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Definition of Reliability
➢ In this lecture, reliability of an interconnect (e.g., solder bump, solder joint, or 

microbump) of a particular package in an electronic product is defined as;

⚫ the probability that the interconnect will perform its intended function for a 
specified period under a given operating condition without failure. 

➢ Numerically speaking, reliability is the percent of survivors; that is, 

⚫ R(x) = 1 – F(x),                                                                                                      
where R(x) is the reliability (survival) function and F(x) is the cumulative 
distribution function (CDF). 

⚫ Life distribution is a theoretical population model used to describe the 
lifetime of an interconnect and is defined as the CDF, that is, F(x) for the 
interconnect population. 

➢ Thus, the one and only way to determine the interconnect reliability is by 
reliability testing to determine the F(x)

46Design for Reliability, Reliability Testing and Data Analysis, and Failure Analysis of 
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Objective of Reliability Test
➢ The objective of reliability tests is to obtain failures (the more, the better) and to 

best fit the failure data to determine the parameters of the CDF, F(x), of a 
chosen probability distribution (e.g., Weibull and lognormal). 

➢ The number of items (i.e., sample size) to be tested should be such that the 
final data are statistically significant. 

➢ The reliability test time is unknown, but usually takes a while (e.g., a few 
months for thermal cycling tests). 

➢ It should be noted and emphasized that as soon as the life distribution F(x) of 
the interconnects is estimated by reliability testing, the reliability R(x), failure 
rate, cumulative failure rate, average failure rate, mean-time-to-failure, etc. of 
the interconnects are readily determined.

➢ Most reliability tests are accelerated tests, with increased intensity of exposure 
to aggressive environmental conditions and realistic sample sizes and test 
times. Thus, acceleration models are needed to map (transfer) the failure 
probability, reliability function, failure rate, and mean-time-to-failure from a test 
condition to an operating condition. 

47Design for Reliability, Reliability Testing and Data Analysis, and Failure Analysis of 
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Objective of Qualification Test 
➢ Unlike reliability tests, the objective of qualification tests is “PASS” or 

“NOT PASS” and the test time is well defined ahead of time. 

➢ As soon as there is a failure before the agreed test time, the test will 
usually stop and failure analysis is performed to find out why it fails. 

➢ After all the changes, e.g., redesign, a new qualification test will start 
again. 

➢ The sample size of qualification tests is usually less than that of 
reliability tests. 

➢ In short, the objective of qualification tests is not intended to obtain 
failures nor life distribution (or reliability).

48Design for Reliability, Reliability Testing and Data Analysis, and Failure Analysis of 
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Test Methods 
Some common tests for semiconductor packaging and interconnection are:

➢ temperature cycling tests (e.g., 25  ⇆ 125 C),  
➢ power cycling tests (depend on devices), 
➢ functional cycling tests (depend on devices),  
➢ high-/low-temperature storage tests (120oC/20oC), 
➢ biased 85/85 tests (85 C/85% relative humidity, 1.8 V),  
➢ high-voltage extended life tests (100oC, 1.8 V),  
➢ pressure cook tests (autoclave tests) (121oC, 2 atm),  
➢ salt atmosphere test (MIL-STD-883D),  
➢ moisture sensitivity tests (e.g., IPC/JEDEC-020C),  
➢ shock (drop) tests (e.g., JESD 22-B111),  
➢ vibration tests (e.g., JESD 22-B103),  
➢ mechanical bending and shearing tests (e.g., IPC/ JEDEC-9702), 
➢ electromigration test (e.g., JEP154),  
➢ others
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Thermal Cycling Test

Drop (Shock) Test
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Package
(13.42mm x 13.42mm)

Chip 
(10mm x 10mm)

Chip corner

RDLs
Solder balls 

Daisy-chain 
on package 
solder balls 

(pads)

10
3

52

4 6. 5

9
3

4 0

9
8

Units: mm

Thickness: 0.65mm
Material: FR-4
Size: 103mm x 52mm
Layer: 6
Pad finish: OSP

Pack-1 Pack-2

Pack-3 Pack-4

FOWLP and the Reliability test PCB
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Maximum temperature = 245oC; Time above 217oC = 85s

Daisy-chain on PCB pads Daisy-chain on package pads

Solder Joint

Reflow of the FOWLP on PCB with Daisy-Chains
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Chamber 

Data 
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System
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Thermal Cycling Temperature Profile
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EMC

Package corner 
solder joint

Solder Joint

RDL1RDL2
RDL3

Crack Crack

VIP

PCB

Failure 
Location

Failure 
Mode
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PCB Assembly
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Drop Test Setup
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Drop Test Failure Locations of the FOWLP 
PCB Assembly without Underfill
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RDL2 

RDL3 

RDL2 

RDL3 
Broken

Chip
Package

EMC

EMC

Solder Joint

PCB

PCB
VIP

EMC Crack

RDL1 

Failure Mode of the FOWLP PCB Assembly with 
Underfill under Drop Test (at 550 drops)

Crack Underfill
61

“Design, Materials, Process, and Fabrication of Fan-Out Wafer-Level Packaging”, IEEE Transactions on CPMT. 2018, pp. 991-1002.



Reliability Data 
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CHIP

Substrate

Solder Joint

Shear

Shear

Crack

Sample 
number

Shearing Force (g) 
to Failure

1 9
2 8
3 7
4 9
5 6
6 8
7 8
8 5
9 6
10 7

Shearing Test of Solder Joint

Sample Mean (arithmetic average) = 
σ𝑖=1
𝑛 𝑥𝑖

𝑛

Sample Median is the number in the middle when all the 
observations are ranked in their order of magnitude. For 
example the median of 2, 7, 11, 15, 18, 20, 21, is 15.

In our case, we first rearrange the observations in their 
order of magnitude, i.e., 5, 6, 6, 7, 7, 8, 8, 8, 9, 9
Then, the sample median is (7 + 8)/2 = 7.5g

= (9 + 8  + 7 + 9 + 6 + 8 + 8 + 5 + 6 + 7)/10 = 7.3g

Sample Mean and Sample Median
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Sample Data vs. Population Data

Sample
Data

Population
Data

Prediction, 
e.g. Weibull 
Distribution 

Sample test data from 
a certain sample size 
of a particular event

The whole population data of the 
particular event

Design for Reliability, Reliability Testing and Data Analysis, and Failure Analysis of 
Solder Joints, NEPCON West Workshops, Anaheim, CA, February 1990.



Reliability Data 

PDF (probability density function), f(x)
When a large sample is available, the usual method of estimating population from 
the ample is to reduce the data into a frequency-histogram form.

CDF (cumulative distribution function), F(x)
However, in most engineering situations only a small sample is available. 
Therefore, the shape of the histogram varies considerably with change in class 
interval. Hence, for these situation a cumulative distribution plot is preferred. This 
involves plotting the observations on the abscissa against the rankings of these 
observations on the ordinate.

Random variable (x)

Histogram

CDF, F(x)

PDF, f(x)
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Ranking
For any required ranking (G), the percent rank (z) can be determined by (z is the 
percent rank of the jth value in n samples):

Gzz
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For example, given the sample size n = 10 and the required ranking G = 95%. The 
percent failure rank (z) is 25.89% for j = 1; 39.42% for j = 2; 50.69% for j = 3; 60.76% 
for j = 4; 69.65% for j = 5; 77.76% for j = 6; 85% for j = 7; 91.27% for j = 8; 96.32% 
for j = 9; and 99.49% for j = 10. The 95% failure rank of the lowest of ten 
measurements is 25.89%. This means that in 95% of the cases the lowest of ten 
would represent as much as 25.89% of the population. Only in 5% of cases would 
the lowest of ten represent even more than 25.89% of the population.

For median (or 50%) rank, G = 50%, then z can be approximated as

z = F(x) = (j - 0.3)/(n + 0.4)

where j = failure order number and n = sample size.
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Sample 
order (j)

Sample 
% 

Failures

Media 
Rank

%

1 20 12.94

2 40 31.47

3 60 50.00

4 80 68.53

5 100 87.06

Sample 
order (j)

Sample 
% 

Failures

Media 
Rank

%

1 10 6.70

2 20 16.32

3 30 25.94

4 40 35.57

5 50 45.19

6 60 54.81

7 70 64.43

8 80 74.06

9 90 83.68

10 100 93.30

Sample 
order (j)

Sample 
% 

Failures

Media 
Rank

%

1 2.00 1.38

2 4.00 3.37

3 6.00 5.35

4 8.00 7.33

5 10.00 9.32

46 92.00 90.67

47 94.00 92.66

48 96.00 94.64

49 98.00 96.62

50 100.00 98.61

n = 5

n = 10

n = 50

Median Rank = F(x) = (j - 0.3)/(n + 0.4)
n = Sample Size
j = Sample Order



STATISTICAL ANALYSIS 
OF RELIABILITY DATA –

WEIBULL
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Weibull PDF, CDF, Reliability, Failure Rate, and MTTF
➢ The three-parameter (γ, θ, β) Weibull probability density function (PDF) is:

𝑓 𝑥 =
𝛽

𝜃

𝑥−𝛾

𝜃

𝛽−1
exp −

𝑥−𝛾

𝜃

𝛽
≥ 0, 𝑥 ≥ 𝛾, −∞ < 𝛾 > +∞, 𝜃 > 0, 𝛽 > 0

where x is the random variable (e.g., life or cycles), γ is the expected minimum value of x, θ is the characteristic
value, which could be used to represent the quality of a product, and β is the Weibull slope, which is a measure of
the uniformity of a product.

