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 What is super-resolution image processing?

 What are some application areas?

 Background and definitions

 Motivations and methods for multi-image 
super-resolution

 Lessons learned and relationship to newer 
methods of single image super-resolution
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 Two interpretations:

 Increasing resolution beyond optical diffraction limit

 Increasing pixel density and spatial frequency 
content beyond the limit of the sensor array pixel 
size

 Increasing the spatial resolution of an image 
beyond the resolution of the straightforward 
image acquisition procedure for that 
application
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 Multiple image super-resolution – added information 
to improve resolution comes from new observations
 Combine information from multiple images
 Need given or derived information about relationship of 

images
 Assumptions about depth of field to avoid stereo effects from 

lateral shift of perspective for multiple cameras
 Assumption about lack of motion of subjects for single camera 

time sequence
 Compute estimate the higher resolution image that is most 

likely or is most consistent with observations or minimizes 
expected image error

 Single image super-resolution – added information to 
improve resolution comes from a-priori information 
 Specific statistical or structural information or assumptions
 Library of training data for specific context
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 What is the application context?

 What is the objective of super-resolution 
processing?

 Why can’t a higher resolution image be 
acquired directly?

 What is the cost of errors?
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 Improve spatial resolution of images for improved 
viewing satisfaction without improving camera
 Lower camera cost, size

 Need for flat form factor prevents use of zoom lens

 Improved estimate of quantitatively meaningful 
information in an image
 Identification of structures, features, alphanumeric data

 Fusion applications in which different spectral bands 
have different spatial resolution

 Improve utility of medical images without increasing 
cost, acquisition time, patient dosage
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Problem of image restoration or denoising, not super-resolution. 
For example:

From promotion for the movie:

Story Line:
Tom Farrell is a navy officer who gets posted at 
the Pentagon and is to report to the secretary of 
defense David Brice. He starts an affair with Susan 
Atwell not knowing that she is Brice's mistress. 
When Susan is found dead, Tom is assigned to the 
case of finding the killer who is believed to be a 
KGB mole! Tom could soon become a suspect 
when a Polaroid negative of him was found at 
Susan's place. 

He now has only a few hours to find the 
killer before the computer regenerates the 
photo. 
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 Could get a camera with a good telephoto 
lens

 Cost:
 The cost of a better camera with better optical 

zoom capability might be greater than the cost 
of adding computational capability.

 Size:
 The increased length of the optical path for 

increased zoom capability might cause problems
 Flat wall mounted cameras for museum 

surveillance
 Helmet mounted cameras for first responders

 Flexibility  
 select ROI for increased resolution
 May mot need increased resolution

over the whole image

10



 Consumer applications – digital cameras –
 Create high resolution images computationally rather than 

purchasing a more expensive  or larger camera 

 Surveillance or security monitoring
 Get high resolution images from a camera limited in size, form 

factor, weight
 Use widespread distributed camera networks

 In general motivated either by desire for improved 
performance from existing technology or by design needed 
for special constraints
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 Interlaced TV images of SDTV –
 Each frame had even lines or odd lines so each new frame 

updated half the image lines. Produced 2X resolution of 
full frame update with same data rate

 Bayer pattern of color images
 50% of pixels are green, 25% red, 25% blue

 Compound eye vision
 Fusion of multispectral images – registration and 

resampling
 Visible and lower resolution IR
 Geoscience (Wang 2005) fuse low-resolution multispectral 

images (LRMI) with high-resolution panchromatic images 
(HRPI). 
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 xhttps://www.britannica.com/technology/television-technology/images-
videos/Interlaced-scanning-for-standard-television-display-The-first-field-made/775
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 http://www.creativeplanetnetwork.com/news/news-articles/dv101-
raw-deal-what-does-it-mean-record-raw-imagery/423392
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Each pixel sensor is covered by 
a red, green, or blue filter



 • http://phenomena.nationalgeographic.com/2013/05/02/insect-eye-
digital-camera-sees-what-you-just-did/

 http://commons.wikimedia.org/wiki/File:Eyes_of_a_Holcocephala_
fusca_Robber_Fly.jpg

 http://commons.wikimedia.org/wiki/File:Thru_The_Eyes_Of_Ruby
_%28the_fly%29_%288219315716%29.jpg
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 Array of small sub-imagers with fields of view that 
can be controlled by micro-mirrors

