IEEE HIR 2023 Plenary

High-Bandwidth and Low-Latency Standardized Interconnect for an Open Chiplet Ecosystem

Dr. Debendra Das Sharma

Intel Senior Fellow and Chief Architect of I/O Technology and Standards Intel Corporation

IEEE HIR 2023 Plenary

Agenda

- Interconnects in Compute Landscape
- On-Package Interconnects: Opportunities and Challenges
- Universal Chiplet Interconnect Express (UCIe): An Open Standard for Chiplets
- Future Directions and Conclusions

Taxonomy, characteristics, and trends of interconnects

	Category	Type and Scale	Data Rate/ Characteristics	PHY Latency (Tx + Rx)	Wireless Interconnect
	Latency Tolerant (Narrow, very high speed)	Networking / Fabric for Data Center Scale	56/ 112 GT/s-> 224 GT/s (PAM4) 4-8 Lanes, cables/ backplane	20+ ns (+ >100 FEC)	Router Inter DC links G
Off-Package	Latency Sensitive (Wide, high speed)	Load-Store I/O Arch. Ordering (PCIe/ CXL / SMP cache coherency – PCIe PHY) Node (-> Rack)	32 GT/s (NRZ) -> PCle Gen6 64 GT/s (PAM4) Hundreds of Lanes Power, Cost, Si-Area, Backwards Compatible, Latency, On-board -> cables/ backplanes	<10ns (Tx+ Rx: PHY- PIPE) o-1ns FEC overhead	Data center interconnect Processor UIO: UPI,
On-Package	Latency Sensitive (super-wide, high speed)	Load-Store and proprietary	4 G – 32G (single-ended, NRZ) 2D, 2.5D (-> 3D) Thousands of Lanes Ultra low power, ultra low latency High b/w density	<2ns (PHY – Transaction Layer)	Processor interconnect PCIe CXL UIO: UPI, PCIe, CXL PCIe, CXL UIO: UPI, PCIe, CXL PCIe, CXL PCIe, CXL PCIe, CXL PCIe, CXL PCIe SoC Interconnect PIPE, LPIF, CPI, UFI P

Load-Store I/O: From Package/ Node to Rack / Pod

Load-Store Interconnects : PCIe and CX

With PCIe: (900+ member companies)

- Memory Connected to CPU Cacheable
- Memory Connected to PCIe device is Uncacheable
- Different Ordering rules across I/O vs coherency domains
- Ubiquitous I/O for compute continuum

With CXL: (~200 member companies)

- Caching and memory protocols on top of PCIe
- Device can cache memory
- Memory attached to device is cacheable
- Leverages PCIe infrastructure
- PCIe and CXL very successful industry standards:
 - Multi-generational, backward compatible, IP/ tools
 - Compliance program with plug-and-play

On-Package Interconnects should leverage PCIe/CXL infrastructure for standardization and Load-Store Usages.. Need to seamlessly move functionality from node to package to die level

Design Choice: Seamless Integration from Node \rightarrow Package \rightarrow On-die enables Reuse, Better User Experience

- Interconnects in Compute Landscape
- On-Package Interconnects: Opportunities and Challenges
- Universal Chiplet Interconnect Express (UCIe): An Open Standard for Chiplets
- Future Directions and Conclusions

Moore Predicted "Day of Reckoning"

"It may prove to be more economical to build large systems out of smaller functions, which are separately packaged and interconnected¹."

-Gordon E. Moore

¹: "Cramming more components onto integrated circuits", Electronics, Volume 38, Number 8, April 19, 1965

Drivers for On-Package Chiplets

- Reticle Limit, yield optimization, scalable performance
 - Same dies on package (Scale-up)
- Increasing design costs at leading edge process nodes
 - Die-disaggregated dies across different nodes
 - Use new process node for advanced functionality
- Time to Market (Late binding)
- Custom silicon for different customers leveraging a base product
 - E.g., Different acceleration functions with common compute
- Different process nodes optimized for different functions
 - E.g., Memory, logic, analog, co-packaged optics
- High power-efficient bandwidth with low-latency access (e.g., HBM memory)