➢ The Weibull cumulative distribution function (CDF) is:

𝐹 𝑥 = ∞−׬
𝑥
𝑓 𝑡 𝑑𝑡 = 1 − exp −

𝑥−𝛾

𝜃

𝛽

➢ The Reliability function, R(x) is:

𝑅 𝑥 = 1 − 𝐹 𝑥 = exp −
𝑥−𝛾

𝜃

𝛽

➢ The failure rate, h(x) is:
ℎ(𝑥) =

𝑓(𝑥)

𝑅(𝑥)
=

𝛽

𝜃

𝑥−𝛾

𝜃

𝛽−1

➢ The expected value, E(x), or mean-time-to-failure, MTTF (or mean life) is:

𝐸 𝑥 = 𝑀𝑇𝑇𝐹 = 0׬
∞
𝑥𝑓 𝑥 𝑑𝑥 = 𝛾 + 𝜃 Γ 1 +

1

𝛽
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Weibull Parameters Estimation
The CDF can be rewritten as follow

𝐥𝐧 𝐥𝐧
𝟏

𝟏−𝑭(𝒙)
= 𝜷 𝐥𝐧 𝒙 − 𝜸 − 𝜷𝒍𝒏𝜽

or 𝒀 = 𝒂𝑿 + 𝒃 (#)
where    𝒀 = 𝐥𝐧 𝐥𝐧

𝟏

𝟏−𝑭(𝒙)
, 𝑿 = 𝐥𝐧 𝒙 − 𝜸 , 𝒂 = 𝜷, 𝒃 = −𝜷𝒍𝒏𝜽 = 𝑪

Equation (#) represents a straight line with a slope, a (or β), and intercept (b or C)
on the Cartesian X-Y coordinates. Hence, a plot of lnln{[1/(1 - F(x))]} against ln(x-γ)
will also be a straight line with a slope, a (or β). A Weibull probability paper with
the vertical scale as lnln{[1/(1 - F(x))]} and the horizontal axis as ln-scale, can
expedite the conversion.

Log (x – γ)
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-F
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)]}

Linear scaleLi
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x – γ
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The horizontal axis is 
the order failure time 

in a ln-scale

The vertical scale is lnln{[1/(1-F(x))]}, 
where F=(i-0.3)/(n+0.4); i is the rank 

of the observation and n is the 
sample size

Slope = β
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Solder Joints Package Substrate

Wire Bonds

Chip

Sn3Ag.5Cu 
Solder Joint

Substrate

Over Mold

PCB

Wire Bonds

256-Pin Plastic Ball Grid Array (PBGA) PCB Assembly

➢ The sample size is 20.
➢ The test condition is:            

-25 ⇆ 125oC, one cycle per 
hour, 15 minutes ramp time 
and 15 minutes dwell time. 

➢ The failure criterion is a 50% 
increase in resistance. 
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Failure
Order (j)

Cycles-to-
Failure (x)

F(x)
Median Rank

F(x) 
5% Rank

F(x)
95% Rank

1 1650 3.4 0.3 13.9

2 2100 8.3 1.8 21.8

3 2650 13.2 4.3 28.6

4 3100 18.1 7.3 34.8

5 3500 23.0 10.5 40.4

6 3800 27.9 14.0 45.6

7 4200 32.8 17.9 50.7

8 4500 37.7 21.8 56.7

9 4600 42.6 25.9 60.4

10 4800 47.5 30.3 65.3

11 5000 52.5 34.7 69.7

12 5150 57.4 39.6 74.1

13 5300 62.3 44.3 78.1

14 5450 67.2 49.3 82.2

15 5600 72.1 54.4 86.0

16 5900 77.0 59.6 89.5

Median Rank = (j - 0.3)/(n + 0.4);  n = 20

Test Data (Sample Size = 20)
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β = 2.8    Θ = 5478
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➢ What is the probability that the 256-pin lead-free PBGA will fail by 1500 cycles? 
F(1500) = 1 - exp[- (1500/5478)2.8] = 0.026, i.e., 2.6% of the lead-free PBGA will fail 
at 1500 cycles. 

➢ If we use 1000 units of them, how many do we expect to fail in the first 1500 
cycles? 

We will expect 1000 × 0.026 = 26 lead-free PBGAs will fail in the first 1500 cycles.

➢ What is the probability that the 256-pin PBGA lead-free solder joints will 
survive 1200 cycles? 

R(1200) = exp[- (1200/5478)2.8] = 0.9859, i.e., 98.59% of the lead-free PBGA will 
survive at 1200 cycles.

➢ What is the failure rate of the 256-pin lead-free PBGA at 1500 cycles?  
h(1500) = (2.8/5478)(1500/5478)1.8 = 49,657 × 10-9 per cycle = 49,657 FITs (ppm/k)

➢ What is the MTTF of the 256-pin lead-free PBGA? 
MTTF = 5478 × Γ(1 + 1/2.8) = 5478 × Γ(1.357) = 5478 × 0.89 = 4875 cycles.

As soon as we’d run the Reliability test, we can 
answer the following questions
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➢ Reliability applies to the product!

➢ Confidence applies to the test itself!

➢ Confidence is defined as the 
probability that a given interval 
determined from the test data will 
contain the population parameters, 
such as (using Weibull as an example) 
the mean/characteristic life and 
Weibull slope. 
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To predict the true Weibull slope (βt) of the population, it is necessary to estimate
the Weibull slope error in relation to the sample size (n) and the required
confidence level (C). The error (E) in the Weibull slope depends on the number of
failures (N) and C, which can be searched from the following equation:

1

𝜋
∞−׬
𝐸 2𝑁

𝑒−
𝑡2

2 𝑑𝑡 =
1+𝐶

2
(10)             

.

Thus, for a given C (the confidence level) and N (the number of failures), the E
(error) can be searched from the above equation or chart. 

Weibull Slope Error (True Weibull Slope)

Confidence (C):
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For example, for a given confidence C = 0.9 (that means 
in 90 out of 100 cases) the Weibull slop error of the 
example (256-PBGA SnAgCu solder joints) (with N = 16 
failures) is (by the chart) ɛ = 0.3. 

Thus, the true Weibull slope βt of the 256-PBGA SnAgCu 
solder joints will be happened in the intervals of 

(2.8 - 0.3 x 2.8) ≤ βt ≤ (2.8 + 0.3 x 2.8) or 1.96 ≤ βt ≤ 3.64 

Weibull Slope Error (True Weibull Slope)

78

Assembly and Reliability of Lead-Free Solder Joints, Springer, 2020



True Characteristic Life 
For a given C (the confidence level), in order to predict the population (true) mean
(μ) or population (true) characteristic value (θt) from the sample test data, it is
necessary to determine the CDFs (life distributions) with certain percent ranks for
the required confidence interval.

The lower percent ranks and upper percent ranks for C = 95% are respectively
2.5% and 97.5%; for C = 90% are 5% and 95%; for C = 80% are 10% and 90%; for C
= 70% are 15% and 85%; and for C = 60% are 20% and 80%.

