Additive Manufacturing Packaging Applications and Growth Needs for Heterogeneous Integration Impact

Kris Erickson

Research Manager, Materials Development

Agenda

- 1. Additive Manufactured Electronics (AME) & Heterogenous Integration (HI)
- 2. AME Benefits
- 3. AME for XR
- 4. AME Manufacturing & Materials
- 5. AME Advances & Applications towards Future Electronics & HI
- 6. AME Growth Needs

Large collaborative team for creating full content!

Finalizing as a Chapter within HIR 2024

Technical Working Group Contributing Members

Kris Erickson (Meta)

Eric Dede (Toyota Research Institute of North America)

Jarrid Wittkopf (HP Labs)

Christine Kallmayer (Fraunhofer IZM)

HETEROGENEOUS
INTEGRATION ROADMAP

Dishit Parekh (Intel)

Alex Cook (Nextflex)

Jeroen van den Brand (Holst Center)

Mike Newton (Sciperio)

Annette Teng (Promex)

David Bowen (Laboratory for Physical Sciences)

Mark Poliks (Binghamton U)

Girish Wable (Jabil)

Martin Hedges (Neotech AMT)

Dean Turnbaugh (NTV)

David Weins (Siemens)

Richard Neill (ADVPES)

David Rosenfeld (Celanese)

Markus Scheibel (Heraeus)

Additively Manufactured Electronics (AME)

AME = Printed Conductor + (Printed/Existing) Dielectric + (optional) Additional Processes

AME Deposition

Dot Deposition Line Deposition **Area Deposition**

Direct-write & Conformal**

Dispensing & Extrusion Print

Non-contact Jetting Methods

Inkjet Print
Aerosol Print
Electrohydrodynamic Print
Piezo-Valve Jetting
Laser Induced Forward Transfer (LIFT)

** can deposition on 2D or 3D substrate

3D Print Methods

Fused Deposition Modeling SLA (Stereolithography) 2-photon SLA Digital Light Processing (DLP) Powder Bed Fusion

Contact 2D Print Methods*

Screen/Stencil Print Gravure Print Flexographic Print

* 2D only substrate

Additively Manufactured Electronics (AME)

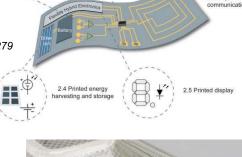
Structural Electronics

Pick & Place Laser Direct Structuring (LDS) Electroplating

In-Mold Electronics

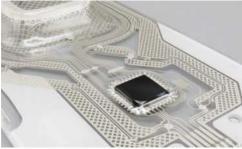
Pick & Place Thermoforming

Flexible Hybrid Electronics (FHE)

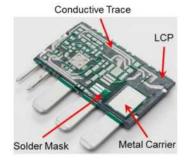

Pick & Place Solder
Deposition
Lithographically Defined
Features
Over-molding

Additional Supporting Processes

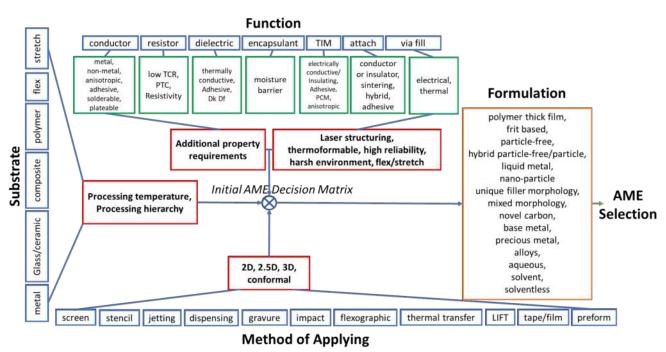
Pick & Place (Si, passives, etc.)
Curing/Sintering
3D Scanning
Metrology
Subtractive (Laser, Milling)