Source: IBS (as cited in IEEE Heterogeneous Integration Roadmap)

Components of Chiplet Interoperability

- Chiplet Form Factor
 - Die size
 - Bump location
 - Power delivery
 - Thermal characteristics
- SoC Construction (Application Layer)
 - SoC Reset
 - Initialization (e.g., fuses)
 - Register access
 - Security
- Die-to-Die Protocols (Data Link to Transaction Layer)
 - Link Layer, transaction Layer, etc.: PCIe/ CXL/ Raw/....
 - Internal Interface standardization for plug and play IPs
- Die-to-Die I/O (Physical Layer)
 - Bump arrangement and characteristics
 - Electrical & thermal characteristics
 - Substrate or interposer characteristics
 - Length budget, pJ/bit, bit error rate, ...
 - Reset, clocking, initialization, and data transfer
 - Test and repair
 - Technology transition -> multiple bump arrangement/

9

Agenda

- Interconnects in Compute Landscape
- On-Package Interconnects: Opportunities and Challenges
- Universal Chiplet Interconnect Express (UCIe): An Open Standard for Chiplets
- Future Directions and Conclusions

Motivation for UCle

OPEN CHIPLET: PLATFORM ON A PACKAGE

Heterogeneous Integration Fueled by an Open Chiplet Ecosystem (Mix-and-match chiplets from different process nodes / fabs / companies / assembly)

Align Industry around an open platform to enable chiplet based solutions

- Enables SoC construction that exceeds maximum reticle size
 - Package becomes new System-on-a-Chip (SoC) with same dies (Scale Up)
- Reduces time-to-solution (e.g., enables die reuse)
- Lowers portfolio cost (product & project)
 - Enables optimal process technologies
 - Smaller (better yield)
 - Reduces IP porting costs
 - Lowers product SKU cost
- Enables a customizable, standard-based product for specific use cases (bespoke solutions)
- Scales innovation (manufacturing/ process locked IPs)

UCIe: Key Metrics and Adoption Criteria

Key Performance Indicators

- Bandwidth density (linear & area)
 - Data Rate & Bump Pitch
- Energy Efficiency (pJ/b)
 - Scalable energy consumption
 - Low idle power (entry/exit time)
- Latency (end-to-end: Tx+Rx)
- Channel Reach
 - Technology, frequency, & BER
- Reliability & Availability
- Cost: Standard vs advanced packaging

Factors Affecting Wide Adoption

- Interoperability
 - Full-stack, plug-and-play with existing s/w
 - Different usages/segments ubiquity
- Technology
 - Across process nodes & packaging options
 - Power delivery & cooling
 - Repair strategy (failure/yield improvement)
 - Debug controllability & observability
- Broad industry support / Open ecosystem
 - Learnings from other standards efforts

UCIe is architected and specified from the ground-up to deliver the best KPIs while meeting wide adoption criteria

UCIe 1.0 Specification

- Layered Approach with industry-leading KPIs
- Physical Layer: Die-to-Die I/O
- Die to Die Adapter: Reliable delivery
 - Support for multiple protocols: bypassed in raw mode
- Protocol: CXL/PCIe and Streaming
 - CXL[™]/PCIe[®] for volume attach and plug-and-play
 - SoC construction issues are addressed w/ CXL/PCIe
 - CXL/PCIe addresses common use cases
 - I/O attach, Memory, Accelerator
 - Streaming for other protocols
 - Scale-up (e.g., CPU/ GP-GPU/Switch from smaller dies)
 - Protocol can be anything (e.g., AXI/CHI/SFI/CPI/ etc)
- Well defined specification: interoperability and future evolution
 - Configuration register for discovery and run-time
 - control and status reporting in each layer
 - transparent to existing drivers
 - Form-factor and Management
 - <u>Compliance</u> for interoperability
 - Plug-and-play IPs with RDI/ FDI interface

UCIe 1.0: Supports Standard and Advanced Packages

(Standard Package)