Required Confidence 
Level (%)

Lower 
percent rank

Upper 
percent rank

95 2.5 97.5
90 5 95
80 10 90
70 15 85
60 20 80
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Failure
Order (j)

Cycles-to-
Failure (x)

F(x)
Median Rank

F(x) 
5% Rank

F(x)
95% Rank

1 1650 3.4 0.3 13.9

2 2100 8.3 1.8 21.8

3 2650 13.2 4.3 28.6

4 3100 18.1 7.3 34.8

5 3500 23.0 10.5 40.4

6 3800 27.9 14.0 45.6

7 4200 32.8 17.9 50.7

8 4500 37.7 21.8 56.7

9 4600 42.6 25.9 60.4

10 4800 47.5 30.3 65.3

11 5000 52.5 34.7 69.7

12 5150 57.4 39.6 74.1

13 5300 62.3 44.3 78.1

14 5450 67.2 49.3 82.2

15 5600 72.1 54.4 86.0

16 5900 77.0 59.6 89.5

Median Rank = (j - 0.3)/(n + 0.4);  n = 20

Test Data (Sample Size = 20)
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(PBGA) PCB Assembly at 90% Confidence
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Weibull PDF, CDF, Reliability, Failure Rate, and MTTF
➢ The three-parameter (γ, θ, β) Weibull probability density function (PDF) is:

𝑓 𝑥 =
𝛽

𝜃

𝑥−𝛾

𝜃

𝛽−1
exp −

𝑥−𝛾

𝜃

𝛽
≥ 0, 𝑥 ≥ 𝛾, −∞ < 𝛾 > +∞, 𝜃 > 0, 𝛽 > 0

where x is the random variable (e.g., life or cycles), γ is the expected minimum value of x, θ is the characteristic
value, which could be used to represent the quality of a product, and β is the Weibull slope, which is a measure of
the uniformity of a product.

➢ The Weibull cumulative distribution function (CDF) is:

𝐹 𝑥 = ∞−׬
𝑥
𝑓 𝑡 𝑑𝑡 = 1 − exp −

𝑥−𝛾

𝜃

𝛽

➢ The Reliability function, R(x) is:

𝑅 𝑥 = 1 − 𝐹 𝑥 = exp −
𝑥−𝛾

𝜃

𝛽

➢ The failure rate, h(x) is:
ℎ(𝑥) =

𝑓(𝑥)

𝑅(𝑥)
=

𝛽

𝜃

𝑥−𝛾

𝜃

𝛽−1

➢ The expected value, E(x), or mean-time-to-failure, MTTF (or mean life) is:

𝐸 𝑥 = 𝑀𝑇𝑇𝐹 = 0׬
∞
𝑥𝑓 𝑥 𝑑𝑥 = 𝛾 + 𝜃 Γ 1 +

1

𝛽
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True Mean Life 
The mean life i.e., MTTF from test samples can be determine by Equation ($) with θ =
5478 and β = 2.8, and is equal to [MTTF = 5478Г(1+1/2.8) = 5478Г(1.357) = 5478 x 0.89
= 4875 cycles], which occurs at 51.4% failed [by Equation (*) with x = 4875, θ = 5478
and β = 2.8]. The true mean life, µ, of the 265-pin PBGA SnAgCu solder joints will
happen within the intervals 3846 ≤ µ ≤ 5578 cycles. The values of the intervals have
been determined by rewriting Equation (*) and with the following forms

𝑥 = 𝜃[−ln(1 − 𝐹(𝑥))]
1

𝛽

𝜇𝑙𝑜𝑤𝑒𝑟= 𝜃95% 𝑅𝑎𝑛𝑘 −ln(1 − 0.514) 1/𝛽95% 𝑅𝑎𝑛𝑘 = 4493[0.72]1/2.1= 3846 cycles

𝜇𝑢𝑝𝑝𝑒𝑟 = 𝜃5% 𝑅𝑎𝑛𝑘 −ln(1 − 0.514) 1/𝛽5% 𝑅𝑎𝑛𝑘 = 6029[0.72]1/4.2= 5578 cycles

where θ5% rank = 6029, β5% rank = 4.2 and θ95% rank = 4493, β95% rank = 2.1 have been
substituted.
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Characteristic
Life (θ), cycle

Median rank 5478

True θ at 90% 
confidence

4493 ≤ θ ≤ 6029

Weibull Slope 
(β)

Median rank 2.8

β error (%) at 
90% confidence

37

True  β at 90% 
confidence

1.96 ≤ β ≤ 3.64

Mean Life (μ), 
cycle

Median rank 4875

Percent failed at 
mean

51.4

True μ at 90% 
confidence

3846 ≤ μ ≤ 5578

Reliability of 256-Pin Plastic Ball Grid Array (PBGA) 
PCB Assembly
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Ceramic Carrier

PCB

PCBs with HASL CuSn, ENIG NiAu, and Entek OSP 
(1657CCGA)

➢ HASL (hot-air solder leveling) 
➢ ENIG (electroless Ni and immersion) 
➢ OSP (organic solderability preservative)

CCGA (Ceramic column grid array)

PCB with 3 different surface conditions:

Solder Column
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Failure
Order (j)

SnCu 
HASL
PCB

ENIG 
(NiAu)
PCB

OSP
(Entek) 

PCB

Median 
(50%)
Rank

5%
Rank

95%
Rank

1 1771 2423 2128 6.7 0.5 25.9

2 1945 2521 2480 16.3 3.7 39.4

3 2111 2568 2620 25.9 8.7 50.7

4 2276 2682 2722 35.6 15.0 60.8

5 2394 3009 2826 45.1 22.2 69.7

6 2581 3513 2899 54.8 30.4 77.8

7 2611 2972 64.4 39.3 85.0

8 2652 3045 74.0 49.3 91.3

9 2688 3118 83.7 60.6 96.3

10 3009 3200 93.3 74.1 99.5

Test Data of PCBs with HASL CuSn, ENIG NiAu, and 
Entek OSP (1657CCGA)

Median Rank = (j - 0.3)/(n + 0.4);  n = 10
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SnAgCu  paste 
on SnCu PCB

SnAgCu paste 
on NiAu PCB

SnAgCu paste 
on OSP PCB

Characteristic
Life (θ), cycle

Sample 2567 3447 2950

True θ at 90% 
confidence

2259 ≤ θ ≤ 2786 2984 ≤ θ ≤ 3673 2677 ≤ θ ≤ 3127

Weibull Slope 
(β)

Sample 6.8 5.4 9.0

β error (%) at 
90% confidence

37 47 37

True  β at 90% 
confidence

4.25 ≤ β ≤ 9.25 2.86 ≤ β ≤ 7.92 5.66 ≤ β ≤ 12.32

Mean Life (μ), 
cycle

sample 2397 3197 2793

Percent failed at 
mean

46.72 47.61 45.75

Population μ at 
90% confidence

2069 ≤ μ ≤ 2552 2655 ≤ μ ≤ 3497 2492 ≤ μ ≤ 3017

Reliability of PCBs with HASL CuSn, ENIG NiAu, and 
Entek OSP (1657CCGA) at 90% Confidence
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PCB

 

Sn90Pb

Sn3.9Ag0.6Cu

Solder 
Column

PCBs with HASL CuSn, ENIG NiAu, and Entek OSP 
(1657CCGA)

➢ The failure locations are the solder joints near the perimeter-row (outer-row) columns of the 
1657CCGA package.

➢ The failure mode of solder joints for all the PCB surface finishings is the fracture near the 
interface between the solder columns and the solder fillets on the package side and interface 
between the solder column and the solder fillets on the PCB side. 
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STATISTICAL ANALYSIS OF RELIABILITY DATA –
LOGNORMAL

The PDF of the standard 2-parameter lognormal distribution is given as

𝑓 𝑥 =
1

𝑥𝜎 2𝜋
exp −

𝑙𝑛𝑥−𝜇 2

2𝜎2

where x is the random variable of the lognormal distribution, σ is the shape parameter (of the standard deviation of
the normal distribution) and μ is the location parameter (of the mean of the normal distribution).

The CDF of the standard 2-parameter lognormal distribution is given as

𝐹 𝑥 = 𝑥׬
∞
𝑓 𝑡 𝑑𝑡 =

1

𝜎 2𝜋
ln(𝑥)׬
∞

exp −
(𝑡−𝜇)2

2𝜎2
dt = Φ

ln𝑥−𝜇

𝜎

where Ф(z) denotes the CDF of the standard normal distribution.

The reliability of the lognormal distribution is given as 𝑅 𝑥 = 1 − 𝐹 𝑥 = 1 −
1

𝜎 2𝜋
ln(𝑥)׬
∞

exp −
(𝑡−𝜇)2

2𝜎2
dt

The failure rate of the lognormal distribution is given by: ℎ 𝑥 =

1

𝑥𝜎 2𝜋
exp −

ln𝑥−𝜇 2

2𝜎2

ln(𝑥)׬−1
∞ 1

𝜎 2𝜋
exp

−
1
2
𝑡−𝜇
𝜎

2

𝑑𝑡

The MTTF of the lognormal distribution is given by: 𝑀𝑇𝑇𝐹 = exp 𝜇 +
𝜎2

2

The median of the lognormal distribution (T50) is given by: 𝑇50= exp(𝜇) or 𝜇 = ln𝑇50
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A NOTE ON FAILURE CRITERIA
➢ The most important factor in reliability tests is the failure criteria.
➢

➢ During reliability tests, we continuously perform the resistance measurements.

