NIST Advanced Manufacturing Technology (MfgTech) Roadmap

5G/6G mmWave Materials and Electrical Test Technology (5G/6G MAESTRO)

Wednesday, February 22, 2023

Project Leader: Dr. Urmi Ray, iNEMI Supported by: National Institute of Standards and Technology (NIST) Office of Advanced Manufacturing FEDERAL AWARD ID NUMBER: 70NANB22H050

https://www.inemi.org/maestro

iNEMI 5G/6G mmWave Materials and Electrical Test Technology Roadmap (5G/6G MAESTRO): Project Structure

- Roadmap Creation is focused on:
 - Low Loss Materials Development
 - Materials Characterization
 - Electrical Test
- Project is divided into 4 Work packages

WP Number	Work Package Title	WP Lead	Start Month	End month	Status
WP1	Technology & Market needs assessment	TechSearch	1	7	✓ Complete
WP2	Roadmap development	iNEMI	2-3	13	In flight, on track
WP3	Implementation strategy development	iNEMI	10	18	In flight
WP4	Operational Structure & Program Management	iNEMI	1	18	In flight
				i	NEMI

INEN

INCN

iNEMI 5G/6G MAESTRO: Post Project Plans

- Continue the dissemination of the elements of the roadmap and workforce, educational training, conferences
- Georgia Institute of Technology and FIU will be incorporating suitable elements into course work and specialized seminar series.
- Explore with NIST and the Dept of Commerce where and how the RF manufacturing team (RF Cluster) can be formed. Propose the formation of a RF Cluster as either a new funded MFG USA or a satellite to a current MFG USA

Project Status – WP1 (Technology and Market Assessment)

• COMPLETE

- 3 reports completed and available in February
 - Market Assessment Report by TechSearch International, Inc.
 - System Design Analysis by Florida International University
 - Identification of Next-Generation Dielectric Materials and Testing Needs by Georgia Institute of Technology
- 1st Webinar/Workshop Sep 2022
- 2nd Webinar/Workshop 9 Feb, 2023

10

Project Status – WP1

- WP1 Market Assessment Report by TechSearch International, Inc. –Jan Vardaman
- Key Requirements for Market Segments identified through survey and 1:1 interviews

Table of Contents	
Table of Contents	
Introduction	
Project Goals and Objectives	
WP1 Technology and Market Updates4	
Overview of Market Assessment Report 5	
Mobile Phones	
RF FEM7	
Power Amplifier7	
Smartphone Antennas7	
Infrastructure	
Consumer Premises Equipment	
Small Cells	
Automotive Radar	
Defense	
Antenna, Material, and Test Concerns10	
Team Members and Contributors13	
Contributors	
Maestro Team Members13	
Acronyms/Abbreviations13	
Acknowledgements14	

Project Status - WP1

- WP1 System Design Analysis by Florida International University - Prof. Satheesh Venkatakrishnan, Prof Raj Pulugurtha, Prof. John Volakis
- Overview of System Design Hardware for mmWave Architecture
- Beamforming Architectures
- Package Integration Trends and Features

Introduction5	
Project Goals and Objectives5	
WP1 Technology and Market Updates6	
Overview of System Design Analysis for mmWave Hardware7	
Beamforming Transceiver Architectures8	
Hybrid Beamforming	
Wideband Beamforming 12 Spatial-Wideband Effect 12 Frequency-Wideband Effect 12 Frequency-Wideband Effect 13 TTD Architectures 13 IRS (RIS)-Assisted Joint Beamforming 14	
Summary	
Passive Component Integration	
Passive Component Integration	
Spectrally Efficient In-band Full-Duplex Architectures	
Spectrally Efficient In-bard Full-Duplex Architectures 20 Toward Next-Generation Wireless Communication — Simultaneous Transmit and Receive (STAR) Radio Architecture 20 Physical Layer Security by Adding Noise to the Wireless Channel [55, 56] 21 STAR Radio Architecture 22 SIC Techniques 23 SIC in Propagation Domain 23 SIC through Feed Network 25 SIC in Analog Domain 25	
Spectrally Efficient In-band Full-Duplex Architectures 20 Toward Next-Generation Wireless Communication — Simultaneous Transmit and Receive (STAR) Radio Architecture 20 Physical Layer Security by Adding Noise to the Wireless Channel [55, 56] 21 STAR Radio Architecture 22 SIC Techniques 23 SIC in Propagation Domain 23 SIC in Analog Domain 25 SIC in Digital Domain 26	
Spectrally Efficient In-band Full-Duplex Architectures 20 Toward Next-Generation Wireless Communication — Simultaneous Transmit and Receive (STAR) Radio Architecture 20 Physical Layer Security by Adding Noise to the Wireless Channel [55, 56] 21 STAR Radio Architecture 22 SIC Techniques 23 SIC in Propagation Domain 23 SIC through Feed Network 25 SIC in Digital Domain 26 STAR Demonstration 27	