DOI: 10.1002/adma.201905279

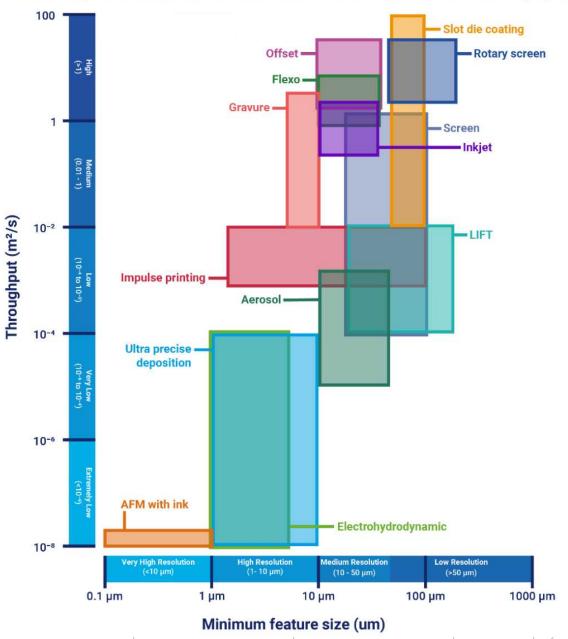

In-Mold Electronics

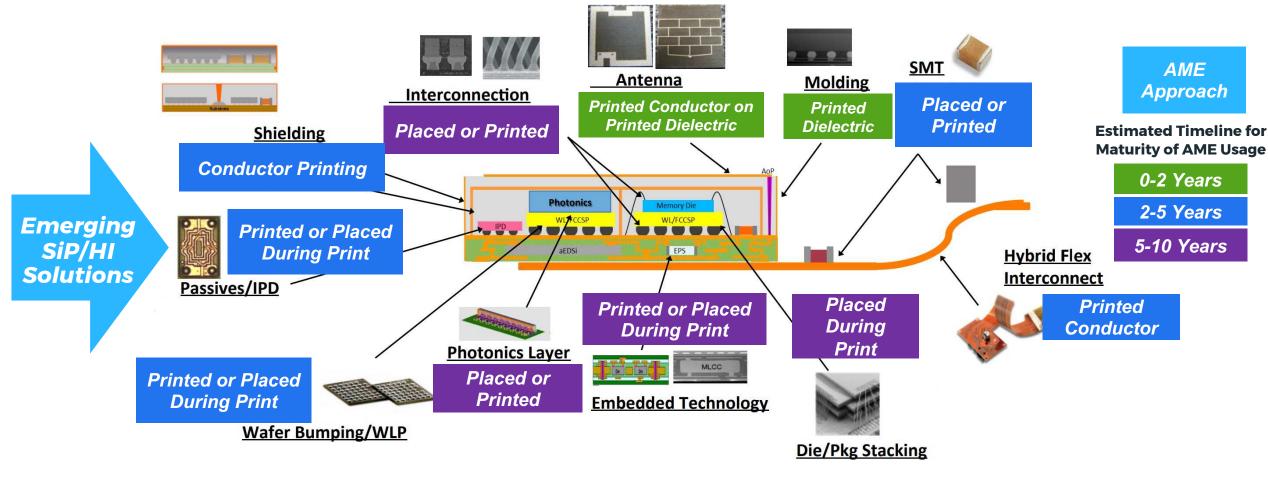
Project "Origami", 02/2018 - 01/2021, Innovations with Organic 3D Electronics. #thanks & with permissions from @Christine Kallmayer and Fraunhofer IZM



Structural Electronics

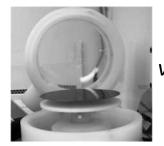
DOI: 10.1109/MID50463.2021.9361621

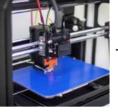

AME Considerations


#thanks to Dave Rosenfeld, Celanese, and AME for HIR group

#thanks and with permissions from Max DePhillips, IDTechEx

Printing Methods for Electronics: Resolution vs Throughput

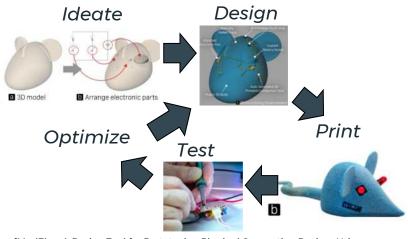

AME for Heterogenous Integration (HI)


[HIR 2021 version (eps.ieee.org/hir), Ch. 8, Single and Multichip Integration] **In-progress** 2024 on HIR Chapter on AME

AME Benefits

Material efficiency

VS



+

[https://https://commons.wikimedia.org/wiki]

[https://commons.wikimedia.org/wiki]

Design Freedom & Rapid Prototyping

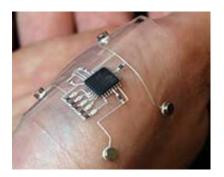
[ModElec: A Design Tool for Prototyping Physical Computing Devices Using Conductive 3D Printing, L He, et al - Proceedings of the ACM on Interactive, 2021]

Simplified Manufacturing

VS.*

Litho Process Inkjet Process 1) Wafer Cleaning Cleaning and Ink and Preparation 2) Wet/Dry oxidation 2) Wet/Dry oxidation Deposition 4) Photoresist Spin 3) Printing: the number of passes depends on the 5)Photoresist exposure and Development 6)Etching 7)Photoresist Material Oxide Mask Photoresist

Low-volume/ Individualized Designs


DOI 10.1186/s13104-015-0971-9

Novel Form Factors

DOI: 10.29026/oea.2018.170004

Flex/Wearable Devices

https://doi.org/10.1002/adma.201703817

AME for Extended Reality (XR)

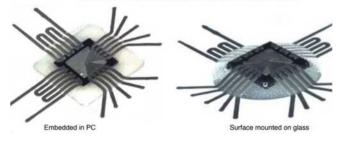
EMG Wristband

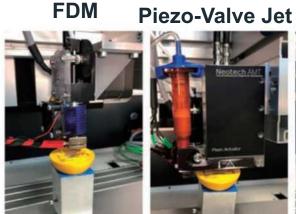
https://tech.facebook.com/reality-labs/2021/3/inside-facebook-reality-labs-wrist-based-interaction-for-the-next-computing-platform/

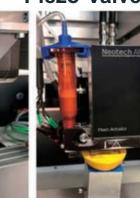
Haptic Glove

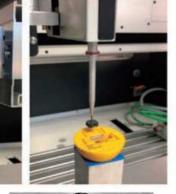
https://about.fb.com/news/2021/11/reality-labs-haptic-gloves-research/

Fused Deposition Modeling for AME

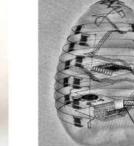

Down to ~100 micron features (~250 w/o micromachining), alternative conductor deposition methods typical, creating full 3D structures