➢ The failure criterion is defined as the resistance increases to certain (e.g., 1 to
∞) percentages of the original resistance.

➢ Usually daisy chains, which connect the solder interconnects of the
chip/package and substrate/PCB, allow the measurements.

➢ Since most solder joints under fatigue loadings will go through crack initiation,
crack propagation, and crack rupture sooner or later, the daisy chains’
resistance will increase accordingly, that is, from small to large, and become ∞
when the solder joint is totally cracked (opened). (Most people unintentionally
pick the last one.)

➢ Since the exact “resistance vs. crack length” relations of various lead-free
solder joints don’t exist today, people just randomly pick a number, which is
from 1 to ∞ percent of the initial resistance. That’s one of the reasons why there
are so many different Weibull/lognormal plots in the lectures, even with the
same package, PCB, solder paste, sample size, test condition, and test period.
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208-pin PQFP (plastic quad flat pack) with a lead-free solder joint subject to 
-40 ⇆ 125oC thermal cycling.

(1) The life distribution is 
many times different 
from the failure criterion 
based on the 10% 
resistance increase and 
the 40% resistance 
increase, 

(2) for the same percent 
failures, the life taken 
from the failure criterion 
based on higher 
resistance increases is 
longer, and 

(3) as expected, there are 
more failures with the 
failure criterion based 
on lower resistance 
increases. 
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Why Acceleration Models?
➢ In reliability tests, the most idea situation is to have the test conditions very

close to the use (operating) conditions.

➢ However because of time-to-market and costs saving, this is almost impossible.

➢ The practical way is to run accelerated tests with increased intensity, and
realistic sample sizes and test times.

➢ Thus, most reliability tests are accelerated tests.

➢ In this case, the price to pay is to construct the acceleration factors to map
(transfer) the failure probability, reliability function, mean life, and failure rate
from a test condition to the service operating (use) condition.

➢ Acceleration Models are needed for determining the acceleration factors.

𝑥𝑜= 𝛼𝑥𝑇
𝜂

where xo is the time-to-failure at operating condition, α is the acceleration factor, η is a 
larger than zero real number, and xT is the time-to-failure at test condition. When η = 1, 
then we have liner acceleration

𝑥𝑜= 𝛼𝑥𝑇 97
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Well-Known Linear Acceleration Factors
➢ How to determine α (the acceleration factor)? 

The answer is that you need an acceleration model. 

➢ How do you choose an acceleration model? 
The answer is tests and failure mechanisms! 

➢ Some Well-Known Linear Acceleration Factors
Norris-Landzberg (in terms of maximum temperature and frequency): 

TT = maximum temperature during cycling (in degrees Kelvins) at testing condition
fT = temperature cycling frequency at testing condition
ΔTT = temperature range (in degree Celsius) at testing condition 
To = maximum temperature during cycling (in degrees Kelvins) at operating condition

fo = temperature cycling frequency at operating condition
ΔTo= temperature range (in degree Celsius) at operating condition 
For SnPb solders, q = 1/3 and c = 1.9 ~ 2.0 have been used. 
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Linear Acceleration Factor for Sn3Ag0.5Cu in Terms 
of Dwell-Time and Maximum Temperature

For Sn3Ag0.5Cu, Pan et al. proposed a modification of Norris-Landzberg equation by
replacing the cyclic frequency (f) with dwell time at high temperature (t):

𝛼 =
∆𝑇𝑡

∆𝑇𝑜

𝑎
𝑡𝑡

𝑡𝑜

𝑏

exp 𝑐
1

𝑇𝑚𝑎𝑥,𝑜
−

1

𝑇𝑚𝑎𝑥,𝑡

where a, b, and c are the coefficients for the temperature range (∆T), dwell time (t), and
maximum temperature during cycling (Tmax), respectively. A nonlinear curve fit of the
temperature cycling data of the CBGA (ceramic ball grid array), CSP (chip scale
package), and TSOP (thin small outline package) on PCB at various temperature ranges
such as 0 ⇆ 60oC, 0 ⇆ 100oC, and -25 ⇆ 125oC, Pan et al. obtained the following
acceleration factor:

𝛼 =
∆𝑇𝑡
∆𝑇𝑜

2.65
𝑡𝑡
𝑡𝑜

0.136

exp 2185
1

𝑇𝑚𝑎𝑥,𝑜
−

1

𝑇𝑚𝑎𝑥,𝑡

where tt and to are the dwell time at high temperature, ∆Tt and ∆To are the temperature
range (in degree Celsius) during thermal cycling, and Tmax,t and Tmax,o are the maximum
(peak) temperature (in degrees Kelvins) attained during thermal cycling, respectively at
testing condition and at operating condition. 99
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Linear Acceleration Factor for Sn3Ag0.5Cu in Terms 
of Dwell-Time and Maximum Temperature

For example, the test conditions are: 0 ⇆ 100oC with the dwell time at high temperature
= 15 minutes; and the operating conditions are: 20 ⇆ 70oC with the dwell time at high
temperature = 720 minutes.

𝛼 =
∆𝑇𝑡
∆𝑇𝑜

2.65
𝑡𝑡
𝑡𝑜

0.136

exp 2185
1

𝑇𝑚𝑎𝑥,𝑜
−

1

𝑇𝑚𝑎𝑥,𝑡

Then the acceleration factor is:

𝛼 =
100

50

2.65
15

720

0.136

exp 2185
1

273 + 70
−

1

273 + 100

𝛼 = 6.18
100

Lau, J. H., “State of the Art of Lead-Free Solder Joint Reliability”, ASME Transactions, Journal of Electronic Packaging, June 2021, pp. 1-36.



Linear Acceleration Factor for Sn3Ag0.5Cu in Terms 
of Frequency and Maximum Temperature

For Sn3Ag0.5Cu, some of the researchers still use the classical Norris-Lanzberg
acceleration model, i.e., in terms of the cyclic frequency and maximum temperature
during thermal cycling:

𝛼 =
∆𝑇𝑡

∆𝑇𝑜

𝑎
𝑓𝑜

𝑓𝑡

𝑏

exp 𝑐
1

𝑇𝑚𝑎𝑥,𝑜
−

1

𝑇𝑚𝑎𝑥,𝑡

For PBGA, fc-PBGA, CBGA (ceramic ball grid array), CSP, QFP (quad flat pack), flip
chip, etc. with test conditions such as ∆T = 135oC and ∆T = 180oC, Lall et al. obtained
the following acceleration factor for Sn3Ag0.5Cu

𝛼 =
∆𝑇𝑡

∆𝑇𝑜

2.3
𝑓𝑜

𝑓𝑡

0.3

exp 4562
1

𝑇𝑚𝑎𝑥,𝑜
−

1

𝑇𝑚𝑎𝑥,𝑡

For example, the test conditions are: 0 ⇆ 100oC with one cycle per hour and the
operating conditions are: 20 ⇆ 70oC with one cycle per day. Then the acceleration factor
is, for example from Equation (6.63):

𝛼 =
100

50

2.3 1

24

0.3
exp 4562

1

273+70
−

1

273+100
= 5.52
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Linear Acceleration Factor for Sn3Ag0.5Cu in      
Terms of Frequency and Mean Temperature

Osterman, et al. proposed another modification of the Norris-Landzberg Equation by
replacing the maximum temperature during thermal cycling with mean temperature during
thermal cycling. The revised equation takes the following form:

𝛼 =
∆𝑇𝑡

∆𝑇𝑜

𝑎
𝑓𝑜

𝑓𝑡

𝑏

𝑒𝑥𝑝 𝑐
1

𝑇𝑚𝑒𝑎𝑛,𝑜
−

1

𝑇𝑚𝑒𝑎𝑛,𝑡

where a, b, and c are the coefficients for the temperature range (∆T), frequency (f), and mean
temperature during cycling (Tmean), respectively. A nonlinear curve fit of the temperature
cycling data of the CABGA (ChipArray BGA) and CTBGA (Thin ChipArray BGA) on PCB at
various temperature ranges such as 0 ⇆ 100oC, -40 ⇆ 100oC, -40 ⇆ 125oC, 25 ⇆ 125oC, and
-15 ⇆ 125oC, Osterman, et al. obtained the following acceleration factor for Sn3Ag0.5Cu:

𝛼 =
∆𝑇𝑡

∆𝑇𝑜

2.728
𝑓𝑜

𝑓𝑡

0.345

𝑒𝑥𝑝 1602
1

𝑇𝑚𝑒𝑎𝑛,𝑜
−

1

𝑇𝑚𝑒𝑎𝑛,𝑡

For example, the test conditions are: 0 ⇆ 100oC with 24 cycles per day and find the product
survives 900 cycles. Is it sufficient for a 10-year operating conditions of 20 ⇆ 60oC with 1
cycle per day?