 Local variance can control density of coverage
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 Multiple lower resolution images can be captured with sub-
pixel shifts
 From a single camera in motion

 Trajectory or vibration

 From multiple cameras at the same time
 Multiple imagers may have dynamically controlled directions

 Using a model for image formation, the information in the 
LR images can be combined to estimate the HR image

 Ill-posed, but interesting problem
 Basic Assumptions:

 Aliased high frequency content is present in LR images, not 
eliminated to create a band limited signal

 There is no significant motion in the scene while LR images are 
captured

 There is no compression or space varying response that would 
cause LR image combination problems
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f(x,y) is light field on sensor plane
g(x,y) is f(x,y) blurred by the sensor response function. This is 
sampled to provide digital LR image

Sensor array
 Pixel spacing
 Pixel size
 Dynamic range
 Noise 

characteristics

Optics:
 Magnification
 Spatial frequency 

response
 May be space 

variant
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 Assume pixel centered at 𝑥0, 𝑦0 has response 
𝐴 𝑥, 𝑦, 𝑥0, 𝑦0 . If shift invariant the response is 
𝑔 𝑥0, 𝑦0 =  

−∞

∞
𝑓 𝑥, 𝑦 𝐴 𝑥0 − 𝑥, 𝑦0 − 𝑦 𝑑𝑥𝑑𝑦

 LR image is obtained by sampling the function of 
continuous variables, g(x,y), at intervals 
determined by the pixel spacing, w. 

 In this model 𝐴 𝑥, 𝑦 will always be zero for 𝑥 >
0.5𝑤 or 𝑦 > 0.5𝑤. 

 Due to the fill factor of the array, the pixel will 
respond to an area smaller than wxw. 
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 Let all two dimensional HR and LR image be 
stored in column vector form.

 𝑔𝑘 = 𝐻𝑘𝑓 relates the kth LR image 𝑔𝑘to the desired 

HR image 𝑓 through the observation partial matrix 

𝐻𝑘. 
 This matrix is sparse and includes the blurring of the HR 

image due to integration over the sensor surface and 
relative position information.

 𝐻𝑘 = D𝐵𝑘𝑀𝑘 where M represent positioning and possibly 
warping transformations, B represents the blur of the 
sensor, and D represents the downsampling to the sensor 
pixel structure
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 For M LR images, ideally:

𝑔 =

𝑔1
𝑔2

⋮
𝑔𝑀

=

𝐻1

𝐻2

⋮
𝐻𝑀

𝑓 = 𝐻𝑓

 When noise is added to the equation
𝑔 = 𝐻𝑓 + 𝑣
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 Each LR pixel 
is the sum of 
four desired 
HR pixels

 Four LR pixel 
arrays are 
shown at four 
different 
position 
offsets
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 One LR 
image

 3x3 set 
of LR 
images

H1=

H=

Desired Improvement is 3X. Nine LR images are 
used, each of which is 5x5 pixels. 
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Full Resolution                           Array of LR Images
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 If aliased high frequency information has been lost, 
then super resolution methods can not extract it
 Optics must produce f(x,y) with high frequencies that are 

undersampled by g(x,y).

 If 𝐴 𝑥, 𝑦 = 𝑟𝑒𝑐𝑡
𝑥

𝑎
𝑟𝑒𝑐𝑡

𝑦

𝑎
, then sampling is far from the 

ideal sampling assumed in time signal processing.

 𝐴 𝑢, 𝑣 = 𝑎2𝑠𝑖𝑛𝑐 𝑎𝑢 𝑠𝑖𝑛𝑐 𝑎𝑣 will attenuate high 

frequencies and null spatial frequencies at multiples of 
1

𝑎
.

 If some aliased information has been retained AND 
accurate registration of offset LR images is possible, 
then aliased information can be extracted.
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 Three different frequencies have 
the same sample sequence

 A second set of sample 
sequences offset by half the 
sampling interval doubles the 
effective sampling frequency –
frequencies with identical 
sample sequences above now 
have different sample sequences
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 Combined sample sequences can 
distinguish the two frequencies

 Offset of second sequence does not 
have to be exactly half the original 
sample sequence
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 Aliasing causes patterns that are visually interpreted incorrectly. Aliased component are 
suppressed for viewing, but must be retained for super-resolution computations 

 Patterns depend on relative position of camera and scene objects and may change 
dramatically if either moves

 https://svi.nl/AntiAliasing
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Demonstrations Using Constructed Examples

