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VHAT IS SUPER-RESOLUTION
MAGE PROCESSING?



at Is Computational Super-
resolution?

ations:
ion beyond optical diffraction limit

ity and spatial frequency
ntent beyond the limit of the sensor array pixel
e

easing the spatial resolution of an image
nd the resolution of the straightforward
acquisition procedure for that
application



Single or Multiple Image super-

resolution?

= Multiple image super-resolution - added information
to improve resolution comes from new observations

Combine information from multiple images

Need given or derived information about relationship of
images

Assumptions about depth of field to avoid stereo effects from
lateral shift of perspective for multiple cameras

Assumption about lack of motion of subjects for single camera
time sequence

Compute estimate the higher resolution image that is most
likely or is most consistent with observations or minimizes
expected image error

@ Single image super-resolution - added information to
improve resolution comes from a-priori information

Specific statistical or structural information or assumptions
Library of training data for specific context



Application Variability

\pplication context?
ive of super-resolution

g’
can’t a higher re
red directly?

the cost of errors?

lution image be



NHAT ARE SOME
APPLICATION AREAS?



VWho Needs Super-resolution?

= Improve spatial resolution of images for improved
viewing satisfaction without improving camera
m [ ower camera cost, size
= Need for flat form factor prevents use of zoom lens

= Improved estimate of quantitatively meaningtful
information in an image
= [dentification of structures, features, alphanumeric data

= Fusion applications in which different spectral bands
have different spatial resolution

= Improve utility of medical images without increasing
cost, acquisition time, patient dosage



From promotion for the movie:

Story Line:

om Farrell is a navy officer who gets posted at
Pentagon and is to report to the secretary of

se David Brice. He starts an affair with Susan
Atwell not knowing that she is Brice's mistress.
When Susan is found dead, Tom is assigned to the
case of finding the killer who is believed to be a
KGB mole! Tom could soon become a suspect
when a Polaroid negative of him was found at

Susan's place.

He now has only a few hours to find the
killer before the computer regenerates the
photo.




VWHY Not Just Get a Better Camera?

@ Could get a camera with a good telephoto
lens

m Cost:

= The cost of a better camera with better optical
zoom capability might be greater than the cost
of adding computational capability.

= Size:

= The increased length of the optical path for
increased zoom capability might cause problems

o Flat wall mounted cameras for museum
surveillance

o Helmet mounted cameras for first responders

= Flexibility

Nikon Nikkor AF-S 200-400mm f/4 G ED VR II
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There must

= select ROI for increased resolution AT N be a better

way....

= May mot need increased resolution
over the whole image




Application Areas

tions - digital cameras -

ion images computationally rather than
ensive or larger camera

widespread distributed camera networks

eral motivated either by desire for improved
nance from existing technology or by design needed
ecial constraints
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xamples in Common Use

images of SDTV -

even lines or odd lines so each new frame
updated ha image lines. Produced 2X resolution of
full frame update with same data rate

yer pattern of color images

0% of pixels are green, 25% red, 25% blue

mpound eye vision

ion of multispectral images - registration and
resampling

= Visible and lower resolution IR

= Geoscience (Wang 2005) fuse low-resolution multispectral

%ma e§ (LRMI) with high-resolution panchromatic images
HRPI).

12



nterlaced SDTV Images

A lines (first field)

© 2002 Encyclopaedia Britannica, Inc.

xhttps:/ /www.britannica.com/technology/television-technology /images-
videos/Interlaced-scanning-for-standard-television-display-The-first-field-made/775

13



Recorded
Light
Color

Photodiode

olo Blue raw record

Green interpolation Red interpolation Blue interpolation Combined interpolation




@ e htt;m-phenomena nationalge §raph1c .com/2013/05/02/insect-eye-
~ digital-camera-sees-what-you-just-did/

http:/ /commons.wikimedia.org/wiki/File:Eyes_of a_Holcocephala_
fusca_ obber _Flyjpg

o httﬁ) commons.wikimedia. org /wiki/File:Thru_The_Eyes_Of Ruby
_%28the_tly %29 7%288219315716%29.jpg
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A Special Purpose Flat Camera
Design

detector arrays i Cro-Mirror arrays

= Array of small sub-imagers with fields of view that
can be controlled by micro-mirrors