𝛼 =
100

40

2.728 1

24

0.345
𝑒𝑥𝑝 1602

1

273+40
−

1

273+50
= 4.73 102
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Comparison of the Mean-Life of Two Sets of Samples
➢ In many situations, the qualities and uniformities of two products are to be

compared from the knowledge of the limited test data.

➢ One of the difficult tasks in life testing is to draw conclusions about a
population from a small sample size.

➢ It is even more difficult to compare the populations of two products from the
knowledge of their limited test data.

➢ If one product is found to be superior to another, how CONFIDENT, P (this is
different from the confidence (C) discussed earlier) can it be that the same is
true of their populations?

➢ Herein, a simple approach is used to determine whether one product is better
than the other, without inquiring what the actual differences.

103“Reliability Testing and Data Analysis of Lead-Free Solder Joints for High-Density Packages’”, Journal of Soldering & Surface Mount Technology, 
Vol. 16, No. 2, 2004, pp. 46-68.
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and M1 is the mean life of Simple 1 (S1), M2 is the mean life of Simple 2 (S2), r1 is 
the number of failures in S1, r2 is the number of failures in S2, β1 is the Weibull 
slope of S1, and β2 is the Weibull slope of S2. It can be seen that this confidence P
(is to be determined) which is different from the confidence C (a given value). 

Determined Confidence (P)

where
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DESIGN FOR RELAIBILITY
In the past three decades, DFR of solder joints is becoming very important. DFR is
usually performed by a mathematical modeling based on the material properties
and geometries of the structure, and laws of engineering and physics in order to:

➢ eliminate trial-and-error of reliability tests,
➢ reduce cost,
➢ reduce test and failure analysis cycles,
➢ reduce time-to-market,
➢ provide insight into the physical, electrical, mechanical, and thermal behaviors

of the solder joints, e.g., (a) the maximum stress/strain locations - to help test-
board designs to capture the most likely (solder joint) failure locations and to
help failure analysis to find these failures sites, and (b) the failure mode - to
help failure analysis to look for crack and delamination,

➢ provide comparison between material properties, and
➢ provide comparison between structural geometries.
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Key Steps in Design for Reliability of Solder Joints
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Norton Power Creep Law 

ሶ𝜺 = 𝑨𝝈𝒏
−𝑸

𝑹𝑻

ሶ𝜺 is the steady-state creep stain rate (1/s),
σ is the applied stress (MPa),
R is the Boltzmann’s constant (7.617x10-5 eV/K),
and T is the absolute temperature (Kelvin).

The constants A, n, and Q for a particular lead-free solder can be
determined from the creep curve of that solder.
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Norton Power Creep Law for Various Solders 
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Note: T in degrees Kelvin

Material E (GPa) α (ppm/K) ν k (W/mK)

Si 167 2.54 0.28 154
Cu 76 17 0.35 398

Au20Sn 59 16 0.3 251

Sn58Bi 381.5-3.13T+ 0.009T2 14 0.35 18.3

AlGaAs 86 5.8 0.31 33.67
GaAs 86 5.8 0.31 33.7

Material Properties of the VCSEL Assembly
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WISES TWO-POWER CREEP
Wises, et al. proposed to modify Norton power creep equation into the sum of two
power law terms:

𝜺 ሶ =
𝝈

𝑬
+ 𝑨𝟏

𝝈

𝝈𝒏

𝒏𝟏
𝐞𝐱𝐩 −

𝑸𝟏

𝑹𝑻
+ 𝑨𝟐

𝝈

𝝈𝒏

𝒏𝟐
𝐞𝐱𝐩 −

𝑸𝟐

𝑹𝑻

The first term is for the initial stress (elastic)

The second term corresponds to the creep behavior at low stresses, where co-
operative climb processes are dominant

The third term corresponds to the creep behavior at high stresses, where
combined glide/climb processes dominate.

The commercial finite element codes such as ABAQUS and ANSYS can take this
form of constitutive equation
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Wises’ Two-Power Creep Data for Sn3.5Ag 
Bulk-Specimen
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A1 = 7x10-4; 
n1 = 3; 
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A2 = 2x10-4; 
n2 = 11; 
Q2 = 93.1 kJ/mol;
σn = 1MPa;  
R = 8.314462 J/mol•K
T = temperature (K)
E = 52.71 - 0.067T(K) (GPa)
σ = Stress (MPa)
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Wises’ Two-Power Creep Data for Sn4Ag0.5Cu 
Bulk-Specimen
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Garofalo Hyperbolic Sine Creep
Garofalo-Arrhenius creep constitutive equation is expressed by:

𝒅𝜸

𝒅𝒕
= 𝑪

𝑮

𝚯
𝐬𝐢𝐧𝐡 𝝎

𝝉

𝑮

𝒏
𝐞𝐱𝐩 −

𝑸

𝒌𝚯

where  is the creep shear strain, d/dt is the creep shear strain rate, t is the time, C is a
material constant, G is the modulus,  is the absolute temperature (Kevin),  defines the
stress level at which the power law stress dependence breaks down,  is the shear stress, n
is the stress exponent, Q is the activation energy for a specific diffusion mechanism (for
example, dislocation diffusion, solute diffusion, lattice self-diffusion, and grain boundary
diffusion), and k is the Boltzmann’s constant (7.617x10-5eV/oK). It can be rearranged by
lumping certain coefficients and expressed as:

𝒅𝜸

𝒅𝒕
= 𝑨 𝐬𝐢𝐧𝐡

𝝉

𝑩

𝒏
𝐞𝐱𝐩 −

𝑸

𝒌𝑻

If the solder obeys the von Mises criterion, then it can can be re-written as:

𝒅𝜺

𝒅𝒕
= 𝑪𝟏 𝐬𝐢𝐧𝐡(𝑪𝟐𝝈)

𝑪𝟑𝐞𝐱𝐩 −
𝑪𝟒

𝑻

where the constants, A, B, n, and Q or C1, C2, C3, and C4 are determined by creep tests
(curves) at various sets of constant stress and temperature. It should be noted that this form
is exactly the same as the input form of the implicit creep model in ANSYS and ABAQUS. 

is the effective normal stress;  is the shear stress; and d/dt is the effective normal creep
strain rate.

129
Garofalo, F., 1965, Fundamentals of Creep and Creep-Rupture in Metals, Macmillan Publishing, New York.



𝝈 (Stress)

ሶ
ሶ𝝐 =

𝒅𝝐

𝒅𝒕

σ1

σ4

σ3

σ2

Tan 𝛟𝟏

Tan 𝛟𝟐

Tan 𝛟𝟑 Tan 𝛟𝟒

(Creep Strain Rate)

Constant Temperature

Stress vs. Creep Strain Rate Curve with Various 
Stresses at a Constant Temperature
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Dimensions of the Microvia and Sn3.5Ag Solder Joint
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Material Young’s Modulus 
(MPa)

Poisson’s 
Ratio

CTE
(ppm/oC)

Sn3.5Ag 52708 - 67.14T - 0.06T2 0.4 21.85 + 0.02T

Underfill 9292 - 35.4T 0.35 31.04 + 0.09T
Si 131000 0.3 2.8

FR-4 22000 0.28 18
Copper 76000 0.35 17

Build-up resin 20000 0.3 50

T is temperature (oC)

Material Properties of the WLCSP on PCB with 
Microvias Assembly
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Temperature Profile for Finite Element Simulation
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Strain Time-History for SAC305, SAC387, and 
SAC396 Solder Joints
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Strain Energy Time-History for SAC305, SAC387, 
and SAC396 Solder Joints
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(a)

(b)

(a) Maximum strain energy contours of the Sn3.9Ag0.5Cu 
solder joint. (b) Maximum equivalent total strain contours of 

the Sn3.9Ag0.5Cu solder joint.
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3D Finite Element Modeling of the 256-pin PBGA 
PCB Assembly
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PCB Assembly

143



1.E-10

1.E-08

1.E-06

1.E-04

1 10 100

Tensile Stress (MPa)

Te
ns

ile
 C

re
ep

 S
tra

in
 R

at
e 

(1
/s

ec
)

1

2

3

Alloys

125C -25C

50C

Lau and 
Dauksher

Vianco, Lau, Dauksher

Schubert

Lau and Dauksher

Vianco, Lau. 
Dauksher

Schubert

Stress vs. Creep Strain Rate Curves 
(at -25oC, 50oC, and 125oC) 

144Lau, J. H., and Dauksher, W., 2004, “Creep Constitutive Equations of Sn(3.5- 3.9)wt%Ag(0.5-0.8)wt%Cu Lead-Free Solder Joints,” MicroMaterails 
and Nanomaterials, B. Michel, ed., pp. 54–62.