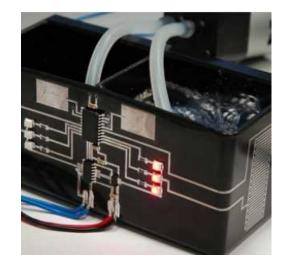

Neotech AMT


Combined, hybrid system

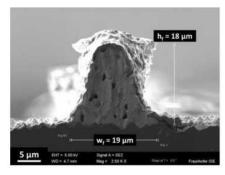

- FDM printing
- Direct write/Syringe
- 5-axis, Conformal Inkjet
- 5-axis, Conformal Aerosol Jet
- Laser sintering

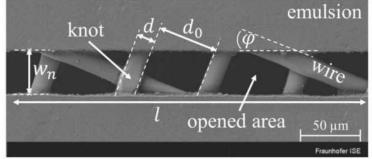
QFN (Quad Flat No-lead) Microcontroller





P&P




DOI: 10.29026/oea.2018.170004

Screen Print for AME

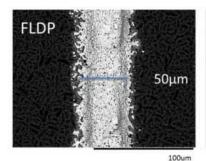
High speed, panel processing, typically to 50 micron features

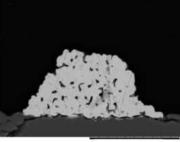
Pushing Resolution for High Throughput Screen Print

https://doi.org/10.1038/s41598-021-83275-0

<= 20 micron feature demonstrations

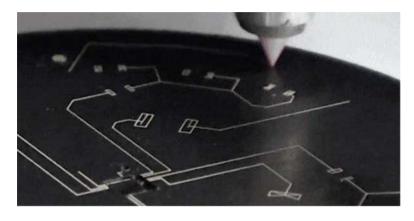
Fraunhofer ISE, Asada Mesh


Continued Scaling for High Throughput


e.g. Applied Materials - Tempo Presto PE Screen Printer

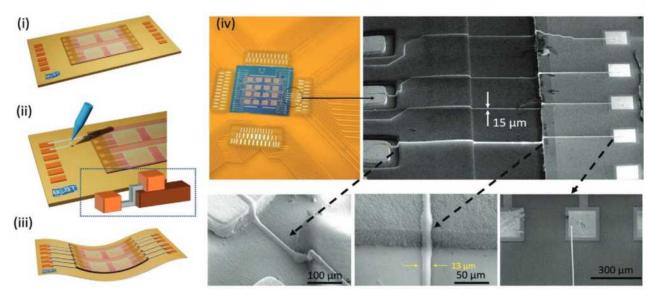
High productivity 8,000 wafers/hr High Repeatability +/- 5 micron 3 Continuous line Modules - Load, Print, Unload/Dry/Clean Integrated: Profilometry, Alignment, Electrical Inspection

Solar Cell Metallization Applications


doi: 10.1016/j.egypro.2015.07.074

30

Direct Write Dispense for AME


Down to ~15 micron features, high viscosity inks, patterning over topologies

nScrypt

[https://www.nscrypt.com/] #thanks and with permissions from Mike Newton, nScrypt

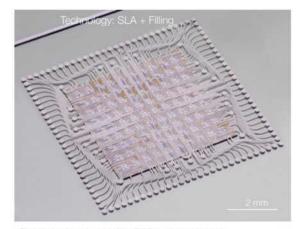
XTPL

Traces over substrate & chip steps Wire-bond alternative

DOI: 10.1002/aelm.202101029

Stereolithography (SLA) for AME

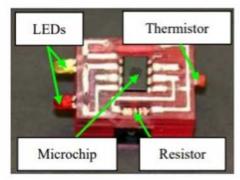
Down to ~100 micron features, alternative conductor deposition methods, creating full 3D structures

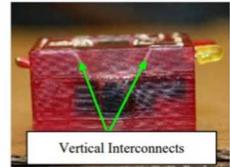

TNO Holst

SLA + Dispense

Self-harvesting NFC tag with temperature sensor

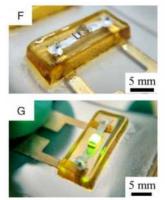
Modified SLA-Rake Process

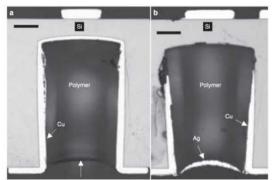

Fanout structure with 220 interconnects


[https://executivereport.holstcentre.com/innovation-updates/enabling-technologies/3d-printed-electronics/]
#thanks and with permissions from Jeroen van den Brand and Holst Center

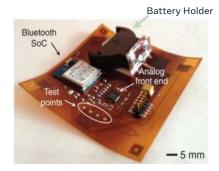
UT - El Paso

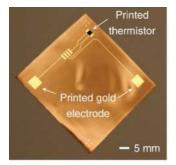
MacDonald Group - Keck Center


SLA, DW + Pick and Place Components



[D. Espalin, E. MacDonald. Int J Adv Manuf Technol 72, 963–978 (2014)]


Inkjet for AME



Inkjet Vertical Interconnects
DOI: 10.1002/adem.201900568

Inkjet filled & planarized TSV → increase I/O Density
doi.org/10.1038/micronano.2017.2

