Capacitive Power Transfer for Contactless Charging

Mitchell Kline Igor Izyumin Prof. Bernhard Boser Prof. Seth Sanders

Wireless Power Technology

Close-coupled wireless power transfer

I. Inductive

- ✓ Compact Area
- Moderate
 distances
- ✓ High perm.
 materials
 - common
- Good alignment
 required
- X Flux shielding required

Wireless Power Technology

Close-coupled wireless power transfer

- ✓ Very thin
- ✓ Electric field confined
- ✓ Tolerant of misalignment
- X Limited distance
- X High-k materials less common

2. Capacitive

Prior Art

A. Hu. 2008. Soccer Playing Robot 13.9 nF 217 kHz ~40 W 44% efficient

E. Culurciello. 2008. Inter-chip power transfer 10 fF 15 MHz ~100 uW

~I% efficient

Why isn't the efficiency higher?

- I. Fairly weak coupling
 - : **I3.9** nF = 50 Ω at 200 kHz
- 2. Need for high Q components: If Q = 25, efficiency is 50%

I3.9 nF
217 kHz
~40 W
44% efficient
2 Ω load
4 A current

Why isn't the efficiency higher?

- I. Fairly weak coupling
 - : 13.9 nF = 50 Ω at 200 kHz
- 2. Need for high Q components: If Q = 25, efficiency is 50%

Solution

I 3.9 nF
217 kHz
~40 W
44% efficient
2 Ω load
4 A, 8V output

- Push to ~10X higher frequencies
- ZVS to mitigate switching losses
- Higher voltages / lower currents

Optimization Approach

Given P_{out} and C, how do we maximize the efficiency?

or

What is the minimum required C to achieve a particular P_{out} and efficiency?

Requirements

 3.5 pF/cm²(¹/₄ mm air gap) with ~50 cm² gives 150 pF

• Need >2.5 W (USB spec.)

Resonance Motivation

C = 150 pF

I = 500 mA

$$I = C dV/dt = 2 \pi f CV$$

V = 5V => f = 100 MHz

Power Available from Source

But not high (loaded) Q

No free lunch! High loaded Q puts stress on inductor.

Powertrain optimization

Alignment and load sensitivity

Powertrain Architecture

Efficiency Expression

Does not consider switching losses => Eliminate with ZVS

Approximate ZVS Analysis

$$\phi = \angle \left(\frac{i_t}{v_s}\right) = -\arccos\left(\frac{V_D}{V_S}\right)$$

Approximate ZVS Analysis

ZVS Condition

Example Design

Pout = 4 W,
$$V_s$$
 = 35 V, and $R_{on}C_{oss}$ = 44 ps

Example Design

Choose

- η = 0.9, Q = 40
- Minimum C is 147 pF
- Optimum V_D/V_S is 0.8
- Optimum switch size C_{oss} = 13 pF

Parameter	Expression	Value
ω	$\frac{P_{out}}{0.64A_V V_S^2 2C_{oss}} (1 - A_V)$	$2\pi7.8\mathrm{Mrad/s}$
L	$\frac{1}{\omega^2 C} \left(\frac{0.64}{2} \frac{\omega C A_V V_S^2 \sqrt{1 - A_V^2}}{P_{out}} + 1 \right)$	$3.8\mu\mathrm{H}$
R_{on}	$\frac{\tau_{sw}}{C_{oss}}$	3.4Ω
V_D	$A_V V_S$	$28\mathrm{V}$
ω_0	$\frac{1}{\sqrt{LC}}$	$2\pi 6.7\mathrm{Mrad/s}$
R_L	$\frac{2 \times 0.64^2 V_D^2}{P_{out}}$	161Ω
Q_L	$\frac{2}{R_L}\sqrt{\frac{L}{C}}$	1.9
$ i_t $	$\frac{P_{out}}{(0.64V_D)}$	223 mA
ϕ	$\arctan\left(-\sqrt{\frac{1}{A_V^2}-1}\right)$	-37°
I_{out}	$\frac{P_{out}}{V_D}$	143 mA

Simulation Results

Prototype Powertrain Circuit

Experimental Results

Parameter	Design	Simulation	Experimental
Pout	4 W	4 W	3.72 W
η	0.8	0.81	0.77
$ i_t $	223 mA	222 mA	
Iout	143 mA	142 mA	133 mA
$\angle (v_d/v_s)$	-37°	-32°	-48°

Extension to Inductive Transfer

Resonate out leakage inductance.

Powertrain optimization

Alignment and load sensitivity

Automatic Frequency Tuning

Automatic Frequency Tuning

Automatic Duty Cycle Control 1/2 Losidual $\frac{1}{2} C_{sw} V_{S}^{2}$

Light-load condition: not enough current in tank to get Zero Voltage Switching (ZVS)

Automatic Duty Cycle Control

Capacitive Power Transfer System

Capacitive Charger

105 0.05

Distant -

350 000

ENH O

With 6 by 10 cm², we transfer 3.8 W at 83% efficiency over a 0.5 mm air gap.

Conclusion

Power transfer over small capacitors is enabled by

I. Zero Voltage Switching

Enable moderate voltage, high frequency operation

2. Automatic Tuning

Robust to changes in coupling capacitance

3. Duty cycle adjustment without RX feedback Preserve efficiency at light loads

Future Work

- I. Extension to galvanic isolation
- 2. Pixelation

Thank You!

Acknowledgements

Dr. Mei-Lin Chan Dr. Simone Gambini Prof. David Horsley Dr. MischaMegens James Peng Richard Przybyla Kun Wang Prof. Ming Wu

This material is based upon work supported by the Defense Advanced Research Projects Agency (DARPA) under Contract No.W31P4Q-10-1-0002