Regenerating codes for
distributed storage

IEEE Information Theory Society
Santa Clara Valley Chapter
May 24, 2017

This talk is about

* Regenerating codes for distributed storage

. GSS //Ote
* Main purpose: survey/introduction to regenerating codes Ume N0,
* Time permitting: some of my recent work Ast o

* My ulterior motive:
* | am a theorist!
e | want to learn from this audience:

 How might regenerating codes be useful in your work? (if at all)
* Especially the second part of the talk ©

Outline

4.

5.

Coding for distributed storage: what’s the problem?

Coding for distributed storage: how do we solve the problem?
* Try 1: replication

* Try 2: classical erasure coding

* Try 3: regenerating (MSR) codes

What can we do with regenerating codes?
e Basic bounds

How about codes | know and love?

Future work/Open problems

T

1. What’s the problem?

e We want to store a lot of data.

* Think:
* Facebook HDFS
* Windows Azure
* Google Colossus

e We want all the data to be
available at all times.

* Even grumpy cat

" Source: the
£ internet

Data might be unavailable

350

H
o
|
w
o
o

w
o

|
N
Ul
o

H Unknown

O Node restarts

B Planned reboots
O Unplanned reboots

N

o

|
— N
U1 o
o o

Events per 1000 nodes per day

machines unavailable for > 15min

10 100
[50
0 Ml
0 1 2 3 0 , , . .) .
. 0 5 10 15 20 25 30
Time (months) Day
Ford et al. USENIX OSDI 2010 Rashmi at al. USENIX HotStorage 2013

Study at Google Study on Facebook Warehouse Cluster

Formally

* For the rest of this talk, data look like this:

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ A bunch of blocks.

* We want to somehow encode the data and distribute it among n nodes

* Nodes may become unavailable.

Formally

* For the rest of this talk, data look like this:

A bunch of blocks.
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Think of each block as

holding a byte.

* We think of encoding the data into n blocks:

(T T T T T T T T X T TTT]

and then distributing the blocks, one to each node.
* We will thus think of single blocks as becoming unavailable.

Usually,

nodes become unavailable one at a time

For example, in the
Facebook Warehouse
Cluster in 2013:

But we do need to
handle multiple
failures sometimes.

Number of missing blocks

1
2
3
4
5

Percent of stripes that have one or
more block missing

98.08
1.87
0.036
9x10°
9x107°

Rashmi et al., USENIX Hot Storage 2013

Outline

4.

5.

Coding for distributed storage: what’s the problem?
Coding for distributed storage: how do we solve the problem? -

* Try 1: replication
* Try 2: classical erasure coding
* Try 3: regenerating (MSR) codes

What can we do with regenerating codes?
e Basic bounds

How about codes | know and love?

Future work/Open problems

Solution 1: replication

* Just make three (or more) copies of all of the data.
* This is very robust.

e Used (at least until recently) in
* Hadoop Distributed File System (HDFS)
* Google File System

* Downside: a lot of storage overhead.

S. Ghemawat, H. Gobioff and S.-T. Leung,
“The Google file system”, 2003

http://hadoop.apache.org/docs/current/

Solution 2: erasure coding

e Use and MDS code (like Reed-Solomon) to encode the data.
e We'll see what that means on the next slide

* This can substantially reduce the amount of overhead for the same
amount of robustness.

» Used/supported by:
* HDFS
 Windows Azure

Solution 2: erasure coding

* Break up some data into k blocks: Say each block stores a byte

* Encode these with a Maximum Distance Separable code into n blocks
* For example, a Reed-Solomon Code
* MDS means that any k encoded blocks are enough to recover the original data

add n-k parity blocks

* Send each encoded block off to a different server.

Example: (2,4) MDS code

 Say | have two blocks of information: X

* Encode this as four blocks:

X X+y | X+ay

Y

* Now even if two blocks are erased, | can recover the original data.

V=V This works no
y X+Yy _ matter which two
X=-y + (X+y) blocks are erased.

Compare with repetition

* Repetition: 3X overhead to handle two erasures:

Y ‘ X

X y X

* MDS Erasure Coding: 2X overhead to handle two erasures:

X+y | X+ay

yﬂX‘y

That sounds great

e And it is!

* Information-theoretically, we can’t do better than an MDS code when
it comes to the trade-off between storage overhead and fault
tolerance.

So what is this talk about?