Wearable Health Monitoring - electrodes, thermistors

https://doi.org/10.1002/adfm.201603763

Example Application Areas

- Multilayer PCB-board applications
- Selective Solder masks for PCB
- Panel etching mask
- Encapsulation layers
- Dielectric, Conductor, Adhesive, and/or Mask Resist for Semiconductor Back-End Packaging
- Integratable with P&P methods
- Antenna Printing

Commercial Examples

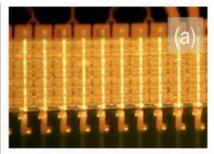
NanoDimension

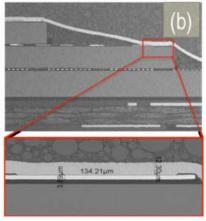
Dragonfly

Down to 75 micron features, 150 micron interconnects, min layer thickness 3 micron, multi-layer PCB builds

ChemCubed

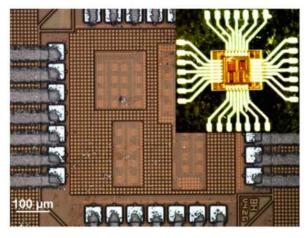
ElectroJet


Suss PiXDRO


Down to 20 micron features

- Multiple commercial printheads
- In-line curing
- Precision substrate manipulation
- Automated Print Optimizations
- Gerber files → Inkjet Bitmap
- Material efficiency vs. standard coat + etch
- Up to 1200 wafers/hr (Jetx-P) or 80 panels/hr (Jetx-M)

Aerosol Printing for AME


To 20 micron features, multi-materials, printing over topologies

Wire-bond Replacement

Hedges, Martin, and Aaron Borras Marin. "3D aerosol jet printing-adding electronics functionality to RP/RM." DDMC 2012 conference. 2012.

Print on un-Packaged Bare-die

Additional Applications

- High Frequency RF Interconnects
- Printed RDLs
- Package-level Shielding
- Printed Antennas

Commercial Examples

Optomec

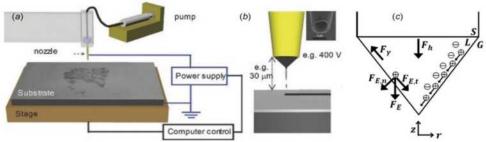
Aerosol Jet 5X 3D Printer

IDS

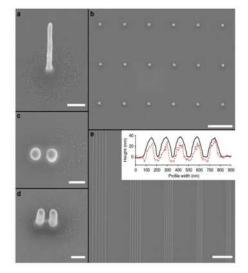
NanoJet Systems

Electrohydrodynamic Jet for AME

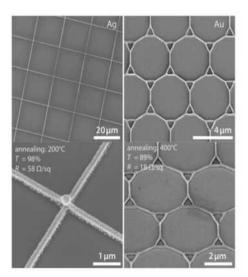
High Resolution (at or below 1 micron features), wide ink viscosity range


Commercial Examples

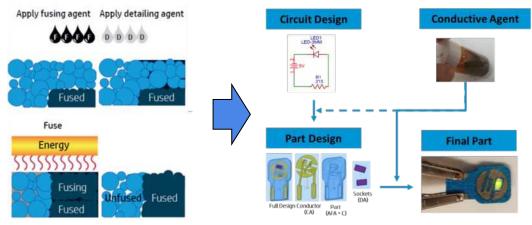
Super InkJet


1 micron line/space

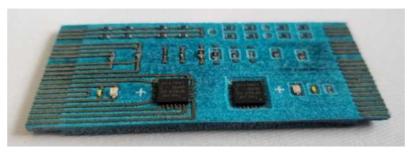
Scrona


Multi-Nozzle, Annular Anode, down to 500 nm features, up to 10K cP inks

DOI: 10.1115/1.4041934



DOI: 10.1038/ncomms1891



https://doi.org/10.1515/ntrev-2021-0073

Powder Bed Fusion for AME

[Techblick.com: **HP | 3D Printing of Electronics using Multi Jet Fusion]** #thanks and with permissions from Jarrid Wittkopf, HP Inc.

[Techblick.com: **HP | 3D Printing of Electronics using Multi Jet Fusion]** #thanks and with permissions from Jarrid Wittkopf, HP Inc.

[L. He, J. Wittkopf. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol.5, No.4, Article159]

AME Advances Materials

FORM

Highly tailored per manufacturing approach

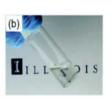
[https://www.shutterstock.com/] **Filaments FDM**

Photo-resins SLA, DLP

Films/Sheets Screen, Stencil, Gravure, Flexo

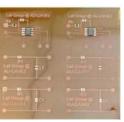
[https://www.shutterstock.com/]

DOI: 10.1007/s11665-014-1166-6


Nano/Micro-particle

FUNCTION

Conductors


Silver-based

Traces, Interconnects, Vias, Antenna

DOI: 10.1039/c9tc05463d **Metal Salt**

Copper-based

DOI:10.1109/iTherm5 4085.2022.9899673

Flex-Stretch

Micron-Ag + Elastomer

doi.org/10.1002/admt.202000070 Liquid-Metal based

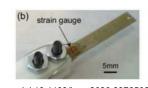
[https://www.shutterstock.com/] **Powders Powder Bed Fusion**

