Heterogeneous Integration for HPC and Data Centers

TWG Chair: Kanad Ghose, Ph.D.

Distinguished Professor of Computer Science, SUNY-Binghamton PhD (CS), M.Tech (EE)

and Site Director of Center for Energy-Smart Electronic Systems, a NSF Industry/University Collaborative Research Center

TWG Co-Chair: Dale Becker, Ph.D. (emeritus)

Formerly Chief Engineer of Electronic Packaging Integration, IBM Systems PhD (EE), MS (EE)

Fellow IEEE

Chair, IEEE EPS TC-EDMS

TWG Co-Chair: John Shalf (newbie)

Department Head for Computer Science and Computer Engineering Lawrence Berkeley National Laboratory MS (EE/CE)

http://eps.ieee.org/technology/heterogeneous-integration-roadmap.html

eps.ieee.org/hir-2021

HIR HETEROGENEOUS INTEGRATION ROADMA

Intent and Notes

 Impress on readers that heterogeneous integration is not just about coming up with a packaging solution to house connected chiplets

Its all about systems integration

- There are many crosscutting issues that need to be considered as part of the packaging solution:
 - Diversity of chiplets
 - Interconnections
 - Power conversion and delivery
 - · Security issues
 - Other considerations, including QC systems
 - · Verification/test, Design automation
- Not possible to come up with generations, quantification of trends of various factors, but some order of magnitude trends can be made in many cases
 - System architectures/ components evolving continuously
 - · Tying trends to a timeline is difficult

HPC/Data Center TWG Members

- Tawfik Arabi, AMD
- Ivor Barber, AMD
- Dale Becker, IBM
- Bill Bottoms, 3MTS
- Tahir Cader, HPE
- · Don Draper,
- William Chen, ASE fellow
- Luke England, Marvell
- Eric Eisenbraun, SUNY
- Kanad Ghose, Binghamton
- Ali Heydari, NVIDIA

- Rockwell Hsu, Cisco
- Madhu Iyengar, Google
- Sam Karikalan, Broadcom
- · Michael Liehr, Leihr Consulting
- Ravi Mahajan, Intel
- Gamal Refai-Ahmed, SRC
- Tom Salmon, SEMI
- Lei Shan, IBM
- Bahgat Sammakia, SUNY
- · John Shalf, LBNL
- Raja Swaminathan, AMD
- Jin Y. Kim, Google (just joined)

HETEROGENEOUS

Table of Contents for Chapter 2

Chapter 1: Heterogeneous Integration Roadmap:

Driving Force and Enabling Technology for Systems of the Future

Chapter 2: High Performance Computing and Data Centers

Introduction: The Need for Heterogeneous Integration...

Analyzing the Future Demands of SiPs.

Demands of Future SiPs and Solutions for the HPC/DC Market.

Chiplet Standards for Heterogeneous Integration Targeting HPC and Data Centers

Heterogeneous Integration and its Role in Quantum Computing

Applicable Tracking Metrics.

Chapter 3: Heterogeneous Integration for the Internet of Things (IoT)

Chapter 4: Medical, Health and Wearables

Chapter 5: Automotive

Chapter 6: Aerospace and Defense

Chapter 7: Mobile

Chapter 8: Single Chip and Multi Chip Integration

Chapter 9: Integrated Photonics

Chapter 10: Integrated Power Electronics

Chapter 11: MEMS and Sensor Integration

Chapter 12: 5G, RF and Analog Mixed Signal

Chapter 13: Co-Design for Heterogeneous Integration

Chapter 14: Modeling and Simulation

Chapter 15: Materials and Emerging Research Materials

Chapter 16: Emerging Research Devices

Chapter 17: Test Technology

Chapter 18: Supply Chain

Chapter 19: Cyber Security

Chapter 20: Thermal

Chapter 21: SiP and Module

Chapter 22: Interconnects for 2D and 3D Architectures

Chapter 23: Wafer-Level Packaging, Fan-in and Fan-out

Chapter 24: Reliability

Chapter 25: Quantum?