• HR image is blurred and downsampled at specified 
rate

• Relative position of HR images is known
• Shifts are equally spaced fractions of LR pixels



Einstein

Photo 
600x600 
pixels

https://th.phys
ik.uni-
frankfurt.de/~j
r/physpiceinste
in.html 
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Four 300x300 downsampled versions of g(x,y) can be aligned or 
interpolated to form 600x600 g(x,y)
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Pixel in 
g(x,y) 
includes 4 
pixels from 
f(x,y)



 Original                                     Reduced Resolution

Detail of pupil in 
original is reduced in
g(x,y)
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 Four 300x300 down-sampled version of g(x,y) 
can be combined by registration and 
interpolation to get 600x600 g(x,y).

 To get 600x600 f(x,y) from g(x,y) need to deblur
or restore image to undo the blur of the larger 
pixel size.

 If downsampled versions of f(x,y) were 
available, f(x,y) could be recovered without 
deblurring. However, this is unlikely. Only 
downsampled versions of g(x,y) are produced 
by the lower resolution imaging system
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 Original                                     Reduced Resolution

Highlight in pupil in 
original is missing in
g(x,y)
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 Original                                     Reduced Resolution

Detail of eye in 
original is missing in
g(x,y)
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 In all cases full g(x,y) image created from 
multiple offset down-sampled LR images 
shows more coherent detail than individual LR 
images.
 Depending on the image content and the rate of 

down-sampling, some LR images contain most of the 
edge and structure information

 Creating g(x,y) requires registration and 
interpolation.

 Creating the higher level of detail in f(x,y) 
requires deblurring.
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 LR image registration

 Image noise

 Modeling information and sensitivity to 
incorrect parameters

 Computational burden
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 An imaging system that acquires LR images and controls 
sub pixel offsets, would have known offsets. This would 
require a precise special purpose image acquisition system.

 Otherwise registration is complicated because LR images 
must have aliased image content if HR image is to be 
restored

 Space domain alignment – could use correlation for sub-
pixel registration
 Because of aliasing, edges and significant points are represented in 

same way in LR images and sub pixel shift estimation is difficult

 Frequency domain  (Vanderwalle, 2005): 
 Use linear phase difference in frequency domain to estimate offset
 However, aliased component will have a different offset. Assume 

that higher frequency aliased components have lower amplitudes.
 Rotation can cause problems
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 Many sources of image noise
 Amplifier noise and measurement noise
 Quantization noise – easily modeled as a uniformly 

distributed noise over normalized quantization interval 
1

2𝑏

 Typically b=8 for image sensors

 Poisson noise

 If Poisson noise dominates, then if  Nmax is the 
maximum count associated with maximum output 
level gmax, let α = gmax /Nmax . 
 sd(g) =α·sd(N) and var(g)= α·g. 
 At g= gmax, the variance  is α gmax = (gmax)

2/Nmax.

 For denser pixel arrays with lower values of Nmax , 
the noise variance will be higher.
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 From 50 images of same scene
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 From 50 images of same scene
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 Averaged image has less variation due to noise

 Variance image looks very much like mean 
image

 Higher than expected variance is associated with 
motion in bushes and trees

 Low variance (zero variance) is associated with 
saturation. In the variance image zero variance areas 
are black.
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 Use model of the image acquisition for the LR 
images in terms of the desired HR images
 Optics, Sensors, LR image registration

 𝑔 = 𝐻𝑓 + 𝑣

 Use computational methods from signal and 
image processing and medical image 
reconstruction from projection measurements
 Statistical methods: Kalman filter, maximum 

likelihood

 Iterative methods: predicted error backprojection, 
POCS
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 Simple backprojection –

𝒇𝑩 = 𝑯𝑻𝒈 = 𝑯𝑻 𝑯𝒇 + 𝒗
 Simple computation
 Close to least sqares result for very high noise levels

 Iterative back projection of prediction error -
Kaczmarz method or ART. For individual LR pixels

∆𝑔𝑖 = 𝑔𝑖 − ℎ𝑖
𝑇 ∙ 𝑓𝑖

𝑓𝑖+1 = 𝑓𝑖 +
∆𝑔𝑖ℎ𝑖

ℎ𝑖
2

 New 𝑓𝑖+1 is consistent with  𝑔𝑖. Relaxation coefficient may be 
used for partial correction for better convergence behavior.