Inks Inkiet, Aerosol, EHD

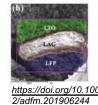
Pastes Dispense, Screen, Stencil, Gravure, Flexo, Piezo-Valve

Dielectrics

Substrate, Packaging, Shielding, Capacitors


Flex/Stretch Substrates PET, TPUs, Silicones, Beyolux, etc.

doi:10.1021/acsnano.8b06464


Specialized

Sensors, Resistive, Batteries, Optical, etc.

doi:10.1109/jsen.2020.2976508

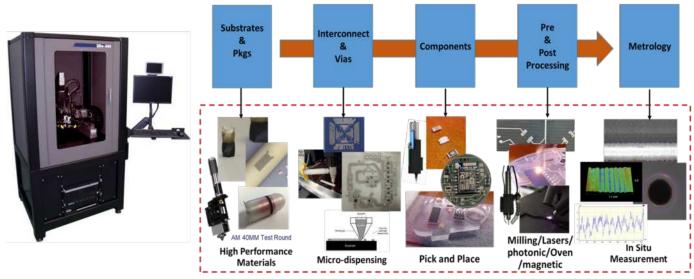
Force Sensors

Batteries

AME Advances Manufacturing Integration & Productivity

Manufacturing Integration

Fraunhofer IPA - Next Factory


IJ + Cure/Sinter + Planarize + P&P/Assembly + Measurement/Inspect 100X100X50 mm build area; 10 micron layers, 150/250 micron l/s

[https://doi.org/10.1016/j.microrel.2018.04.008]

nScrypt

FDM + DW + P&P + Milling + Curing + Measurement

#thanks & with permissions from Mike Newton & nScrypt

Integration & Productivity

Screen Print

Up to 8K Wafers/hr Tempo Presto PE Screen Printer **Integrated** Profilometry, Alignment, Electrical Inspection, Wafer Load/Unload/Clean

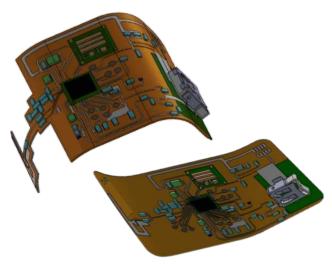
Inkjet Print

Up to 1.2K Wafers/hr Suss PiXDRO **Integrated** Curing, Alignment

AME HI Applications Flex Use-case

#thanks and with permissions from Girish Wable, Jabil

RIGID PCBA


Board: Rigid FR4
Subtractive process
Copper traces

Weight (board): 17 grams

Assembly Temperature - 220 - 250 deg c

Cost: Baseline PCF - Baseline

RIGID-FLEX or FLEX PCBA

Flexible Polyimide Substrate
Subtractive process
Copper traces

Weight: 6 grams

Assembly Temperature - 220 - 250 deg c

Cost: Higher PCF - Baseline

FLEXIBLE HYBRID ELECTRONICS

Flexible Plastic Substrates
Printing (additive) process
Silver/Copper traces, Sensors

