The Technology Behind the World's Smallest 12V, 10A Voltage Regulator

A low profile voltage regulator achieving high power density and performance using a hybrid dc-dc converter topology

Pradeep Shenoy, Ph.D.

Systems Engineer, DC Solutions

Power Delivery System

Intermediate Bus Architecture

Why Increase Switching Frequency?

Inductors are usually the largest component.

1) Smaller size

Converter Volume: 1,270 mm³

Inductor Volume: 232 mm³ *<*

Converter Volume: 157 mm³

Inductor Volume: 19.2 mm³

2) Faster Response

3) Lower BOM Cost

Current Density Comparison

Conventional Buck: 4.8 mm height

Current density of over 60A/cm³ and power density of 1.25kW/in³

Inductor Size Reduction: 10A Output

High frequency operation \rightarrow 15 times smaller inductors!

Agenda

- High Frequency Buck Converter
 Limitations
- Series Capacitor Buck Converter
- Sample Experimental Results
- Design Considerations for a Series Cap Buck Converter

Series cap buck converter prototype

High Freq (HF) Buck Converter Limitations

• High switching loss

$$P_{loss} \propto f_{sw}$$

- High side switch on-time is very short at HF
 - 5 MHz \rightarrow 200ns period
 - 10-to-1 voltage ratio → 20ns high side on-time

HF converters on the market today have low conversion ratios (<5-to-1) and low current (<1A)

Series Capacitor Buck Topology

Two-phase, series cap buck converter

- ✓Benefits
 - ✓ Single conversion stage
 - ✓ Switching at reduced V_{ds}
 - ✓ Series cap soft charge/discharge
 - Automatic current balancing
 - ✓ Duty ratio doubled
- Drawback
 - 50% duty cycle limitation
 - Theoretical: $V_{IN,MIN} = 4 \times V_{OUT}$
 - Practical: $V_{IN,MIN} = 5 \times V_{OUT}$

P. S. Shenoy, M. Amaro, J. Morroni and D. Freeman, "Comparison of a Buck Converter and a Series Capacitor Buck Converter for High-Frequency, High-Conversion-Ratio Voltage Regulators," *IEEE Trans. Power Electron.*, vol. 31, no. 10, pp. 7006-7015, Oct. 2016.

Inductor & series cap currents $C_t V_{swa} L_a$ Q_{1a} Lb Current (A) Vo $Q_{2\epsilon}$ Ct 0 V_{swb} L_b Q_{1b} -2 Q_{2b} 0.2 0.4 0.6 0 Time (µs) Series cap voltage (differential) Switch node voltages 6.2 V_{Ct} 8 6.15 Voltage (V) Voltage (V) 6.1 6.05 5.95 SWAV_{SWB} 5.9[∟] 0 -2₀ 0.2 0.4 0.6 0.2 0.4 0.6 Time (µs) Time (µs)

Steady-State Operation: Interval 1

TEXAS INSTRUMENTS

Steady-State Operation: Interval 2_{Inductor & series cap currents}

10 of 30

🤴 Texas Instruments

Steady-State Operation: Interval 3_{Inductor & series cap currents}

Texas Instruments

Steady-State Operation: Interval 4 Inductor & series cap currents

i, **TEXAS INSTRUMENTS**

Reduced Switching Loss

- Reduced switch voltage/current overlap loss
- Loss due to switch output capacitance reduced by 67%
- Enables higher frequency operation

Energy loss per switching cycle

Measured Efficiency Comparison

- Conditions:
 - 12V in, 1.2V out
 - Room temp, no air flow
- Higher efficiency over the load range
- Inductors selected for equivalent DCR

Higher peak efficiency at ~4 times the switching frequency

Auto Current Sharing

- Series cap forms average current feedback mechanism
 - Inductors charge/discharge cap
 - Charge balance maintained
- Robust to variations in L, DCR

Current Sharing: La ≈ 100nH, Lb ≈ 200nH

P.S. Shenoy, et al., "Automatic current sharing mechanism in the series capacitor buck converter," in *Proc. IEEE Energy Conversion Conf. Expo.*, Sept. 2015.

High Frequency Controller

- Adaptive constant on-time control
 - Fast transient response
 - Internal compensation
- Frequency synchronization by adapting on-time
 - Fixed frequency in steady state
 - Can use external clock or internal oscillator

Reference Design PMP15008

"Tiny, Low Profile 10 A Point-of-load Voltage Regulator"

Board Image

Total solution size is 135mm² and 1.25mm tall

Efficiency and Power Loss

2 MHz per phase, $1.2V_{OUT}$, room temperature, no air flow, two layer board

Over 90% efficiency at 9V input, less than 3W loss at full load

Thermal Image

Less than 35 deg. C temp rise at 12V input, 8A output

Load Transient Response

2% variation in V_{OUT} during 5A load change

High Bandwidth and Ample Phase Margin

Bode plot taken with 12V input, 5A output

Inductance Impact on Efficiency

Inductance equation

- $K = \Delta I_L / I_L$ where I_L is current at full load
- K is usually between 0.1 and 0.4

- Higher inductance tends to increase
 <u>peak efficiency</u>
- Lower inductance has higher <u>full load</u>
 <u>efficiency</u>

Inductor Size

- Larger inductors tend to result in higher efficiency
 - Thicker wire
 - Lower winding resistance
 - Benefit seen in mid to high load current range
- Measured results for
 - Same inductance
 - Same vendor
 - Same core material

Inductor Vendor

- Finding the right inductor vendor matters
 - Various core material, construction, etc.
 - Should not judge an inductor by DC resistance alone
- Measured results for
 - Same inductance
 - Same size
- If possible, experimentally test inductors

12 $V_{\text{IN}},$ 1.2 V_{O} , 2MHz/phase

Series Capacitor Selection

DC Voltage and Temp Impact on Capacitance

- Capacitance varies with temperature
- Capacitance decreases with DC voltage
- Examine capacitance at V_{IN}/2

Select a capacitor taking capacitance variation into account

Series Capacitor Self Heating

- Ensure series cap temperature stays within limits
 - Calculate RMS current
 - Check datasheet/online tools

Ex: 10.8V_{IN,MIN}, 1.2V_O, I_{L,RMS} = 5.02A
$$I_{SCAP,RMS} = \sqrt{2 \left(\frac{2V_O}{V_{IN,MIN}}\right)} I_{L,RMS}^2 = 3.34A$$

- 2.2µF cap, 1206 (3.2 x 1.6 x 1.15mm)
- Result: **15.8°C temp rise**
- X7R capacitors with 125°C operating temperature rating recommended

Total Solution Size

The total solution size is 65% smaller in volume than just the inductor on a competitor's 10A evaluation module!

SUMMARY

- High frequency (HF) operation of switching converters enables size reduction and performance improvements
- Buck converters have fundamental limitations that limit HF operation
- The series capacitor buck converter has unique properties that support HF operation
- Design recommendations for an HF series cap buck converter demonstrate the ease of implementation

Additional Resources

- View the <u>TPS54A20 product</u> page.
- View the reference design "<u>Tiny</u>, <u>Low Profile 10A Point-of-load</u> <u>Voltage Regulator</u>."
- Download the application note <u>"Introduction to the Series</u> <u>Capacitor Buck Converter</u>."
- Watch the video training series
 "<u>Designing with TI's Series</u>
 <u>Capacitor Buck Converter</u>."