Time (s)

Te
m

pe
ra

tu
re

 (o
C

)

-20

0

20

40

60

80

100

120

0 2400 4800 7200 9600 12000 14400

Time (sec)

Te
m

pe
ra

tu
re

 (C
)

Temperature Condition for Finite Element Simulation

145Lau, J. H., and Dauksher, W., 2004, “Creep Constitutive Equations of Sn(3.5- 3.9)wt%Ag(0.5-0.8)wt%Cu Lead-Free Solder Joints,” MicroMaterails 
and Nanomaterials, B. Michel, ed., pp. 54–62.



Materials E (GPa) α (ppm/ºC) ν C1 C2 C3 C4

PC board 27 18 0.39 - - - -
Copper 

pads 76 17 0.35 - - - -

Laminate 
substrate 27 18 0.39 - - - -

Die 167 2.54 0.28 - - - -

Overmold 13 15 0.30 - - - -

[36] 49 - 0.07T 21.301 + 0.017T 0.35 441000 .005 4.2 5412

[72] 49 - 0.07T 21.301 + 0.017T 0.35 277984 .025 6.41 6500

[89] 49 - 0.07T 21.301 + 0.017T 0.35 500000 .01 5 5800

Material Properties of the 256-pin 
PBGA PCB Assembly
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(a)

(a) Fan-out package with a 10mm x 100mm chip. (b) PCB assembly of the fan-out 
package. (c) Fan-out packages on a test board. (d) X-ray image of the PCB 

assembly. (e) Close-up of the assembly.
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Die
10mmx10mm

Finite Element Model of the Fan-Out Package 
PCB Assembly
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Materials CTE
(ppm/oC)

Young’s 
Modulus 

(GPa)

Poison’s
Ratio

Copper 16.3 121 0.34
PCB αx = αy = 18

αz = 70
Ex = Ey = 22

Ez = 10
0.28

Silicon 2.8 131 0.278
Solder 21 + 0.017T 49 – 0.07T 0.3

Polyimide 35 3.3 0.3
EMC 10 (< 150oC) 19 0.25

Material Properties of the Heterogeneous Integration 
of Four Chips PCB Assembly
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September 2018, pp. 1544-1560.
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Material Young’s
Modulus
(GPa)

Poisson’s
Ratio

CTE
(ppm/oC)

Yield
Strength

(MPa)

Tensile
Strength
(MPa)

Elongation
(%)

Thermal
Conductivity

(W/m- oK)

Density
(g/cm3)

Specific
Heat

(cal/g-oK)

Creep

Molybdenum
(Mo)

355 (1) 0.3 (7) 4.8 (1) 552 (1) 655  (1) 2.5 (3) 139  (1) 10.24 (7) 0.06 (7) No

Silicon
(Si)

163.3 (1) 0.28 (1) 2.5 (1) 34.5 (1) 185 (1) 165.43 (1) 2.4 (2) 0.169 No

48Sn-52In 30.5 (8) 0.36 (8) 28 (1) 7.3 (11) Yes

100 In 11 (9) 0.45 (9) 32.1 (6) 82 (4) 7.3 (4) Yes

Silica
Fused Quartz

(SiO2)

72.4 (3) 0.14 (3) 0.5 (3) 66.9 (3) 75.9 (3) 0.33  (3) 2.2 (3) No

Aluminum
6061-T6

70.3 (3) 0.35 (7) 23.2 (3) 10.3 (7) 45 (7) 12 (7) 237 (3) 2.7 (7) 0.211 (7) No

Notes:
1. Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies, Lau and Pao, McGraw-Hill, 1997.
2. Electronic Packaging and Interconnection Handbook, Charles Harper, McGraw-Hill, 2000.
3. Materials Handbook for Hybrid Microelectronics, J. A. King, Teledyne Microelectronics, 1988.
4. www.webelements.com, 2001.
5. Ball Grid Array Technology, John Lau, 
6. Microvias for Low Cost and High Density Interconnects, John Lau and Ricky Lee, McGraw-Hill, 2001.  
7. Mark’s Standard Handbook for Mechanical Engineers, Eighth Edition, McGraw-Hill, 1978.
8. Average of Sn and In from Note 4.
9. Technical Bulletin of Pure Indium, Indium Corporation of America, 2001.
10. Superplastic Creep of Low Melting Point Solder Joints, Mei and Morris, J. of Electronic Materials, 401-407, 1992..
11. Solder Paste in Electronics Packaging, J. Hwang, Van Nostrand Reinhold, 1989.

Material Properties of the Photonic Switch 
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Anand Viscoplasticity
The Anand viscoplastic model is an internal variable based model in which the
inelastic behavior including temperature- and rate-dependent, and rate-
independent plasticity effects are unified. The Anand flow equation which governs
the inelastic strain ε has the following form:

𝒅𝜺

𝒅𝒕
= 𝑨 𝐬𝐢𝐧𝐡

𝝃𝝈

𝒔

𝟏/𝒎
𝐞𝐱𝐩 −

𝑸

𝑹𝑻

where dε/dt is the inelastic strain rate, 𝐴 is the pre-exponential factor, 𝑄 is the
activation energy, 𝑅 is the universal gas constant (8.314 J⋅K−1⋅mol−1), 𝑇 is the
absolute temperature (Kevin), 𝜉 is the multiplier of stress, 𝜎 is the equivalent
stress, m is strain rate sensitivity. The evolution equation which defines an
internal variable s of the model and its saturation value is:

𝒅𝒔

𝒅𝒕
= 𝒉𝟎 𝑩 𝜶 𝑩

𝑩

𝒅𝜺

𝒅𝒕

where
𝑩 = 𝟏 −

𝒔

𝒔∗

and

𝒔∗ = ො𝒔
𝒅𝜺𝒑/𝒅𝒕

𝑨
𝐞𝐱𝐩

𝑸

𝑹𝑻

𝒏
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Technol., 104(1), pp. 12–17.

https://en.wikipedia.org/wiki/Joule
https://en.wikipedia.org/wiki/Kelvin
https://en.wikipedia.org/wiki/Mole_(unit)
https://en.wikipedia.org/wiki/Kelvin
https://en.wikipedia.org/wiki/Mole_(unit)


Anand Viscoplasticity

where ℎ0 is the hardening/softening constant, 𝑎 is the strain rate sensitivity of
hardening/softening. The quantity 𝑠∗ represents a saturation value of deformation
resistances. ො𝒔 is a coefficient, and n is the strain rate sensitivity for the saturation
value of deformation resistance, respectively. The evolution equation has an extra
initial condition of s(0) = s0, where s0 is the initial value of s at initial time t = 0. The
Anand model does not have an explicit yield criterion or a loading-unloading
criterion and viscoplastic flow occurs for any non-zero stress.

There are a total of nine (9) constants (parameters) of the Anand equation (model),
namely A, Q, 𝜉, m, 𝒔, n, ℎ0, α, and s0, and their definition are tabulated for easy
reference. These parameters can be determined through fitting to the
experimental data of solders. These parameters can be taken as input in ANSYS
and ABAQUS. These parameters can be taken as input in ANSYS and ABAQUS
and determined through fitting to the experimental data of solders. Most
researchers use the stress-strain curves (data) with various strain rates and
temperatures of solders. However, some use the creep curves (data) with various
stresses and temperatures of solders.
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Parameters Definition in Anand’s Model
A(1/s) Pre-exponential factor

Q/R (oK) Activation energy/Universal gas constant
ξ Stress multiplier
m Strain rate sensitivity of stress

ො𝒔 (MPa) Coefficient for deformation resistance 
saturation value

n Strain rate sensitivity of saturation value
ho (MPa) Hardening constant

a Strain rate sensitivity of hardening/softening
so (MPa) Initial value of deformation resistance

Definition of the Parameters in Anand’s Model
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Anand Parameters of Solders Based on 
Creep Curves 

[97] Motalab, M., Cai, Z., Suhling, J. C., and Lall, P., 2012, “Determination of Anand Constants for SAC Solders Using Stress-Strain or Creep Data,” 
IEEE/ITHERM Proceedings, San Diego, CA, May 30–June 1, pp. 910–923.
[100] Jin, T., 2017, “Investigation on Viscoplastic Properties of Au-Sn Die-Attach Solder,” Master thesis, Delft University of Technology, Delft, The 
Netherlands.
[102] Wang, G., Cheng, Z., Becker, K., and Wilde, J., 2001, “Applying Anand Model to Represent the Viscoplastic Deformation Behavior of Solder 
Alloys,” ASME J. Electron. Packag., 123(3), pp. 247–253.
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Goble and local finite element models of a 
256-pin PQFP with Sn3.5Ag solder joints

171Hamdani, H., Radi, B., and Elhami, A., 2017, “Submodeling Technique for Assessment and Numerical Prediction of Solder Joints Failures in 
Mechatronic Devices,” 13th Mechanical Congress, Meknes, Morocco, Apr. 11–14, pp. 1–3



Material Constants 96.5Sn3.5Ag [Wang, et al.]
A(1/s) 2.23x104

Q/R (oK) 8900
ξ 6
m 0.181

ො𝒔 (MPa) 73.81
n 0.018

ho (MPa) 3321.15
a 1.82

so (MPa) 39.09

Parameters in Anand’s Model for Sn3.5Ag

172Wang, G., Cheng, Z., Becker, K., and Wilde, J., 2001, “Applying Anand Model to Represent the Viscoplastic Deformation Behavior of Solder Alloys,” 
ASME J. Electron. Packag., 123(3), pp. 247–253.