Weight: 2 grams

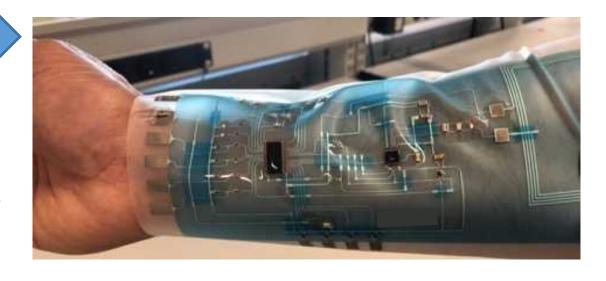
Assembly Temperature – 120 deg c

Cost*
Lower compared to Rigid Flex or Flex
PCF – Significantly Better*

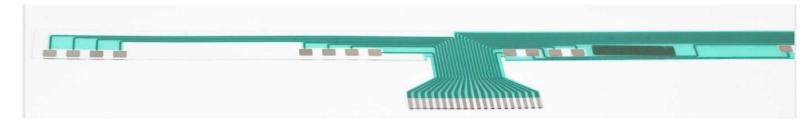
* - more data needed

AME HI Applications Wearable Use-case

VALUE TRANSFORMATION

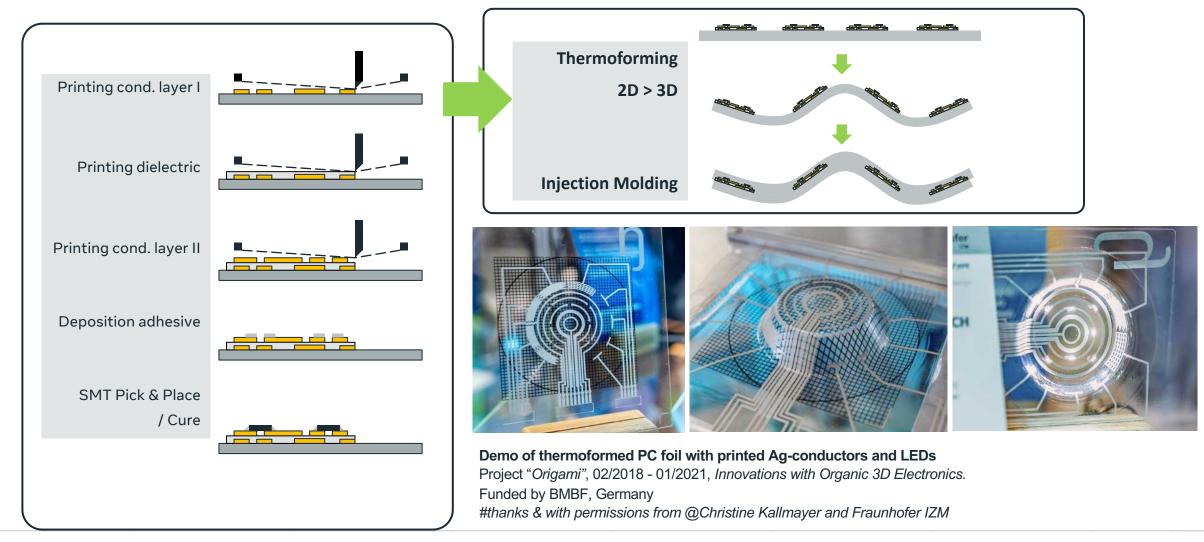

FLEXIBLE BENDABLE CONFORMAL

STRETCHABLE LIGHT TWISTABLE

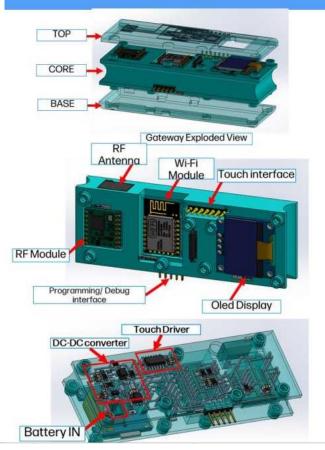

THIN DIRECT-DEPOSITED 3D

COST BENEFITS

BOM CONSOLIDATION
ASSEMBLY INTEGRATION

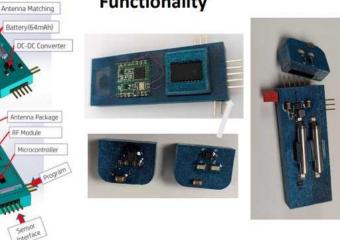


#thanks and with permissions from Girish Wable, Jabil


AME HI Applications Structural Electronics

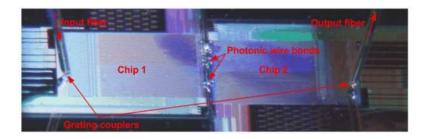
Benefits Leveraging Design Freedom

AME HI Applications 3DPE Demonstrator


MJF 3DPE Demonstrator: Driving Device Complexity

130 different nodes 47 signals

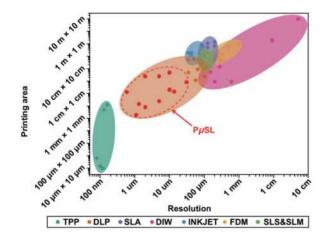
Modularity in Design to Increase Functionality


Gateway Node Sensor System Block Diagram

AME HI Applications Optical Wirebond

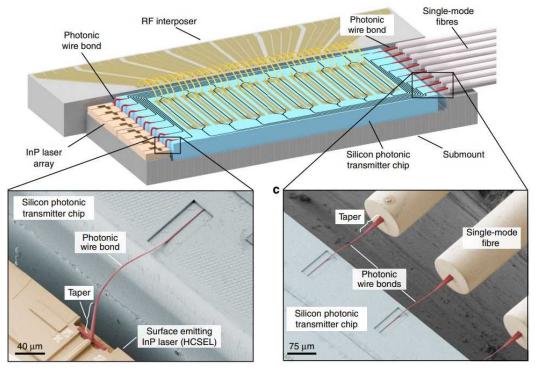
Specific Unmet HI Need

Interconnection Between Optical Chips & Output Fibers



DOI 10.1364/OE.20.017667

Ultra-high Resolution 2-photon AME


TPP - Two-Photon Polymerization

DOI 10.1088/2631-7990/ab8d9a

Unique Solution Space

Index Matched Photo-resin Automated Fabrication, Low losses, Passing Reliability Testing 400-700 GB/s Data Rate Demonstrations

Photonic Wire-bond doi.org/10.1038/s41377-020-0272-5

Benefits Leveraging

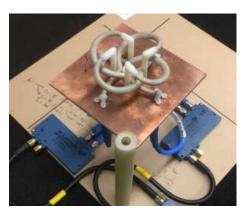
Unique Need + Unique Solution

AME HI Applications RF Structures

High performance monolithic microwave integrated circuit

Inkjet printed FSS & Cavity Board SLA Printed Encapsulant MMICs and Inkjet printed Gap Fill & RF Interconnect Frequency (GHz)

[M. Tentzeris, et al. IEEE Trans Microwave Theory Tech., 2020, 68, 2716-2724]


Inkjet & 3D Printed Broadband on-package Antenna

DOI 10.1109/ECTC.2018.00041

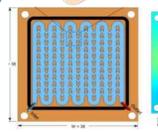
Fully 3D Antenna Geometries

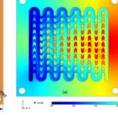
DOI: 10.1109/ACCESS.2022.3202536

AME HI Applications Thermal

Air Cooled Heat Sinks

Current



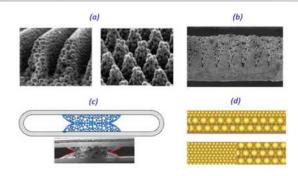

[Lazarov BS, Alexandersen J. Appl Energy. 2018;226(February): 330-339]