= Local variance can control density of coverage

16
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h Resolution (HR) Images from
Itiple Low Resolution (LR)
Images

olution images can be captured with sub-

From a single camera in motion

o Trajectory or vibration

rom multiple cameras at the same time

Multiple imagers may have dynamically controlled directions

g a model for image formation, the information in the
images can be combined to estimate the HR image

sed, but interesting problem

b @ Basic Assumptions:

= Aliased high frequency content is present in LR images, not
eliminated to create a band limited signal

» There is no significant motion in the scene while LR images are
captured

= There is no compression or space varying response that would
cause LR image combination problems

18



Viodel for Image Formation

f(x,y) is light field on sensor plane

g(x,y) 1s f(x,y) blurred by the sensor response function. This is
sampled to provide digl}’;al LR image

SENSOR
OPTICS ARRAY

Optics: Sensor array
= Magnification = Pixel spacing
= Spatial frequency = Pixel size
i Ronse = Dynamic range
= May be space =  Noise
variant characteristics

19



Simple Model of Sensor Response

= Assume pixel centered at (xg, yy) has response
A(x,y, xg, ¥p). If shift invariant the response is
g(x0,¥0) = ff_oof(x» V)A(xg — x,y0 —y) dxdy

= LR image is obtained by sampling the function of

continuous variables, g(x,y), at intervals
determined by the pixel spacing, w.

= In this model A(x,y ) will always be zero for |x| >
0.5w or |y| > 0.5w.

= Due to the fill factor of the array, the pixel will
respond to an area smaller than wxw.

20
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elationship of LR Image to
Desired HR Image

ensional HR and LR image be
1 vector form.

k = Hef relates the k LR i image gto the desired
image f through the observation partial matrix

This matrix is sparse and includes the blurring of the HR
age due to integration over the sensor surface and
ative position information.

= H, = DB, M, where M represent positioning and possibly
warping transformations, B represents the blur of the
sensor, and D represents the downsampling to the sensor
pixel structure

21



ning LR Images

oes, ideally:
H{’

|~
|l

I

T

pise is added to the equation
g=Hf+v

22



Array for 2x Improvement

= Each LR pixel
is the sum of

four desired
ISINQUNGIE

= Four LR pixel
arrays are
shown at four
different
position
offsets

High Resolution Pixel

D Low Resolution Pixel




Qohservation Partial Matrix

Desired Improvement is 3X. Nine LR images are
used, each of which is 5x5 pixels.

@ One LR

: H,=
image

m 3x3 set =
of LR
images




mage Segment shown as
ox3 LR array

Array of LR Images

25



LR Images MVust Have Aliased HF
Information

= If aliased high frequency information has been lost,
then super resolution methods can not extract it

= Optics must produce f(x,y) with high frequencies that are
undersampled by g(x,y).

s If A(x,y) = rect (g) rect (g), then sampling is far from the
ideal sampling assumed in time signal processing.
= A(u,v) = a?sinc(au)sinc(av) will attenuate high

frequencies and null spatial frequencies at multiples of (%)

= If some aliased information has been retained AND
accurate registration of offset LR images is possible,
then aliased information can be extracted.

26



One Dimensional Aliasing

= Three different frequencies have
the same sample sequence

@ A second set of sample
sequences offset by half the
sampling interval doubles the
effective sampling frequency -
frequencies with identical
sample sequences above now
have different sample sequences




Combined LR Sequences

= Combined sample sequences can
distinguish the two frequencies

= Offset of second sequence does not
have to be exactly half the original
sample sequence




Allasing Iin an Image

A v bt e Gt ] AR N ; ~$.ﬁ
Aliasing causes patterns that are visually interpreted incorrectly. Aliased component are
suppressed for viewing, but must be retained for super-resolution computations

Patterns depend on relative position of camera and scene objects and may change
dramatically if either moves

@  https://svinl/AntiAliasing

29



IOTIVATIONS AND METHODS
"OR'MULTI-IMAGE SUPER-
RESOLUTION



nstructed Examples

1ge is blurred and downsampled at specified

e position of HR images is known
Shifts are equally spaced fractions of LR pixels



Example 1

Full Resolution: f(x,y)