Usually,
nodes become unavailable one at a time
For example, in the

Number of missing blocks | Percent of stripes that have one or
Facebook Warehouse more block missing

Cluster in 2013: 1 08.08
2 1.87
3 0.036
But we do need to 4 9x 106
handle multiple
failures sometimes. 5 9x10°

Rashmi et al., USENIX Hot Storage 2013

An (n,k) MDS code protects against n-k failures

but how does it deal with just one?

‘ ‘ ‘ ‘ ‘ ‘ ‘ k data blocks

add n-k parity blocks

download k different blocks,
recover all the data, and then
find the one block you want.

This is very wasteful!
can we do better? Not with an MDS code!

‘ ‘ ‘ ‘ | ‘ ‘ k data blocks

‘ ‘ add n-k parity blocks

Say we download
only k-1 blocks.

The MDS property (that any k blocks
determine the data) implies that the
missing block could be anything.

We can’t do better with an MDS code!
Two solutions

1. Don’t use an MDS code

* This is a reasonable option!
 Many approaches do this.
* I'm not going to talk about them.

2. Change what we mean by “better.”

 What was the problem? -
 Network bandwidth - These aren’t

—

* What can’t we improve? necessarily the same.
* Number of nodes we contact

*Jargon: I’'m going to be talking only about Minimum Storage Regenerating (MSR) codes.

Solution 3: Regenerating Codes

 Still MDS codes
e At least for this talk.* ‘ ‘ ‘ ‘ ‘ ‘ ‘

e But they have an
additional property:
* They allow for low-

bandwidth repair of a
single failure.

See the Erasure .nglng for Distributed Storage Wiki Contact more than k nodes.. but download
http://storagewiki.ece.utexas.edu/doku.php

for lots more information! less than a whole block from each!

In particular, the nice survey: Dimakis et al. “A Survey on Network Codes for Distributed Storage” 2011.

All addition is mod 2

Example: regenerating codes

e Each block stores two bits:

vyl 1 vl + x2
X y2 + X1+ x2+y2

X1=yl+y2+(yl+x2)+(x1+x2+y2)
X2 =yl +(yl+x2)
* This is still MDS

e Can recover the data from any two failures.
* Notice that this requires four bits of information.

All addition is mod 2

Example: regenerating codes

e Each block stores two bits:

oy : 2 bit 2 bits
* With just one failure... h \
* Naively still use four bits

Xx1=y1l+y2+(yl+x2)+(x1+x2+y2)
x2 =yl+(yl+x2)

All addition is mod 2

Example: regenerating codes

e Each block stores two bits:

X 1 x1+vyl 1+ x2
AN 2 e ve v

* With just one failure... 1 bit

* We can get away with only threel

X1 =(x2 +vy2)+ (x1+x2+vy2)
X2 =Vy2+ (x2 +vy2)

All addition is mod 2

Example: regenerating codes

e Each block stores two bits:

* We can get away with only threel
* The nodes are allowed to do some

local computation y1+x2=(yl+y2)+(x2+y2)
X1+x2+y2=x1+(x2+vy2)

Regenerating codes

* Same amount of storage overhead as MDS codes

* Much less bandwidth required to repair a single node
* (Than the naive MDS scheme)

* Introduced by Dimakis et al. in 2010

* Since then, lots of work, both on the theory side and the systems side
* There exist good constructions

* |n several parameter regimes, we know the “right” trade-off between
bandwidth, storage overhead, and redundancy.

Dimakis et al. "Network coding for distributed storage systems." IEEE Trans. IT, 2010
Erasure Coding for Distributed Storage Wiki: http://storagewiki.ece.utexas.edu/doku.php

Outline

4.

5.

Coding for distributed storage: what’s the problem?

Coding for distributed storage: how do we solve the problem?
* Try 1: replication

* Try 2: classical erasure coding

* Try 3: regenerating (MSR) codes

What can we do with regenerating codes? -

e Basic bounds

How about codes | know and love?

Future work/Open problems

Some lower bounds Parameter soup: o

b () (T 1]

n—k

We want to recover t bits, so we can’t do better
than t. If tis big, this is the bottleneck.

n encoded

*b>t+k —1 Plocks
The MDS property implies we need to at least
contact k nodes. If k is big, this is the bottleneck.
1 Reasonable settings:
°b2(n—1)-log2(—) ©t=s
n—k e n=14
You need to download at least some amount e k=10
(on average) from each non-damaged node. * b = hopefully way less than kt = 80!