Materials 96.5Sn3.5Ag FR4 Epoxy Cu

Young’s Module (GPa) 51.3 17 17 115

Poisson’s Ratio 0.3 0.3 0.2 0.31

Density (Kg/m3) 740 180 180 8890

CTE (μm/K) 20 18 22 17

Shear Module (GPa) 19 2.4 7.4 44

Material Properties of the 256-pin PQFP 
PCB Assembly

173Hamdani, H., Radi, B., and Elhami, A., 2017, “Submodeling Technique for Assessment and Numerical Prediction of Solder Joints Failures in 
Mechatronic Devices,” 13th Mechanical Congress, Meknes, Morocco, Apr. 11–14, pp. 1–3.
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(a) Temperature condition for finite element simulation. 
(b) Strain contours at the lead-free solder joint.
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Vertical Device
Lateral 
Device

3D Device

IGBT (insulated-gate bipolar transistor) for LED 
(light-emitting diode) applications

175
Bailey, C., Rajaguru, P., Lu, H., Castellazzi, A., Antonini, M., Pathirana, V., Udugampola, N., Udrea, F., Mitchelson, P., and Aldhaher, S., 2018, “Mechanical 
Modelling of High Power Lateral IGBT for LED Driver Applications,” IEEE/ECTC Proceedings, San Diego, CA, May 29–June 1, pp. 1375–1381.



Side-view of IGBT and the Layers of the Device
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Accumulated Inelastic Strain Contours in 
the Solder Joints

177
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Anand Parameters of Solders Based on 
Stress-Strain Curves 

[51] Chen, X., Chen, G., and Sakane, M., 2005, “Prediction of Stress-Strain Relationship With an Improved Anand Constitutive Model for Lead-
Free Solder Sn-3.5Ag,” IEEE Trans. CPMT, 28, pp. 111–116.
[94] Deshpande, A., Khan, H., Mirza, F., and Agonafer, D., 2014, “Global-Local Finite Element Optimization Study to Minimize BGA Damage Under 
Thermal Cycling,” IEEE/ITHERM Proceedings, Orlando, FL, May 27–30, pp. 483–487.
[68] Ramachandran, V., Wu, K., and Chiang, K., 2018, “Overview Study of Solder Joint Reliability Due to Creep Deformation,” J. Mech., 34(5), pp. 
637–643.
[103] Zhang, L., Xue, S., Gao, L., Zeng, G., Sheng, Z., Chen, Y., and Yu, S., 2009, “Determination of Anand Parameters for SnAgCuCe Solder,” Modell. 
Simul. Mater. Sci. Eng., 17(7), p. 075014.
[104] Zhang, L., Liu, Z., and Ji, Y., 2016, “Anand Constitutive Model of Lead-Free Solder Joint in 3D IC Device,” Journal of Physics: Fifth 
International Conference on Mathematical Modeling in Physical Science, Athens, Greece, May 23–26, pp. 1–8.



Stress-strain curves with various temperatures and 
strain rate = 0.02/s of Sn3.5Ag

179Chen, X., Chen, G., and Sakane, M., 2005, “Prediction of Stress-Strain Relationship With an Improved Anand Constitutive Model for Lead-Free 
Solder Sn-3.5Ag,” IEEE Trans. CPMT, 28, pp. 111–116



Stress-strain curves with various strain rates and 
temperature = 398oK of Sn3.5Ag

180Chen, X., Chen, G., and Sakane, M., 2005, “Prediction of Stress-Strain Relationship With an Improved Anand Constitutive Model for Lead-Free 
Solder Sn-3.5Ag,” IEEE Trans. CPMT, 28, pp. 111–116



Material Constants 96.5Sn3.5Ag [Chen, et al.]
A(1/s) 177016

Q/R (oK) 10279
ξ 7
m 0.207

ො𝒔 (MPa) 52.4
n 0.0177

ho (MPa) - 90940 + 960T - 0.956T2

- 3260582 ሶ𝜺 + 24976816 ሶ𝜺 𝟐

a 1.6
so (MPa) -0.0673T + 28.6

T is in Kevin and ሶ𝜺 is the strain rate (1/s)

Parameters in Anand’s Model with Temperature and 
Strain Rate Dependent for Sn3.5Ag

181Chen, X., Chen, G., and Sakane, M., 2005, “Prediction of Stress-Strain Relationship With an Improved Anand Constitutive Model for Lead-Free 
Solder Sn-3.5Ag,” IEEE Trans. CPMT, 28, pp. 111–116



Symmetry 
Plane

Symmetry 
Plane

U=0

PBGA with Sn3.5Ag Solder Joints on PCB

182Deshpande, A., Khan, H., Mirza, F., and Agonafer, D., 2014, “Global-Local Finite Element Optimization Study to Minimize BGA Damage Under 
Thermal Cycling,” IEEE/ITHERM Proceedings, Orlando, FL, May 27–30, pp. 483–487



Material Constants 96.5Sn3.5Ag [Deshpande]
A(1/s) 177016

Q/R (oK) 10279
ξ 7
m 0.207

ො𝒔 (MPa) 52.4
n 0.0177

ho (MPa) 27782
a 1.6

so (MPa) 9.53

Parameters in Anand’s Model for Sn3.5Ag of a PBGA 
PCB Assembly
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Deshpande, A., Khan, H., Mirza, F., and Agonafer, D., 2014, “Global-Local Finite Element Optimization Study to Minimize BGA Damage Under 
Thermal Cycling,” IEEE/ITHERM Proceedings, Orlando, FL, May 27–30, pp. 483–487



Maximum Equivalent Stress Contours at Corner 
Solder Joint

184Deshpande, A., Khan, H., Mirza, F., and Agonafer, D., 2014, “Global-Local Finite Element Optimization Study to Minimize BGA Damage Under 
Thermal Cycling,” IEEE/ITHERM Proceedings, Orlando, FL, May 27–30, pp. 483–487



Maximum Equivalent Inelastic Strain Contours at 
Corner Solder Joint

185
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Thermal Cycling,” IEEE/ITHERM Proceedings, Orlando, FL, May 27–30, pp. 483–487
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Lead-free 
Solder Joint
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WLCSP on a PCB with Sn3.5Ag Solder Joints

186Ramachandran, V., Wu, K., and Chiang, K., 2018, “Overview Study of Solder Joint Reliability Due to Creep Deformation,” J. Mech., 34(5), pp. 637–
643.



PCB

Cu-Pad NSMD

Si-Chip

Lead-Free 
Solder Joint Cu RDL

Cu UBM

Passivation 
Layer

SBL

PCB

2D Finite Element Model of the 
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Material Constants 96.5Sn3.5Ag 
[Ramchandran, et al.]

A(1/s) 177016
Q/R (oK) 10279

ξ 7
m 0.207

ො𝒔 (MPa) 52.4
n 0.0177

ho (MPa) 27782
a 1.6

so (MPa) -0.0673T + 28.6

Parameters in Anand’s Model for Sn3.5Ag of a 
WLCSP PCB Assembly

188Ramachandran, V., Wu, K., and Chiang, K., 2018, “Overview Study of Solder Joint Reliability Due to Creep Deformation,” J. Mech., 34(5), pp. 637–
643.



