sensing

" Inexpensive power/voltage/diagnostic power systems sensors that
are distributed throughout our homes
Embedded from the start (e.g., starting to happen with smart appliances)

Easy to retroflt LT TS TSRS
I e
_ IO
For example Sticky-tab meter iinesseuse
NG e
TCTETTETE TS

" Applications include (but not limited to):

Modules that measure flow of power in the grid (V 2.0)
Underground cables that report on their condition (V 2.0)
Appliances extension cords that report power usage (V 3.0)
Wireless “sticky tab” wireless electric meters (V 4.0)
A\
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Sticky -tab Meter (Mesoscale)

" Project to sub-meter selected circuit-breaker panels in Cory Hall, UC Berkeley
" Modules are “sticky tabs” placed on top of the circuit breaker
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MEMS Proximity Sensing

MEMS Proximity
Sensing

/ MEMS AC Energy
Scavenging
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MEMS Proximity Sensing

® Advantages:
= Small and inexpensive
= Easy to fabricate and encapsulate
= No galvanic contacts necessary — non-invasive
= Low or no power

Current Voltage
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MEMS AC Current Sensors

u Linearly Couple to the magnetic piezoelectric appliance power cord
. . . MEMS cantilever (cross-section)
fields around AC-carrying wires, —
yielding a proportional voltage. output
voltage
. [ I
" Microscale permanent magnets 1L, B e
deposited onto piezoelectric WEls
cantilevers.

14 AWG single wire 10 AWG single wire
A 18 AWG zip-cord V16 AWG zip-cord

" Working prototypes (with 500 —
.o . S 450 - AA 5 o
amplification) have been E 400- Ly
w N | & P
demonstrated. g LY

Sensor 1:
1000 pm x 200 um

Amplified sensor
=
o
|

T T T
0 5 10 15 20 25 30

Currentin wire (A)

Leland et al, PowerMEMS 2006
Leland et al, PowerMEMS 2009
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MEMS Proximity Sensors:
Voltage and Power

= Capacitive electric field
sensing:

= Solid-state and MEMS

= High-impedance MEMS
transducer

= Self-calibrating
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Diaghostic Sensors

" Leverages our research on diagnostic methods for
underground power distribution cables
On-line probing methods

Support Condition-based Maintenance of power system
assets

= Will be an important part of future Smart Grid sensing
CN AMR Probing

T DEFECT
i- B
b/ ain L
' A8 NNE AR ar A e e ) ¥
R AVE RV ATE RV &8 S Y
et & "Jm‘!'-'j | \';!n_ AL Y b S d 3 e

b S

Axial Distance{mm)along a 2°- 12 CN Cable, with 1 cut 00% €C

Seidel et al, ISEI 2010

RF Dielectrometry

RF CN Probing (Goubau)

Paprotny et al, ISEI 2010
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MEMS AC Energy Scavenging

MEMS Proximity
Sensing

/ MEMS AC Energy
Scavenging
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Piezoelectric AC Energy Scavenger
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AC Energy Scavenging Overview

ob —

A . . :
Encircle
Current Transformer (CT) . Large power corductor
* No overcurrent
protection * No zip-cords
° Moderate
Piezoelectric AC Scavenger e power *  Overcurrent

. rotection
* No encircle P

* Zip-cords * Moving parts

Power density

* Low voltage

Coil w. flux concentrators * No encircle

* No overcurrent

protection.
Rogowski Coll ¢ No * Low power
overcurrent
Images from Wikipedia, Moghe et al. ECCE 2010 protection. il 4
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Piezoelectric AC Energy Scavenger

(4) overcurent protection (3) storage

#
=1
P (2) power conditioning

(1) transducer

System Components
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Piezoelectric AC Energy Scavenging

Mesoscale

_/ Permanent Magnets

= E Energized
conductor

" AIN due to MEMS compatibility

® PZT bimorph cantilever = Meandering spring for resonance

" NdFeB magnets at power frequency

= Couples to a single conductor " At present, designed to couple to
a zip-cord

Paprotny et al, PowerMEMS 2010



CAD Designs

(Mesoscale)
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Experimental Setup

(Mesoscale)
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Experimental Results

Scavenged Power

+  Scavenger A
Q Scavenger B

== Analytical
—_— 25 mm
—_— 4.5mm
—_ 75 mm

Current [A]

Paprotny et al, IEEE Trans. Pow. Dist. (in review)
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Experimental Results

Nonlinearity
<+ Scavenger A
O ScavengerB
- Fr\-n:fkc
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Paprotny et al, IEEE Trans. Pow. Dist. (in review)



Experimental Results
Frequency Shift

A SUMMARY OF THE RESONANT FREQUENCY SHIFT ( fr ). AND THE
CORRESPONDING RELATIVE POWER DROP A P. %) FOR CURRENT SWEEP
AT A DISTANCE OF 4.5 MM.

fr 3A | fr25A A fr AP AP Y%

Hpscan

Scavenger A | 59.2 Hz | 5 z | -37 Hz | 550 W | 441 %

5.5 H
Scavenger B | 608 Hz | 583 Hz | -25Hz | 428 oW | 331 %

downscan

Scavenger A | 64.3 Hz | 59.8 Hz 4.5 Hz 13 W 86.9 7%

Scavenger B | 62.8 Hz | 599 Hz 3 Hz 57.7 uW | 704 %

Paprotny et al, IEEE Trans. Pow. Dist. (in review)
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Experimental Results

Over-current Protection

Displacement Time History

%10t Displacement Time History
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Paprotny et al, IEEE Trans. Pow. Dist. (in review)



MEMS Design

=l

I

ETRESYY: -TEE+D2 -43E+02 -1.1E+D2 2.3E+02 5 4E+1Z

stress electrode layout

" Mechanical Design
Quad. fixed-fixed spring system*
Electrode patterned to avoid charge cancelation

" Electromechnical Modeling:
With single AIN layer, 2 pW

) . . ) Paprotny et al, PowerMEMS 2010
Multiple layers/design modifications - 10 pW

*Inspired among others by A.C. Waterbury et al., IMECE 2008
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MEMS Fabrication Process

(5) (6) (7)
AESEENER: LESEENE: LEEmEs: Z=0Z00
W N S . “ITEE R Ir - e | M AN LLTo B Magnet
= SOl process
Using conventional NdFeB magnets (K&J Magnetics, Inc.)
L -
" Fabrication ongoing : Paprotny et al, PowerMEMS 2010
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Conclusion

" Smart Grid - great opportunity for MEMS
The need to instrument a massive system
MEMS can reduce the cost by 1-2 orders of magnitude:
parallel fabrication

wafer-level integration
only use silicon when needed

" We are developing the “stick-on” wireless MEMS sensor module

MEMS Proximity
Sensors

MEMS Energy
/ Harvester

/ _ LTSS
Radio Mote iii'illiiﬂiiiiiia

/ S
LT TSS9
e e e e
Qe
V. 2.0 e V. 4.0
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Interesting Challenges

" AC Scavenging - Overcurrent protection
Steady-state overcurrent
Fault current (e.g., lightning strike)

"= AC Scavenging — How Small ?
Efficient (MEMS) power conditioning
Theoretical limits ?

Store mechanical energy?

" Benign Sensor Placement
Prove that the sensor does not degrade equipment performance

" Longevity Engineering
Will my sensor/scavenger work for 40+ years ?
,1,_\-\
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Questions ?

http://www.eecs.berkeley.edu/~igorpapa/
igorpapa@eecs.berkeley.edu
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