Einstein

Photo

600x600
pixels

https:/ /th.phys
ik.uni-
frankfurt.de/~j
r/physpiceinste
in.html




g(xy): filter width = 2 Downsampled f(x,y)
; RS 11

Pixel in
g(x,y)
includes 4

pixels from
f(X,Y) 50 100 150 200 250 300

Downsampled g(x,y)
: — ﬁf :

150 200 250 300

Four 300x300 downsampled versions of g(x,y) can be aligned or
interpolated to form 600x600 g(x,y)

33



petail of Eye 2X Reduction

=@ Original Reduced Resolution

ull Resolution: f(x,y)

g(x,y): filter width = 2

Detail of pupil in
original is reduced in

g(xy)



Reconstruction

= Four 300x300 down-sampled version of g(x,y)
can be combined by registration and
interpolation to get 600x600 g(x,y).

= To get 600x600 f(x,y) from g(x,y) need to deblur
or restore image to undo the blur of the larger
pixel size.

= If downsampled versions of f(x,y) were
available, f(x,y) could be recovered without
deblurring. However, this is unlikely. Only
downsampled versions of g(x,y) are produced
by the lower resolution imaging system

35



petail of Eye 4x Reduction

=@ Original Reduced Resolution

ull Resolution: f(x,y)

g(x,y): filter width = 4 Downsampled f(x,y)

-1

& &5 B % &8 8 8 ®

Downsampled g(x,y)

-

Highlight in pupil in
original is missing in

g(xy)

5 5 B 8 & 8 8 %

34
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petail of Eye 10x Reduction

=@ Original Reduced Resolution

ull Resolution: f(x,y)

g(x,y): filter width =10 Downsampled f(x,y)

-

70 80 a0 o 110 120 130 9 10 1 12 13 14 15

Downsampled g(x,y) Downsampled g(x,y)

Detail of eye in
original is missing in

g(xy)



10X Reduction Showing larger
Features

g(x.y): filter width = 10 Downsampled f{x.y)

"

100 200 300 400 500 600

Downsampled g(xy)
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Example 2 — 2x Reduction

g(x,y): filter width = 2 Downsampled f(x,y)

39



example 2 — 10x Reduction

g(x.y): filter width =10 Downsampled f(x,y)

40



Example 2 — 20x Reduction

g(x,y): filter width = 20

200 300

Downsampled g(x,y)

Downsampled f(x,y)

ol o -AArii

Lo b,
ilr: oy

Downsampled g(x,y)
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Example 3 — 2x Reduction

glx,y): filter width = 2 Downsampled f(x,y)

Downsampled g(x,y)

42



Example 3 — 4x Reduction

g(x,y): filter width = 4 Downsampled f(x,y)

Downsampled g(x,y) Downsampled g(x,y)

43
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monstration Summary

1l g(x,y) image created from
down-sampled LR images
hows more coherent detail than individual LR
ages.

epending on the image content and the rate of

own-sampling, some LR images contain most of the
dge and structure information

eating g(x,y) requires registration and
interpolation.

= Creating the higher level of detail in f(x,y)
requires deblurring.

44



shallenges for Super-resolution
econsftruction from Multiple
Images

eling informatic
ect parameters

nd sensitivity to

atational burden
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HOW Are LR Images Alignhed?

An imaging system that acquires LR images and controls
sub pixel offsets, would have known offsets. This would
require a precise special purpose image acquisition system.

Otherwise registration is complicated because LR images
must have aliased image content if HR image is to be
restored

Space domain alignment - could use correlation for sub-
pixel registration

= Because of aliasing, edges and significant points are represented in
same way in LR images and sub pixel shift estimation 1s difficult

Frequency domain (Vanderwalle, 2005):
= Use linear phase difference in frequency domain to estimate offset

= However, aliased component will have a different offset. Assume
that higher frequency aliased components have lower amplitudes.

= Rotation can cause problems

46



Image Noise

= Many sources of image noise
= Amplifier noise and measurement noise
= Quantization noise - easily modeled as a uniformly
distributed noise over normalized quantization mterval =
o Typically b=8 for image sensors
= Poisson noise

= If Poisson noise dominates, then if N_ __is the

max

maximum count associated with maximum output

levelg ., leta=¢g _ /N__
= sd(g) =a-sd(N) and var(g)= a-g.