: - : : :
[Dimakis et al. 2010] [Guruswami, W. 2017] The first bound says b = 26 in this setting.

Upper bounds? Parameter soup: 9™

There are constructions
n-—1 . k data
eh>t- (_) that approac.:h thisas t | | | | | | blocks
n—=k gets really big.

We want to recover t bits, so we can’t do better
than t. If tis big, this is the bottleneck.

n encoded

eh>t+k —1 These exist for k-3 <t < n-k blocks
The MDS property implies we need to at least
contact k nodes. If k is big, this is the bottleneck.
1 W cch thi Reasonable settings:
— e can match this N
*b = (Tl - 1)) lng (n—k) when t is log(n). . :]_:814
You need to download at least some amount e k=10
(on average) from each non-damaged node. * b = hopefully way less than kt = 80!

[Cadambe et al. 2013] [Sasidharan et al. 2015]

: - : : :
[Dimakis et al. 2010] [Guruswami, W. 2017] [Shah et al. 2012] [Rashmi et al. 2009] The first bound says b = 26 in this setting.

Understanding all the trade-offs is an active area of research!
screenshots from UT distributed storage wiki:

Regenerating Codes

Here we list papers that study the problem of izing repair {(aka. Repair Bandwidth).
* General introduction to the Repair Problem.
«Video tutorial on Regenerating Codes

Explicit Constructions of High-Rate MDS Array Codes With Optimal Repair Bandwidth

M. Ye, A. Barg,

|EEE Transactons on Information Theory (Volume: 63, Issue: 4, Apnl 2017)
«|EEExplore

AC: lon B Locally Repairable Codes and Exact Regenerating Codes

T. Emvall, T. Westerback, R. Freij-Hollanti and Camilla Hollanti,
Proceedings of IEEE International Sympasium on information Theory (ISIT), 2016.
v|EEExplore varXiv

On MBR codes with replication

M Nikhil Krishnan, P. Vijay Kumar,
Py dings of IEEE Ir
«|EEExplore

Symposium on information Theory (ISIT), 2016.

level

acterization via new bounds

Bolications Workshop (ITA), 2015. IEEE, 2015.

ing Challenges in Cloud Computing

A Piggybacking Design F

K. V. Rashmy, Nihar B. Snah, Kannan Ramchandran
varXiv

On Minimizing Dataread and Download for Storage-Node Recovery

Nihar B. Shah
« paf

Repairing Multiple Fall in the Suh-Ramchandran R ing Codes

o

J. Chen, Kenneth W. Shum
varXiv

Exact-Repair Regenerating Codes Via Layered Erasure Correction and Block Designs

C Tian, V Aggarwal, VA Vaishampayan
varXiv

On Weak Dress Codes for Cloud Storage

MK Gupta, A Agrawal, D Yadav
varXiv

High-Rate Reg ing Codes Through Layering

B Sasidharan, PV Kumar
varXiv

Repair for Distributed Storage Systems with Erasure Channels

Majid Gerami, and Ming Xiao
varXiv

Decentralized Minimum-Cost Repair for Distributed Storage Systems

Majid Gerami, Ming Xiao, Carlo Fischione, and Mikae! Skoglund
varXiv

Update-Efficient Error-Correcting Regenerating Codes

Yunghsiang S. Han, Hong-Ta Pai, Rong Zheng, and Pramod K. Varshney
varXiv

Update-Efficient Regenerating Codes with Minimum Per-Node Storage

Yunghsiang S. Han, Hong-Ta Pai, Rong Zheng, and Pramod K. Varshney
varXiv

Optimal Locally Repairable and Secure Codes for Distributed Storage Systems

Ankit Singh Rawat, O. Ozan Koyluoglu, Natalia Silberstein, Sriram Vishwanath
varXiv

Secure Cooperative Regenerating Codes for Distributed Storage Systems

0. Ozan Koylueglu, Ankit Singh Rawat, Sriram Vishwanath
varXiv

Analysis and Construction of Functional Regenerating Codes with Uncoded Repair for Distributed

Systems

rk for Read-and Download-efficient Distributed Storage Codes

A Network Coding Based F rk for C: of Sy Reg ing Codes for Distributed

Storage

Swanand Kadhe, M. Girish Chandra, and Balaj Janakiram,
Status: Submitted to ACM Transactions on Storage, Apr 2011,
w Preprint.pdf More