AM Thermal

Liquid Cooled Heat Sinks

Current

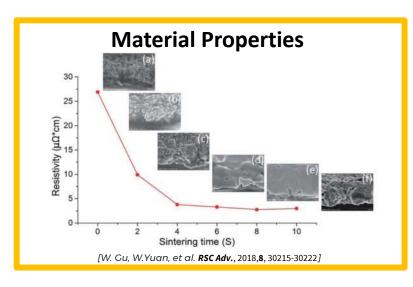
AM Thermal


[Al-Neama AF, Thompson HM. Int J Heat Mass Transf. 2018;120:1213-1228]

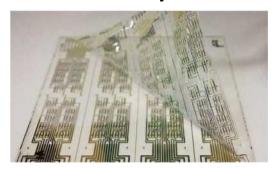
Two Phase Convective Cooling

Current

[DOI: <u>10.1109/ITHERM.2006.1645335</u>]


AM Thermal

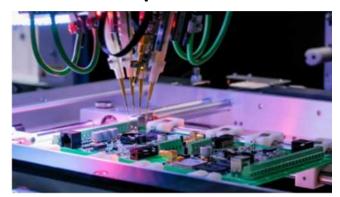
[Jafari D, Wits. Renew Sustain Energy Rev. 2018; 91(April 2017):420-442]


Benefits Leveraging

3D & Design Freedom

AME Growth Needs

Productivity & Yield


[https://commons.wikimedia.org/wiki]

Product-Level Reliability

[https://commons.wikimedia.org/wiki]

Automated Inspection & Correction

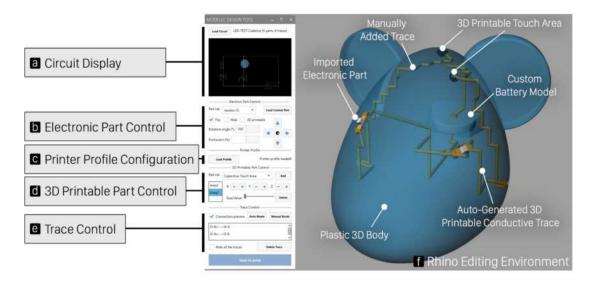
[https://www.shutterstock.com/image-photo]

Design Tools

[https://www.shutterstock.com/image-photo]

Integrated Manufacturing

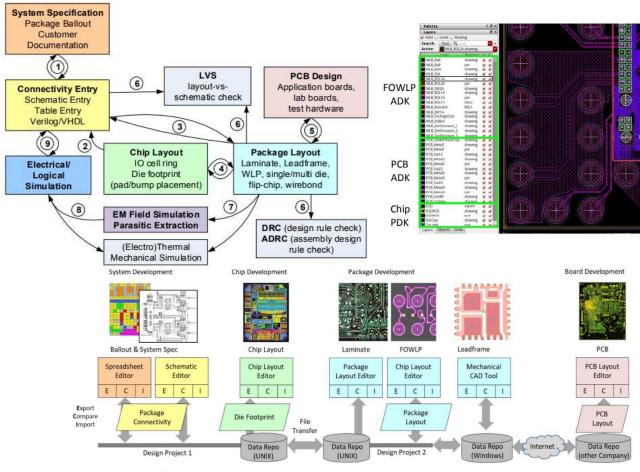
Leveraging CapEx Investment & Adaptability to Current tooling


- Panel Sizes
- Planarity
- Alignment
- Form Factor
- Thermal Processes

[https://www.microwavejournal.com/articles/31986]

AME Growth Needs Design & Layout

Merging of EDA & CAD


ModElec

[L. He, J. Wittkopf. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol.5, No.4, Article159]

Integrated Co-Design Workflows

Example of Chip/Package/Board Co-design flow

DOI: <u>10.1109/ECTC32862.2020.00269</u>

AME Growth Needs Reliability

Product Testing Considerations

Thermal Cycling

Typical Tested Operating Temperature Ranges

Military -55°C to 125°C

Automotive -40°C to 125°C

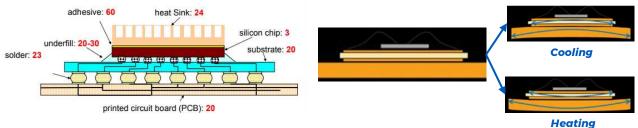
Industrial -40°C to 85°C

AEC-Q100 Lvl 2 -40°C to 105°C

High Temp/High Humidity

Level 1 - 85°C/85%RH - 1000 hrs

Drop Analysis

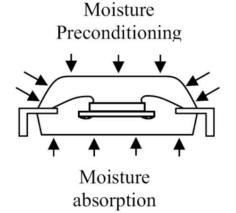

Per JESD22-B111A (2016)

Electromigration

Void & Hillock generation

Material CTE Considerations

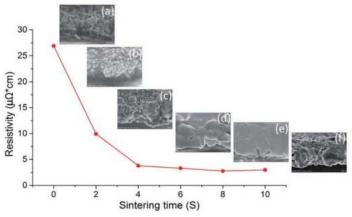
CTE for Standard Packaging Materials ppm/°C



Ramdas, et al. (2019). Impact of Accelerated Thermal Aging on Thermo-Mechanical Properties of Oil-Immersed FR-4 Printed Circuit Boards.