Standard Package: 2D – cost effective, longer distance

Advanced Package: 2.5D – power-efficient, high bandwidth density

Dies can be manufactured anywhere and assembled anywhere – can mix 2D and 2.5D in same package – Flexibility for SoC designer

(Multiple Advanced Package Options)

One UCIe 1.0 Spec covers both type of packaging options

UCIe Usage Model: SoC at Package Level

- SoC as a Package level construct
 - Standard and/ or Advanced package
 - Homogeneous and/or heterogeneous chiplets
 - Mix and match chiplets from multiple suppliers
- Across segments: Hand-held, Client, Server, Workstation, Comms, HPC, etc
 - Similar to PCIe/ CXL at board level

Example Scale-up SoC from homogeneous dies: Large Switch with on-die protocol as streaming over UCIe

- Need large radix CXL switches challenges: reticle limit, cost, etc.
- UCIe based Chiplets should help with scalable products
- 64G Gen6 x16b CXL links
- UCIe as d2d interconnect while this is a scale-up CXL switch , a switch vendor may prefer to have their on-die interconnect protocol be transported over UCIe rather than create a hierarchy of switches which will not work for CXL 2.0 tree-based topology

x16b ucie x16b ucie eion q9LX eion q9LX

One can construct CPUs (low, medium, large core-count CPUs) from smaller dies connected through UCIe using the same principle Here the UCIe PHY and D2D adapter will carry the packetized version of internal CPU interconnect fabric Ack: Nathan Kalyanasundaram

Example Scale-up Package using Streaming and UCIe open-plug-in using PCIe/ CXL **Universal Chiplet** Interconnect Express

 Any device type in this open plug-in slot with CXL (or CHI if both support it)

Ack: Marvin Denman, Bruce Mathewson, Francisco Socal, Durgesh Srivastava, Dong Wei

17

UCIe 1.0: Characteristics and Key Metrics

CHARACTERISTICS	STANDARD PACKAGE	ADVANCED PACKAGE	COMMENTS
Data Rate (GT/s)	4, 8, 12, 16, 24, 32		Lower speeds must be supported -interop (e.g., 4, 8, 12 for 12G device)
Width (each cluster)	16	64	Width degradation in Standard, spare lanes in Advanced
Bump Pitch (um)	100 - 130	25 - 55	Interoperate across bump pitches in each package type across nodes
Channel Reach (mm)	<= 25	<=2	

KPIs / TARGET FOR KEY METRICS	STANDARD PACKAGE	ADVANCED PACKAGE	COMMENTS	
B/W Shoreline (GB/s/mm)	28 – 224	165 - 1317	Conservatively estimated: AP: 45u; Standard: 110u; Proportionate to data rate (4G - 32G)	
B/W Density (GB/s/mm ²)	22-125	188-1350		
Power Efficiency target (pJ/b)	0.5	0.25		
Low-power entry/exit latency	0.5ns <=16G, 0.5-1ns >=24G		Power savings estimated at $>= 85\%$	
Latency (Tx + Rx)	< 2ns		Includes D2D Adapter and PHY (FDI to bump and back)	
Reliability (FIT)	0 < FIT (Failure In Time) << 1		FIT: #failures in a billion hours (expecting \sim 1E-10) w/ UCIe Flit Mode	

UCIe 1.0 delivers the best KPIs while meeting the projected needs for the next 5-6 years. Wide industry leader adoption spanning semiconductor, manufacturing, assembly, & cloud segments.

Ingredients of broad inter-operable chiplet ecosystem

IEEE HIR 2023 Plenary

Future Directions and Conclusions

Chiplets and D2D interface are essential to the compute continuum

• Power-efficient performance, yield optimization, different functions, custom solutions, cost-effective

UCle standardization will propel the development an open ecosystem

- Open plug-and-play "slot" at package level will unleash innovations
- Evolution needs to track the underlying packaging technology to deliver compelling metrics
- Form-factor, New Protocols, and manageability are some other areas for innovation

The open chiplet journey with UCIe just started! Join us in what will be an exciting journey for decades!