Ongoing Crosscuts

- Interconnects: See Chapter 22, 23
 - Functions: Die2Die (in package) and escape bandwidth
 - Challenges: reach, lower latency, signal integrity/power, simplified transceiver
 - Emerging Solutions: high density omni-dimensional interconnects, CoBO, backside power delivery, advanced symbol encoding, Open D2D stds. (UCIe/BoW)

Power Conversion/Delivery: See Chapter 10

- Functions: Power delivery and maintaining power quality (low EMI)
- Challenges: Insane current densities, noise sources, delivery in 3DI
- Emerging Solutions: Higher voltage feed to package and local/in-package conversion, new power devices, new converter topologies, advanced magnetics, dielectrics, backside delivery, power routing within interposer, embedded converters

• Thermal Management: See Chapter 20

- Functions: Heat removal, heat spread, active thermal mgmt.
- Challenges: Cost/reliability, heat removal in 3D stacks, mech. stress, nonuniform heat
- Solutions: software managed thermal mgmt., Conformal lids, dummy dies with thermal vias, advanced TIMs, water cooling, 2-phase cooling, immersion cooling, lowtemperature CVD deposition diamond thin films

Security: See Chapter 19

- Specific Needs: Trust No-one security (Trusted Execution Environments)
 - Address package-level compromises: compromised chiplets, side channels on shared interconnections
 - Address chiplet-scale compromises, particularly with firmware in chiplets: isolation at chiplet boundaries
 - Address compromises in the supply chain
 - Simultaneously address reliability needs on chiplet failures

Challenges:

- Lack of consensus on needs and threat model
- Lack of standardization at interfaces for security needs (even root of trust)
- Tradeoffs among performance, power, area etc. deciding what is optimal

Some Solutions:

 Root of trust, Tamper proofing, chiplet watermarking, boundary isolation, packageinternal TPM-like certification, embedded security co-processor, side-channel elimination techniques

Emerging area Quantum Computing

- Specific Needs:
 - Support general-purpose computations
 - Reduction of physical dimensions
 - Improvement of energy efficiency: Cooling needs to zero degrees Kelvin in many existing solutions get in the way of this
 - Support high reliability

Challenge areas:

- · Qubit decoherence
- Qubit manipulations: complexity in terms of size, electronics, precision, power
- · Qubit measurements
- Qubit count (= system size) scaling
- Cooling (for many QC systems, not all)
- Some Solutions:
 - See Section 5 of CHAPTER 2

Planned Updates for 2023

- Ongoing: updates charts and figures
- Shorten chapter text!!!!
- Modular HPC
- Chiplet D2D interfaces
 - Update on role of Open Chiplets Ecosystems on hyperscale + HPC
 - Add extended section on open ecosystem D2D link standards UCle and BoW
- Memory
 - Update section on memory devices with recent developments
 - Need for open Unified Virtual Memory (UVM) designs/standards/APIs
- Codesign: Simulation and Modeling for early design assessment
 - Add role of co-design and need for rapid design space exploration
 - Hardware innovations by themselves are no good till the software to use them exist!
- Enhance discussions on analog accelerators with trend data to support power scaling.
- Enhance discussions on sensors for failure/reliability tracking etc.
 - · Crosscut with automotive

Cross-TWG Collaborations

- Need for cross-TWG coordination and collaborations with many chapters:
 - Interconnections for 2D/3D
 - Single chip/multi-chip integration
 - Thermal
 - Integrated Photonics / CoBO
 - Integrated Power Electronics
 - Automotive (Vika Gupta contacted me yesterday about this)
 - Security
 - New QC group??
 - Test
 - Co-Design
 - Others

Highlights of New Content in 2021 Edition

- Substantial updates were made in 2020; 2021 updates were *mostly* limited to addressing reviewer comments. **Next updates were planned for 2023**.
- Chiplet diversity: emphasized role of analog ML accelerators, GDDRx/GDDR6x as a cheaper alternative to HBM, new HBM generation
- Integration: added subsection on INFO-RDL (using TSMC variants as examples)
- Interconnections: updated several numerical data, emphasized subsection on face-to-face microbump connections, updated mitigation of 3D power delivery challenge, added trends
- Power delivery: added subsection on PowerVIAs/Backside power delivery
- Added small section on cold atom gubits
- Updated trend table data (at end of chapter) in a few cases