Optimal-Cost Repair in Multi-hop Distributed Storage Systems

Majid Gerami, Ming Xiao, Mikael Skoglund
Proceedings of IEEE International Sympasium on information Theory (ISIT), 2011
< pof Mora

Quasi-cyclic L g ing Codes for Distributed Data Compression

B. Gaston, J. Pujol and M. Villanueva
Proceedings of the Data Compression Conference (DCC), 2011
~|EEEXplore More

Cooperative Regenerating Codes for Distributed Storage Systems
Kenneth W. Shum
Presented in IEEE International Conf. on Comm. (ICC) 2011.

varXiv More

Enabling Node Repair in Any Ei Code for Distri Storag

K. V. Rashmy, Nihar B. Shah and P. Vijay Kumar
|IEEE International Symposium on Information Theory (ISIT) 2011.
varXiv More

ExR: A for Exact Reg ion of a Failed Node In a Distributed Storage System

Balaji Janakiram, Swanand Kadhe, and M. Girish Chandra,

Proceedings of Annual International Conference on Advances in Distributed and Parallel Computing (ADPC), Nov

2010.
w pdf More

Distributed Storage Codes with Repair-by and N h bility of Interior Points on the Storage-

Bandwidth Tradeoff

Nihar B. Shah, K. V. Rashmy, P. Vijay Kumar, and Kannan Ramchandran
Nov, 2010.

varXiv More

Distributed Storage Codes Meet A p Ch

D. S. Papailiopoulos and A. G. Dimakis
Allerton, September 2010.
« pdf More

Fractional Repetition Codes for Repair In Distributed Storage Systems

S. El Rouayheb and K. Ramchandran
Allerton, September 2010.
« paf More

Beyond Regenerating Codes

A.-M. Kermarrec, N. Le Scouamec, and Straub,
INRIA Research Report, September 2010.
«pdf

More Superseded by Repaiing Multiple Failures with Coordi and Adaptive Reg ing Codes.

A Flexible Class of Regenerating Codes for Distributed Storage

N. 8. Shah, K. V. Rashmi, P. Vijay Kumar, and K. Ramchandran,
in Prac. 2010 IEEE Int. Symp. Info. Theory (ISIT), June 2010.
«|EEE Xplore More

Self-repairing Homomorphic Codes for Distrib

F. Oggier, A. Datta

in Proc. 2011 IEEE International Conference on C
Arxiv, July 2010.

Note: A substantially extended version of this wy
varXiv More

Explicit and Optimal Exact-Regenerating Code

K. V. Rashmi, N. B. Shah, P. V. Kumar, and K. Ra
in Proc. 2010 IEEE Int. Symp. Info. Theory (ISIT),
«|EEE Xplore More

Cooperative Recovery of Distributed Storage !

Yuchong Hu, Yinlong Xu, Xiaozhao Wang, Cheng
|IEEE J. on Selected Areas in Comm., vol. 28, no.
+|EEE Xplore More

Double C Mini Storage Reg at

Bernat Gaston, and Jaume Pujol,

Status: Deprecated. New version called "Quasi-c)
Compression®

varXiv More

Distributed Data Storage with Minimum Storag
Asymptotically Equally Efficient

V. R. Cadambe, S. A. Jafar, H. Malek,
in Proc. 2010 Wireless Network Cading (WINC) V
varXiv More

A Fund Trade-off B The Downle
Systems

S. Akhlaghi, A. Kiani, and M. R. Ghanavati,
in Proc. 2010 IEEE International Sympoasium on A
More

A Practical Network Coding Approach for Pee

M. Martalé, M. Picone, R. Bussandri, and Michele
in Proc. 2010 IEEE International Symposium on A
«|EEE Xplore More

Optimal Exact-Regenerating Codes for Distrib
Construction

K. V. Rashmi, Nihar B. Shah, and P. Vijay Kumar
Results: Explicit codes for the MBR point for all fe
k d=2k-2).

varXiv « Poster, ISIT Recent Results, Austin, Jun.
|EEE Transactions on Information Theory, vol. 57
More

Interference Alignment in Regenerating Codes

Nihar B. Shah, K. V. Rashmy, P. Vijay Kumar, and
Joumal version of the resulsts which appeared in
varXiv

|EEE Transactions on Information Theory, April 21
More

Outline

1. Coding for distributed storage: what’s the problem?

2. Coding for distributed storage: how do we solve the problem?
* Try 1: replication
* Try 2: classical erasure coding
* Try 3: regenerating (MSR) codes

3. What can we do with regenerating codes?
e Basic bounds

4. How about codes | know and love? -

5. Future work/Open problems

Reed-Solomon Codes Classical solution for erasure coding

Plus lots of other things!

fo [fi] Fa fa] fOO=fot+fi-x+fo X2+ feoyg X"

/\\ f(x)

The evaluations of
this polynomial are
the encoded blocks.