 Many iterations needed. May not converge.
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 Linear  update with Gaussian assumptions. 
For zero mean:

 𝒇 = 𝑲𝒈

𝑲 = 𝑷𝟎𝑯
𝑻 𝑯𝑷𝟎𝑯

𝑻 + 𝑹𝒗𝒗
−𝟏

= 𝑹𝒇𝒈 𝑹𝒈𝒈
−𝟏

x= 𝐼 − 𝐾𝐻 𝑃0 𝐼 − 𝐾𝐻 𝑇 + 𝐾𝑹𝒗𝒗𝐾
𝑇

 Potentially large computational requirement

 Can use circulant matrix approximations (Milanfar) 
for more efficient computation.
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JPEG compression: sharp edges create ringing high frequency content 
that is visually plausible but not correct and not consistent as image 
scene is shifted relative to the pixel grid.
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 Accurate registration of low resolution images to 
generate correct H matrices is difficult.

 High noise level  from most image sensors
 Low dynamic range of input image values. (Note 

that the human visual system can generally 
distinguish about 6.5 bits of gray level.)

 Computational requirements
 Aliased high frequency content is attenuated by 

averaging of each sensor. Null space is created by 
sensor spacing.

 If image data is already compressed, almost all 
aliased high frequency content is eliminated or 
modified in a way that makes it not useful
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 H matrices are sparse and structured. 
 Circulant approximations and frequency domain 

implementations can lead to efficient computation 
with large matrices (Vandewalle, Milanfar) .

 Local reconstruction of small tiles of the desired 
HR image has many benefits.
 Less sensitivity to model mismatch
 More manageable computation

 Potential problems:
 Space varying optics creates problems in aligning LR 

image content – need accurate warping model
 Compression creates artifacts that are not consistent in LR 

images
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 Use of magnification and orientation diversity can 
reduce impact of null space due to regular and uniform 
sensor spacing.

 For a square pixel model, 𝐴 𝑢, 𝑣 = 𝑎2𝑠𝑖𝑛𝑐 𝑎𝑢 𝑠𝑖𝑛𝑐 𝑎𝑣
will attenuate high frequencies and null spatial 

frequencies at multiples of 
1

𝑎
.

 If some LR image sensors are rotated, lines of zero 
response in frequency will not overlap.

 If some LR images have lower magnification, the 
null frequencies will be different.
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 Two different pixel 
widths provide non 
zero response at first 
null frequencies.

 Three different widths
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 Performance of five sub-imager geometries is 
compared for 35x35 pixel tile for diverse and 
uniform arrays. 

 Geometry is indicated by color.

 The mse of four estimators using four different 
assumed noise variances is compared for each 
geometry. Noise level is indicated by marker shape.

 Horizontal axis is actual noise level.

 With diversity of sensor size and/or orientation, 
expected error is reduced to a level controlled by the 
measurement noise level, not the null space.
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 X
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Test image                          Selected 35x35 tile
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All LR at best magnification           Diverse LR Imagers

𝜎2 = 0.01
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 If registration is perfect, expected error in 
reconstructed images is reduced when larger 
tiles are reconstructed from larger LR images. 
This is due to finer frequency resolution from a 
larger number of data samples.

 However, if the assumed relative position of 
the LR images has some variability, the benefit 
of the larger tiles is lost.
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 Marker shape indicates number of LR images 
and color indicates size of LR image.
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 Registration error with variance =0.1*desired 
pixel width shown with dashed lines.
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Objective and Subjective Measures

For most images the precise value of an isolated pixel is not 
important. In medical imaging a pixel value may 
quantitatively represent a physical quantity such as X-ray 
attenuation coefficient

67



 Man-made signals, e.g. communications, are designed 
to be efficient with other man-made technology for 
transmission and reception

 Radar and sonar use man-made signals to actively 
interrogate the natural surroundings

 Medical images – reconstructed images of biological 
structure using active or passive measurements
 Quantitative value of pixels is usually significant as a measured 

quantity

 Images – passive capture of light patterns through 
image acquisition system
 No control of signal content
 Adapted visual system
 Exact quantitative value of a pixel is often not important. Value 

in context of other pixel values is more important.
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 𝑀𝑆𝐸 =
1