Moisture Effects

Humid Environment Effects


Material Swelling & Expansion Moisture Density enhancement Moisture Vaporization at Reflow Corrosion

https://doi.org/10.4233/uuid:9141f50e-5362-4b01-b06f-f1cc3acd6543

AME Growth Needs Material Properties

Conductor Properties

[W. Gu, W.Yuan, et al. RSC Adv., 2018,8, 30215-30222]

Ink Type	Ink Composition	Conductivity $1.8 \times 10^3 \text{ S/m}$ $(5.03 \pm 0.05) \times 10^3 \text{ S/m}$		
Carbon conductive ink	Carbon CNT			
Polymer conductive ink	PEDOT:PSS	$8.25 \times 10^3 \text{S/m}$		
Nano-silver ink	Ag-DDA Ag-PVP	$3.45 \times 10^7 \text{ S/m}$ $6.25 \times 10^6 \text{ S/m}$		
Liquid metal ink	EGaIn Bi ₃₅ In _{48.6} Sn ₁₆ Zn _{0.4}	$3.4 \times 10^6 \text{ S/m}$ $7.3 \times 10^6 \text{ S/m}$		

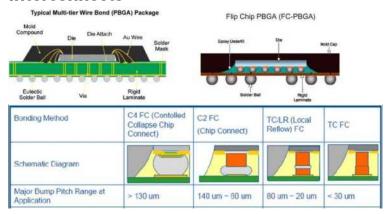
doi:10.3390/mi7120206

Ag bulk conductivity 6.3E7 S/m **Cu bulk conductivity** 6.0E7 S/m

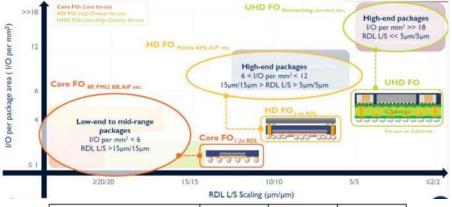
Dielectric Material Properties

Example - RDL Material Property Considerations

Characteristic	Ideal Properties	Polymer Family							
		Ероху		DOD	Date:	Polybenz-	Fluro-	Hydro-	
		Non PID	PID	BCB	Polyimide	oxozole (PBO)	polymer	carbon	Metal Oxide
Electrical	Low loss Low D _k								
Physical	Ultra thin dry film (2-5 µm) Planar								
Thermal	Low-CTE Withstand 260 °C solder reflow								
Mechanical	High Elongation Low modulus								
Chemical	Resistance to chemicals Good adhesion								
Cost	Low Material and Processing Cost								
Reliability	Low Stress Low moisture absorption								

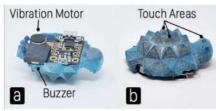

DOI 10.1109/ECTC32862.2020.00182

Both especially important for high-speed and high-frequency Applications!


AME Growth Needs Application Targets

Advanced Packaging Targets

Interconnects


Redistribution Layers (RDL)

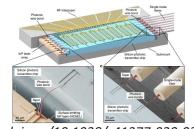
	2019	2023	2027
Link speed (Gbps)_Serial Speeds [4]	50	100	200
BU dielectrics loss, Df	0.007	0.004	0.002
BU dielectric roughness (Rq)	300~400 nm	150~200 nm	100~150 nm
Cu roughness (Rq)	350~400 nm	200~250 nm	50~100 nm

[HIR 2021 version (eps.jeee.org/hir), Ch. 8 & Ch. 231

Application Targets Leveraging Unique AME Capabilities

[L. He, J. Wittkopf. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol.5, No.4, Article159]

DOI: 10.29026/oea.2018.170004


3D Form Factors

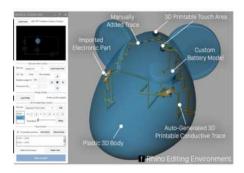
[https://www.jabil.com/blog/flexible-electronics.html]

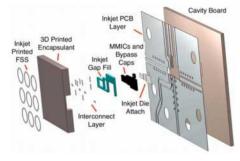
DOI 10.1186/s13104-015-0971-9
Individualized Designs

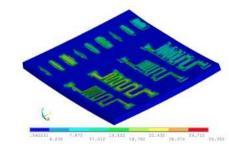
doi.org/10.1038/s41377-020-0272-5 **Meeting Unique Needs**

https://doi. org/10.1038/s41563-018-0084-7

Flex/Stretch Electronics


AME for Packaging & HI Impact


[M. Ankenbrand, M. Hedges. 2019 International Conference on Electronics Packaging (ICEP), 2019, pp. 273-278]


[H. Tan, C. Chua. Progress in Materials Science 127 (2022) 100945]

[L. He, J. Wittkopf. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol.5, No.4, Article159]

[M. Tentzeris, et al. IEEE Trans Microwave Theory Tech., **2020**, 68, 2716-2724]

[https://doi.org/10.1016/ j.microrel.2018.04.008]

Manufacturing Methods & Integration

+ Materials

+

Design Tools

+

Application Development

System Reliability

Needing Concerted Advances from all for Adoption & Market Success