12

Project Status – WP1

- WP1 System Design Analysis by Florida International University
- Overview of System Design Hardware for mmWave Architecture
- Beamforming Architectures
- Package Integration Trends and Features

Tunability with Substrate Properties	
Resistive FSS	
Antenna-Integrated mmWave Packages	
Low-loss Through-Glass Via (TGV) Enabled Double-side Component Integration	
mmWave Imaging Sensors	
Summary 40	
Team Members and Contributors	
Contributors	
MAESTRO Team Members 41	
Acronyms & Abbreviations	
References	
Acknowledgements	

Tables

Table 1. Advantages and Limitations of Different Beamforming Architectures	13
Table 2. Characterization of Wireless Communication Frequency Bands	15
Table 3. Heterogenous 3D Package Integration	33
Table 4. Comparison of Filter Realization Platforms	37
Table 5. Comparison of Microwave Imaging Techniques	39
iN	EM

Comparison of High Isolation Antennas							
					Reco		New York Carl
Year		2014/2018	2015	2017	2018	2019	2021
Min Isolat	ion	65 dB (sim)	37 dB (meas)	28 dB (meas)	35 dB (meas)	35 dB (sim)	50 dB (meas)
Frequen	су	1.6-2.7 GHz	0.8-2.7 GHz	2-5 GHz	1.6-3.3 GHz	2-18 GHz	1.6–3.2 GHz
Bandwid	lth	1.05 GHz (1.6:1)	1.9 GHz (3.3:1)	3 GHz (2.5:1)	1.7 GHz (2:1)	16 GHz (9:1)	1.6 GHz (2:1)
Tx/Rx Pat	tern	Omni	Omni	Directional	Directional	Directional	Omni
Patterns Si	milar	No	No	Yes	Yes	Yes	No
Polarization	Tx Rx	H-pol V-pol	H-pol V-pol	LHCP RHCP	RHCP LHCP	Dual linear	Dual
Scanning	Tx Rx	No No	No No	Yes Yes	Yes Yes	Yes Yes	No No
							1

WP1: System Design Analysis: Summary and Recommendations

Technology Enablers and Recommendations

- All players involved agree on the following Spectrum allocation:
 - · New mid-spectrum at 7-20 GHz for urban capacity
 - New low spectrum/LTE at 470-694 MHz for extreme coverage
 - New THz spectrum beyond 90 GHz for the highest peak data(100Gbps) rates and sensing (proposed)

mmWave MIMO with beam-forming (at base stations) to play a critical role toward 6G

RIS critical for the urban environment

In-band full-duplex is an enabling technology that will play a key role in building spectral coexistence within 6G.

	Table of Contents	
Project Status – WP1	ABSTRACT	
	Tables	
 WP1 Identification of Next- 	Figures	
Generation Dielectric	Introduction	
Materials and Testing Needs	Project Goals and Objectives	5
by Georgia Institute of	WP1 Technology and Market Updates	6
Technology - Prof David Citrin	$Background-Next ext{-Generation}$ Dielectric Materials and Testing Needs	7
	Scope	
 Looking ahead to the next 10- 	Physical Considerations	
15 years	Background Device Materials Substrate Materials	
 Materials options for 	Ceramics Glasses and Fused Silica	
packaging that are low-loss	olasses and ruseo sinca Polymers Prepregs, Stackups, Composites	21
($tan\delta < 0.02$) above ~300	Testing	
GHz	Introduction Microwave Techniques THz Techniques	
Dielectric characterization	Conclusions/Key Findings	
above ~300 GHz	Recommendations	
	Materials	
18	Testing	
33.1885.13	Appendix: Tables of Dielectric Properties of Materials	22 🚺

ITU June Meeting on 6G Highlights and Key Points

· Efforts ongoing to understand 6G demands and requirements

· Insights into the 6G enabling technology requirements are still

Countries including China, South Korea, and Japan, or regions such as North America and Europe have launched their own

INE

Japan: 600,000 stations to increase by 500x for 6G

· Expected speeds at Tbytes vs Gbyes.

being hammered out.

research groups.

INEM

INEM

Low-loss materials for terahertz packaging

- Semiconductors: (Si, Ge, III-V, SiO₂, sapphire) High-resistivity, high-purity materials can have <u>very low loss</u> below the *reststrahlen* band. E.g., Si 1 THz, $\varepsilon' \sim 11.7$ and tan $\delta \sim 0.00001$. But losses mount quickly as carriers are introduced.
- Ceramics: Crystalline and amorphous. E.g., AI_2O_3 ceramic, AI_2O_3 crystal, AIN ceramic, Si_3N_4 ceramic, Dupont 9K7, and Ferro A6M have tan δ <0.02 at 1 THz.
- Glasses: Ultrasmooth glasses with through-glass vias are of interest. Some glasses may be low-loss at 1 THz.
- Fused Silica: Mixed reports concerning low-loss at 1 THz.
- Polymers: Low-loss at 1 THz: Kapton, Cirlex polyimides, PTFE, HDPE, PS, COP, polynorbornene, polypropylene, PP, SU8, polycarbonate, LCP, and PMMA, the last three borderline.
- Prepregs, Stackups, Composites: Many choices, limited data at 1 THz.