𝑁
 𝑛=0
𝑁−1  𝑓𝑛 − 𝑓𝑛

2

 Advantages

 Well understood and easily computed

 Disadvantages

 Not strongly correlated with perceptual judgment 
about quality

 Adding bias does not change perception of image 
content, but greatly increases MSE

 Lowest MSE may still not be a usable image

 Measures quality of single image
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 𝐸𝑀𝑆𝐸 =
1

𝑁
 𝑛=0
𝑁−1  𝑓𝑛 − 𝑓𝑛

2

 Advantages
 Measure of expected error for reconstruction method 

based on likelihood of occurrence of source images 
and  noise

 Disadvantages
 Not strongly correlated with perceptual judgment 

about quality

 Null space components add large component to 
EMSE but other more likely content may have low 
error
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 𝑃𝑆𝑁𝑅 = 10 log10
𝑚𝑎𝑥 𝑓𝑛

2

𝑀𝑆𝐸

 Advantages

 Most common measure of image quality; widely 
used so methods can be compared

 Disadvantages

 Similar to MSE
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 Over a local area (e.g. 11x11 pixels) similarity 
of nonnegative valued x and y is computed for

 Luminance: 𝑙 𝑥, 𝑦 =
2𝜇𝑥𝜇𝑦+𝐶1

𝜇𝑥
2+ 𝜇𝑦

2
+𝐶1

 Contrast: 𝑐 𝑥, 𝑦 =
2𝜎𝑥𝜎𝑦+𝐶2

𝜎𝑥
2+ 𝜎𝑦

2
+𝐶2

 Structure: 𝑠 𝑥, 𝑦 =
𝜎𝑥𝑦+𝐶3

𝜎𝑥𝜎𝑦+𝐶3

 SSIM = 𝑙 𝑥, 𝑦 𝑐 𝑥, 𝑦 s 𝑥, 𝑦

 Correlation with perceptual judgment is not 
much stronger than PSNR.
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 User preference based on viewing images is 
averaged over viewers

 Advantages
 Attempts to measure quality that is relevant to 

human perception

 Disadvantages
 Different observers may have significantly difference 

preferences

 Different image qualities may be preferred based on 
image content – e.g. contrast

 Other factors may affect preference
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 Beautiful HR image – user preference

 Identification of text or numeric content e.g. license 
plate numbers of ship numbers – use accuracy of 
identification regardless of the image appearance

 Detection of small objects or motion

 Pixel values represent quantitative measures– e.g. 
x-ray attenuation – use MSE

 Identify goal of super-resolution and use 
attainment of goal as performance measure

74





 Improved viewing
 Subjective measure of performance
 Metrics can be similar to compression
 Cost of errors

 Quantitative improvement in detection or 
identification
 Can use quantitative measures of correctness not based 

on pixel values
 Correct identification of structures in images

 Ideal performance limited by
 Measurement noise – image pixel variance
 Uncertainty of image acquisition parameters and model 

parameters

 Local computation may be sufficient
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 Simulations work much better than real 
experiments. With perfect registration and no 
noise, large improvements in resolution are 
possible in theory. But
 Low levels of noise are not possible even with a lot of 

averaging. Pixels are becoming smaller and noisier.

 Accurate registration is very difficult.

 A single camera in motion must compute position

 Multiple fixed cameras  may have known positions but 
output must be calibrated
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 Accurately registered and interpolated LR images 
can provide meaningful results even if still blurred 
by the sensor response function. This makes 
computation more stable.

 Local supper-resolution computation using small 
image tiles is advantageous.

 Unmodeled sources of error
 Motion of scene objects
 Built in camera processing. For example, JPEG 

compression reduces high frequency content and replaces 
much of it with something that is visually plausible, but 
not correct and not consistent in LR images.

 Performance measures should be related to the 
objective of the super-resolution.
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 Viewing resolution of a single image can always be 
improved by up-sampling and interpolation –
bandlimited, bi-linear, bi-cubic
 High frequency content is not added by this process. To add 

helpful high frequency content, need some a-priori 
assumptions or reference data to select best content

 Data-driven optimization approaches use large data 
sets to provide information
 Can use sparse coding (Wang, 2015) and/or deep convolutional 

networks (Dong, 2014)  based on internal image similarities or 
large training sets to learn a mapping between low-resolution 
and high-resolution data

 Avoids ill-conditioned reconstruction and deblurring
operations

 Can be tuned for specific applications
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