= Atg=g . the variance is a O (gmax)z/ N ax-

m For denser pixel arrays with lower values of N
the noise variance will be higher.

max ’/

47



Viean Value of 50 images

= From 50 images of same scene

08.11.09.1.¥50Mean

i ik ) S

e
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Variance of 50 Images

From 50 images of same scene

058.11.09.1 %50 Yariance

:ﬁhi' ﬁh]
S IET

il

it =2FEl

ii‘ i




Observations

e has less variation due to noise
oks very much like mean

variance (zero variance) is associated with
ration. In the variance image zero variance areas
ack.

50
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e 1]
How Can HR Images Be
Computed?

the image acquisition for the LR
5 of the desired HR images

Optics, Sensors,
=Hf +v

computational methods from signal and
age processing and medical image
nstruction from projection measurements

= Statistical methods: Kalman filter, maximum

likelihood

= Jterative methods: predicted error backprojection,
POCS

R image registration

52



pBackprojection Methods

= Simple backprojection -
fe=H"g=H"(Hf +v)

» Simple computation

= Close to least sqares result for very high noise levels

= Iterative back Er(g' ection of prediction error -
Kaczmarz method or ART. For individual LR pixels
A

gi=9i—ﬁiT'£i

Agih;
|2

fi+1 — fi n
~
= New f'*!is consistent with g;. Relaxation coefficient may be

used for partial correction for better convergence behavior.
= Many iterations needed. May not converge.
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tatistical Estimation

e with Gaussian assumptions.

-1 -1
PoH'(HPoH" + R,;,) = Ry(Ry,)
=(I — KH)Py(I — KH)" 4+ KR,,,K"
entially large computational requirement

“use circulant matrix approximations (Milanfar)
for more efficient computation.
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Gompression Inconsistency

100 120 140 160 180 200 220

JPEG compression: sharp edges create ringing high frequency content
that is visually plausible but not correct and not consistent as image
scene is shifted relative to the pixel grid.

55



Summary of Challenges

Accurate registration of low resolution images to
generate correct H matrices is difficult.

High noise level from most image sensors

Low dynamic range of input image values. (Note
that the human visual system can generally
distinguish about 6.5 bits of gray level.)

Computational requirements

Aliased high frequency content is attenuated by
averaging of each sensor. Null space is created by
Sensor spacing.

If image data is already compressed, almost all
aliased high frequency content is eliminated or
modified in a way that makes it not useful

56



Computational Strategies

H matrices are sparse and structured.

Circulant approximations and frequency domain
implementations can lead to efficient computation
with large matrices (Vandewalle, Milanfar) .

L ocal reconstruction of small tiles of the desired
HR image has many benefits.

= [ess sensitivity to model mismatch

= More manageable computation

Potential problems:

= Space varying optics creates problems in aligning LR
image content - need accurate warping model

= Compression creates artifacts that are not consistent in LR
images

57



T—
versity of Imaging Systems to
Reduce Null Space

ication and orientation diversity can
ull space due to regular and uniform
spacing.

a square pixel model, A(u, v) = a*sinc(au)sinc(av)
attenuate high frequencies and null spatial

uencies at multiples of (1)
a

ome LR image sensors are rotated, lines of zero
response in frequency will not overlap.

= [f some LR images have lower magnification, the
null frequencies will be different.

58



Continuous Frequency Response
of Diverse Sensor Array

= Two different pixel = Three different widths
widths provide non
zero response at first
null frequencies.

59



Effect of Sub-imager Geometry

= Performance of five sub-imager geometries is
compared for 35x35 pixel tile for diverse and
uniform arrays.

= Geometry is indicated by color.

= The mse of four estimators using four different
assumed noise variances is compared for each
geometry. Noise level is indicated by marker shape.

» Horizontal axis is actual noise level.

= With diversity of sensor size and/or orientation,
expected error is reduced to a level controlled by the
measurement noise level, not the null space.

60



Actual Moise Variance
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simulated Example

Selected 35x35 tile
Ty




Jwo Reconstruction with Same
*Number of LR images

at best magnification Diverse LR Imagers

Ty




e

Registration Errors

is perfect, expected error in

nstr ages is reduced when larger
lles are reconstructed from larger LR images.
is is due to finer frequency resolution from a
er number of data samples.

wever, if the assumed relative position of
_R images has some variability, the benefit
of the larger tiles is lost.
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Perfectly known LR Positions

= Marker shape indicates number of LR images
and color indicates size of LR image.