Technically, the
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ things in these boxes

are elements of a
finite field

Reed-Solomon Codes are MDS codes

* Any k evaluations of a degree k-1 polynomial suffices for reconstruction.

f(x)

Reed-Solomon codes are the standard
for erasure coding in distributed storage

* Microsoft Azure uses RS(9,6)
* HDFS supports RS(14,10)

* Reed-Solomon Codes are:
e Standard
* Very efficient to manipulate
* Really nice algebraic structure!

e

Also RS codes are used for all
sorts of other stuff too

Can Reed-Solomon Codes be good
regenerating codes?

* At first, this doesn’t make sense.

f(x)

These things are elements
of a finite field. The
example we saw needs
them to be binary vectors.

First try

* Define an arbitrary mapping:

—)

Elements of a finite
field of size 2t

Binary vector of
length t

The problem with this is that it destroys the nice algebraic structure of Reed-Solomon Codes.

Next try

* This mapping doesn’t have to be arbitrary

>

Elements of a finite
field of size 2t

Binary vector of
length t

* Actually the finite field of size 2! is a vector space over the finite field of size 2.
* This means that there’s a way to define this mapping that plays nice with the algebra.

This is a pretty simple observation
but it turns out to be pretty powerful

* Reed-Solomon codes themselves are optimal regenerating codes in
some parameter regimes!

* Guruswami, W., STOC 2016, IEEE Trans. IT, 2017

* Follow-up work has extended this to more parameter regimes.
* Ye, Barg, ISIT 2016

* More follow-up work has extended this to multiple failures.
* Dau, Duursma, Kiah, Milenkovic, ISIT 2017

. Say n=8, k=4, t=3 What does this scheme

e We work over the finite field

of size 2t = 8. actually look like?

e Each element is stored as a
vector of length 3.

e Say node 0 is going to fail.
This determines a repa
scheme.

* To do the repair:

e each node computes the do
product of its contents with
the repair vector

* returns the resulting bit.

f(x)

100 ‘ 011 | 110 ‘ 001

101 011 o010 110 001 100 111

N 110 ‘ 011 ‘ 100

* The system uses algebra to .
reconstruct the missing
value from these 7 bits.

1 0 0 1 1 1 1

e Say n=8, k=4, t=3
e We work over the finite field
of size 2t = 8.

e Each element is stored as a
vector of length 3.

Compare to the naive scheme

: f(x)
* To do the repair:)

* download the complete
contents of any four nodes.

* The system uses algebra to
reconstruct the missing

value from these 12 bits. ‘X‘ 51 ‘ S ‘ 1ol

100 ‘ 011

/N

More generally
with some jargon

* A rate 2 RS code can repair any missing node using only one bit from
every surviving node.

 Arate 1 — € RS code can repair any missing node using only
log,(1/€) bits from every surviving node.

* This is optimal for MDS codes with linear repair schemes.

Guruswami, W., STOC 2016, IEEE Trans. IT, 2017

Outline

4.

5.

Coding for distributed storage: what’s the problem?

Coding for distributed storage: how do we solve the problem?
* Try 1: replication

* Try 2: classical erasure coding

* Try 3: regenerating (MSR) codes

What can we do with regenerating codes?
e Basic bounds

How about codes | know and love?

Future work/Open problems -

New Directions

* For regenerating codes in general:
* Pinning down all of the trade-offs.
* Coming up with good constructions.
* These ideas seem like they might be useful beyond distributed storage.

* For RS codes as regenerating codes in particular:
* Repair-by-transfer?
e Extending these techniques to other algebraic codes.
* These ideas seem like they might be useful beyond distributed storage.

Thanks for listening!

OF:£10
T

s

Mary Wootters
marykw@stanford.edu