Project Plans – WP2 (Roadmap Development)

- Proposed Chapters
 - Materials development
 - Materials Characterization
 - Electrical test
- Each Chapter has "small" working groups
- Materials Development TWG
 - Working document; ~70% completed
 - Multiple SME contributors; coalescing information together and pulling into cohesive flow is next step
- Materials Characterization TWG- background work and team from earlier iNEMI project
 - Complete: To be issued in March
- Electrical Test
 - Starting now

20

Project Plans – WP2 (Roadmap Development)						
	Exar	nple: Ga	os and C	hallenc	les	
Table 5G-	3 Materials Characteriz	ation Needs, Gaps, and T Current and Future Nee		atus with Respect to		
	ROADMAP TIMEFRAME				In-table color + label key	Description of Technology Status
					Solutions not known	Solutions not known at this time
	TODAY	3 YEARS	5 YEARS	10 YEARS	Solutions need optimization	Current solutions need optimization
	(2023)	(2026)	(2028)	(2033)	Solutions deployed or known	Solutions deployed or known today
TECHNOLOGY					Not determined	TBD
ISSUE	Frequency Range= 28-110 GHz	Frequency Range= 110-170 GHz (D-Band)	Frequency Range= 220-350 GHz (G Band)	Frequency Range= >500 GHz		
CHARACTERIZA	ATION FREQUENCY RANGE	I	1			
NEED	Tools needed at 5G frequencies (28-39 GHz)	Tools needed at D-band (110-170 GHz)	Tools needed G-band (220-350 GHz)	Tools needed for >500 GHz		
CURRENT TECHNOLOGY STATUS	Solutions deployed or known	Solutions need optimization	Solutions not known			
GAP	(NO GAP?)	Few tool options	Robustness and availabi	lity		
CHALLENGE	Limited tool availability for high frequencies	Supporting equipment is expensive (i.e., 100 GHz VNA)	Expensive supporting ec	juipment		
CHALLENGE	High frequencies place burden on mechanical precision of equipment	Methods still in academic s	space			
CHALLENGE	High equipment cost					INEM

Project Plans – WP2 (Roadmap Development) Example: Potential Solutions

Table 5	5G-4 Materials Characterization Poten	tial Solu	tions				
		E	XPECTED	TRL LEV	EL	Color and Range of Technology Readiness Levels (TRL)	Description
						TRL: 1 to 4	Levels involving research
		TODAY	3 5		10	TRL: 5 to 7	Levels involving development
TECHNOLOGY ISSUE	POTENTIAL SOLUTIONS	(2023)	YEARS (2026)	YEARS (2028)	YEARS (2033)	TRL: 8 to 9	Levels involving deployment
ANISOTROPIC MATERIAL	Develop new and disruptive methods for material characterization	3	4	5	9		
CHARACTERIZATION	Converge on common sample geometry	3	5	7	9		
SAMPLE THICKNESS VARIATION	"Cherry pick" samples	9	9	9	9		
	Use of mechanical methods to modify existing samples to improve thickness uniformity	4	4	4	4		
	Develop new methods with less sensitivity to thickness variation	1	2	3	5		
22							inem

INEM

INEM

- Started Early due to the runway needed and the importance of forming partnerships and collaboration
- Currently working with ASIC coalition (<u>www.asicoalition.org</u>) a precompetitive group of >100 entities (public, private companies, Universities etc
- iNEMI leading the advanced SIP group and is putting together a proposal for a RF-SIP "demonstrator cluster" to address the majority of the challenges being identified in this roadmap
 - Team members: Georgia Tech, NGC, IBM, IPC, RPI, AMAT, Western Digital, Nantero, NEPES, Universal Instruments, ASPDL, UVM, Showa-Denko, 3DGS

Project Plans – WP4 (Governance and Communications)

- Teams site set up all communications and collaborations on-line as much as possible
- TWG meetings focused on specific roadmap chapters
- Monthly meetings
- Additional roadmap/workshops planned
 - Workshop at IMAPS DPC 2023 <u>https://imaps.org/device_packaging_agenda.php</u> Tuesday, March 14: TA3: *iNEMI INVITED SESSION*: 5G/6G ROADMAP CREATION AND PACKAGING
 - Workshop at International Microwave week, San Diego, CA(Jun 11-16, 2023)
 - Session IWWE6 on June 14, 2023: <u>https://ims-ieee.org/exhibition/microapps/industry-workshops?type=IWWE6&date=2023-06-14</u>
- More to come...Stay Tuned

2	4
-	

Maestro Next Steps

•Mar 2023:	Publish and propagate contents of Roadmap Chapter "Materials Characterization"
• April 2023:	Complete NIST Semi-Annual Report #2
• May 2023:	Complete Roadmap Materials Chapter

• 3Q 2023: Complete Implementation Strategy