Interconnections

Key functions:

- Inter-chiplet: tight coupling to reap full benefits of package-level integration
- IO: Overcome physical package level IO limits to effectively integrate SiP into rest of the platform

Challenges/Needs:

- Low latency: mostly for inter-chiplet
- High bandwidth: for both inter-chiplet and IO; practical photonics technologies for IO connections
- Low end-to-end power/bit: function of reach
- · Low error rate
- Reduced physical footprint: simplified data transceivers (e.g., clock-forwarded links to eliminate PLLs), smaller physical dimensions of interconnections
- · Minimize interference of data routing and power routing

Some Solutions:

- High-density omni-dimensional interconnections, microbumps and face-to-face bonding, integrated photonics transceivers, advanced symbol encoding, back-side power delivery, standards, standards...
- SEE CHAPTERS 22 and 23

Power Conversions and Distribution

• Needs:

- Higher power demands of high-end SiPs
- · High power quality, slew rate, low EMI
- Power distribution to chiplets

Challenges:

- **Higher Ohmic (I**²**R) losses** at sub-1V and 200+ Amps: requires conversion/regulation at or near point-of-loading (POL), with higher input voltage
- Precise voltage regulation for functional integrity of analog components/chiplets with high efficiency across entire load range with or without DVFS
- Noise mitigation particularly with integration of analog chiplets, NV memory
- Power delivery in deep 3D stacks, Interference among power routing vs. signal routing
- Materials and devices: magnetics, decoupling capacitors, integrable/small-footprint power devices

· Some Solutions:

- Higher voltage feed to package and local/in-package conversion, new power devices, new converter topologies, advanced magnetics, dielectrics, back-side delivery, power routing within interposer, embedded converters
- SEE CHAPTER 10

Thermal Management

Needs:

- Address high power densities with SiP demands over 250W to 500W: practical limits of conventional air cooling exceeded
- Address mechanical stresses on smaller inter-chiplet interconnections
- Cool power devices, clock drivers, optical power supplies and other photonic components etc. effectively

Challenges:

- Cost and reliability of cooling solutions: nothing too exotic
- Address cooling needs of 3D stacked chiplets
- Address non-uniform temperature distributions: critical for reducing SiP level failures

Solutions:

- Conformal lids, dummy dies with thermal vias, advanced TIMs, water cooling, 2phase cooling, immersion cooling
- SEE CHAPTER 20

- Put up high level thoughts
- Connections to other areas slide
- Put them as horizontal slabs with requirements and terms
- Outline of presentation?
- Might more closely track the development of server class D2D.
 - Where is the "roadmap"?
 - Specialization targets (aligned and distinct)

- Chapter Contributors?
- Table of Contents for the Chapter
 - With color coding areas that did get updates and will get updates
- Modular HPC and Datacenters using chiplets
- Hottest chip on the market (H100)
- And a picture of our latest supercomputer

The HPC Data Center Segment

- Specific needs:
 - Often very application-specific
 - Integration of diverse processing and storage technologies: inevitable
 - Scalability: exploit technology advances, scale within and across SiP for supporting existing and emerging applications for data size and processing needs, support disaggregated architectures
 - **Improved performance**: wide diversity of compute and memory chiplets helps!
 - Improved energy-efficiency: accelerators and near/in-memory computing, analog accelerators for machine learning etc.

Its all about moving data from Point A to Point B with low latency, high bandwidth and low end-to-end energy cost!

Opportunity for HPC: New Economic Model

Open Chiplets Marketplace is forming (ODSA and UClexpress)

- Licensable IP and assembly by 3rd party lowers that barrier
- Leverage the economic model being created by HyperScale

Leverage this baseline and extend to support HPC

- Smaller incremental cost for HPC to "play"
- HPC has become "too small to attack the city"

80:20 Rule: Focus open efforts on what uniquely benefits HPC

- Build up a library of reusable accelerators for HPC.
- Interoperability for sustainability: Interoperate with Arm IP for commercially supported IP where it exists and focus Open on the 20% that doesn't make commercial sense to license

37

PC

IP for a page the page the page to a page the page to a page the page the page to a p