2xImprovement for, 3 7 15 31 63 Pixel Sls Uniformly Spaced

65



Random Registration Error

= Registration error with variance =0.1*desired
pixel width shown with dashed lines.

2xImprovement for, 3 7 15 31 63 Pixel Sls, Position ¢ 0.1
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‘mance Measures

ve Measures

most images the precise value of an isolated pixel is not
ortant. In medical imaging a pixel value may
ntitatively represent a physical quantity such as X-ray
nation coefficient

67



images vs Man-made Signals

Man-made signals, e.g. communications, are designed
to be efficient with other man-made technology for
transmission and reception

Radar and sonar use man-made signals to actively
interrogate the natural surroundings

Medical images - reconstructed images of biological

structure using active or passive measurements

= Quantitative value of pixels is usually significant as a measured
quantity

Images - passive capture of light patterns through

Image acquisition system

= No control of signal content

= Adapted visual system

= Exact quantitative value of a pixel is often not important. Value
in context of other pixel values is more important.

68



flean squared Error

trongly correlated with perceptual judgment
ut quality

ing bias does not change perception of image
content, but greatly increases MSE

= [ owest MSE may still not be a usable image
= Measures quality of single image

69



cted Mean Squared Error

(1))

easure of expected error for reconstruction method
ed on likelihood of occurrence of source images

strongly correlated with perceptual judgment
about quality

= Null space components add large component to
EMSE but other more likely content may have low
error

70



Inal to Noise Ratio

lar to MSE

pared
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Structural Similarity

ea (e.g. 11x11 pixels) similarity
alued x and y is computed for

2

= SSIM = I(x, y) c(x,y) s(x,y)

@ Correlation with perceptual judgment is not
much stronger than PSNR.
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Subjective Measure

ce based on viewing images is

= Different image qualities may be preferred based on
image content - e.g. contrast

= Other factors may affect preference
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VWhat is the Purpose of the Image?

= Beautiful HR image - user preference

= Identification of text or numeric content e.g. license
plate numbers of ship numbers - use accuracy of
identification regardless of the image appearance

= Detection of small objects or motion

= Pixel values represent quantitative measures- e.g.
x-ray attenuation - use MSE

= Identify goal of super-resolution and use
attainment of goal as performance measure
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> LEARNED



ective of Super-rresolution

ntitative improvement in detection or
tification

use quantitative measures of correctness not based
pixel values

orrect identification of structures in images

| performance limited by

o Measurement noise - image pixel variance

o Uncertainty of image acquisition parameters and model
parameters

= [Local computation may be sufficient

76



Lessons Learned

ork much better than real
perfect registration and no
ents in resolution are

w levels of noise are not possible even with a lot of
aging. Pixels are becoming smaller and noisier.
curate registration is very difficult.

single camera in motion must compute position

ultiple fixed cameras may have known positions but
output must be calibrated
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Lessons Learned

Accurately registered and interpolated LR images
can provide meaningful results even if still blurred
by the sensor response function. This makes
computation more stable.

Local supper-resolution computation using small
image tiles is advantageous.

Unmodeled sources of error
= Motion of scene objects

= Built in camera processing. For example, JPEG
compression reduces high frequency content and replaces
much of it with something that is visually plausible, but
not correct and not consistent in LR images.

Performance measures should be related to the

objective of the super-resolution.
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3ELATIONSHIP TO NEWER
WETHODS OF SINGLE IMAGE
SUPER-RESOLUTION



Single Image Super-resolution

= Viewing resolution of a single image can always be
improved by up-sampling and interpolation -
bandlimited, bi-linear, bi-cubic
= High frequency content is not added by this process. To add
helpful high frequency content, need some a-priori
assumptions or reference data to select best content
@ Data-driven optimization approaches use large data
sets to provide information

= Can use sparse coding (Wang, 2015) and / or deep convolutional
networks (Dong, 2014) based on internal image similarities or
large training sets to learn a mapping between low-resolution
and high-resolution data

= Avoids ill-conditioned reconstruction and deblurring
operations

= Can be tuned for specific applications
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