Materials Young’s  
Modulus (GPa)

Poisson’s 
Ratio

CTE 
(ppm/oC)

Silicon 150 0.28 2.62

SBL/PL 2 0.33 55

Cu 68.9 0.34 16.7

Sn3.5Ag Non-linear 0.4 22.4

Solder Mask 6.87 0.35 19

PCB 18.3 0.19 16

96.5Sn3.5Ag Solder 
Temperature

(oC)
Young’s Modulus 

(GPa)
Yield Stress (MPa)

-40 55.3 42.2

-20 54.0 41.2

40 49.9 32.4

80 46.9 26.1

125 43.4 20.5

(a)

(b)

(a) Material properties of a WLCSP PCB assembly. (b) 
Temperature dependent Young’s modulus and yield stress.
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Maximum 
stress and 

strain

Solder 
crack 

initiated

(a)

(b)

WLCSP

Solder

(a) Maximum stress/strain occur at the solder 
between the WLCSP and the bulk solder. (b) The 

failure mode from the thermal cycling test

190Ramachandran, V., Wu, K., and Chiang, K., 2018, “Overview Study of Solder Joint Reliability Due to Creep Deformation,” J. Mech., 34(5), pp. 637–
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Material 
Constants

Sn3.8Ag0.7Cu 
[L. Zhang, 103]

Sn3.8Ag0.7Cu0.03Ce 
[L. Zhang, 103]

Sn3.8Ag0.7Cu0.1Al 
[L. Zhang, 104]

A(1/s) 24300 21200 22100
Q/R (oK) 8710 8026 8015

ξ 5.8 5 4.1
m 0.183 0.130 0.15

ො𝒔 (MPa) 65.3 57.6 59.0
n 0.019 0.0175 0.0154

ho (MPa) 3541.2 4352.6 4132
a 1.9 2.3 2.0

so (MPa) 39.5 28.5 27.0

Parameters in Anand’s model for Sn3.8Ag0.7Cu, 
Sn3.8Ag0.7Cu0.03Ce, and Sn3.8Ag0.7Cu0.1Al
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International Conference on Mathematical Modeling in Physical Science, Athens, Greece, May 23–26, pp. 1–8.
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PQFP

Finite element model of a (quarter) PQFP package 
PCB assembly
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Materials E (GPa) Poisson’s Ratio CTE (ppm/oC)
Substrate 24.5 0.22 17 (in-plane)

52 (out-of-plane)

Die 131 0.28 3

PCB 17.2 0.3 14.8

Mold 24 0.35 20

Cu Pad 110 0.34 17

Die Attach 10 0.3 33

IMC 143 0.3 18.2

Solder Mask 4 0.4 52

Material Properties of a PBGA PCB Assembly
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Anand 
Parameters

Sn1Ag0.5Cu (SAC105) [Basit, et al.]
No Aging 6  Months 

Aging
12 Months 

Aging
WQ RF RF EF

A (1/s) 5500 6900 8250 9000
Q/R (oK) 8846 8850 8850 8850

ξ 4 4 4 4
m 0.25 0.215 0.16 0.16

ො𝐬 (MPa) 38.15 25.1 18.9 17.9
n 0.01 0.0062 0.00115 0.001

ho (MPa) 142000 137500 60000 58750
a 1.85 1.96 2.21 2.22

so (MPa) 16.7 7.5 2.9 2.89

Parameters in Anand’s model for Sn1Ag0.5Cu after 
extreme aging

198Basit, M., Ahmed, S., Motalab, M., Roberts, J. C., Suhling, J. C., and Lall, P., 2016, “The Anand Parameters for SAC Solders After Extreme Aging,” 
IEEE/ ITHERM Proceedings, Las Vegas, NV, May 31–June 3, pp. 440–448.



Anand 
Parameters

Sn2Ag0.5Cu (SAC205) [Basit, et al.]
No Aging 6  Months 

Aging
12 Months 

Aging
WQ RF RF EF

A (1/s) 3200 4300 4900 5200
Q/R (oK) 9080 9090 9090 9090

ξ 4 4 4 4
m 0.28 0.238 0.177 0.177

ො𝐬 (MPa) 43.0 29.0 21.6 19.94
n 0.0115 0.0087 0.00145 0.0013

ho (MPa) 174000 169000 75000 73300
a 1.75 1.84 2.09 2.1

so (MPa) 27.9 16.5 5.2 5.0

Parameters in Anand’s model for Sn2Ag0.5Cu after 
extreme aging

199Basit, M., Ahmed, S., Motalab, M., Roberts, J. C., Suhling, J. C., and Lall, P., 2016, “The Anand Parameters for SAC Solders After Extreme Aging,” 
IEEE/ ITHERM Proceedings, Las Vegas, NV, May 31–June 3, pp. 440–448.



Anand 
Parameters

Sn3Ag0.5Cu (SAC305) [Basit, et al.]
No Aging 6  Months 

Aging
12 Months 

Aging
WQ RF RF RF

A (1/s) 2800 3501 4110 4210
Q/R (oK) 9320 9320 9320 9320

ξ 4 4 4 4
m 0.29 0.25 0.18 0.18

ො𝐬 (MPa) 44.67 30.2 21.9 21.4
n 0.012 0.01 0.0016 0.001

ho (MPa) 186000 180000 77540 73708
a 1.72 1.78 2.05 2.06

so (MPa) 32.2 21.0 5.8 5.4

Parameters in Anand’s model for Sn3Ag0.5Cu after 
extreme aging

200Basit, M., Ahmed, S., Motalab, M., Roberts, J. C., Suhling, J. C., and Lall, P., 2016, “The Anand Parameters for SAC Solders After Extreme Aging,” 
IEEE/ ITHERM Proceedings, Las Vegas, NV, May 31–June 3, pp. 440–448.



Anand 
Parameters

Sn4Ag0.5Cu (SAC405) [Basit, et al.]
No Aging 6  Months 

Aging
12 Months 

Aging
WQ RF RF EF

A (1/s) 2650 3175 3725 3800
Q/R (oK) 9560 9580 9580 9580

ξ 4 4 4 4
m 0.3 0.263 0.184 0.184

ො𝐬 (MPa) 45.51 31.3 22.2 23
n 0.0123 0.011 0.0018 0.0014

ho (MPa) 192000 183000 80000 79840
a 1.7 1.77 2.01 2.01

so (MPa) 34.35 23.65 6.2 6.14

Parameters in Anand’s model for Sn4Ag0.5Cu after 
extreme aging

201Basit, M., Ahmed, S., Motalab, M., Roberts, J. C., Suhling, J. C., and Lall, P., 2016, “The Anand Parameters for SAC Solders After Extreme Aging,” 
IEEE/ ITHERM Proceedings, Las Vegas, NV, May 31–June 3, pp. 440–448.
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THERMAL-FATIGUE LIFE PREDICTION
There are many thermal-fatigue life prediction models of solder joints in the
literature. A couple simple models are shown below.

𝑁𝑓= σ𝑗 𝛼𝑗 ∆𝑊
𝛽𝑗

and

𝑁𝑓= σ𝑗 𝛼𝑗
σ𝑖 Δ𝑊𝑖 x 𝑉𝑖

σ𝑖 𝑉𝑖

𝛽𝑗

where 𝑵𝒇 is the thermal fatigue life, and 𝜶𝒋 and 𝜷𝒋 are constants to be determined
by experiments (usually isothermal fatigues) for a specific component/package
and solder joint. ∆𝑾𝒊 is the creep (or inelastic) strain energy density (or
accumulated equivalent creep strain) per cycle in the ith element determined from
finite element simulations, and Vi is the volume of that ith element.

The value of ∆𝑾𝒊 depends on the accuracy of material properties of the structure.
These include the solder joint, package, chip, PCB, and etc.

The value of ∆𝑾𝒊 also depends on the construction of the finite element model.
This includes finer mesh to capture the stress/strain concentration areas.

(1)

(2)

Lau, J. H., “State of the Art of Lead-Free Solder Joint Reliability”, ASME Transactions, Journal of Electronic Packaging, June 2021, pp. 1-36.
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Notes
In the literature, many authors called 𝑵𝒇 the reliability (number of thermal 
cycle) of solder joint. 

Actually, it should be emphasized that the reliability (𝑵𝒇) obtained from 
DFR and thermal fatigue life prediction equation, is not the same as the 
reliability (probability) obtained from reliability tests. 

For example, the life (number of cycles-to-failure) of the solder joints from 
reliability tests depends on the percent failed (or survived). Statistically, 
there are an infinite number of possible lives, e.g., the characteristic life is 
corresponding 63.2% failed (or 32.8% survived). 

On the other hand, the best one can do from DFR is to predict a (one) life 
of the solder joint for a given material and geometry of the structure, and 
given boundary condition, and from a thermal-fatigue life prediction 
model.

Lau, J. H., “State of the Art of Lead-Free Solder Joint Reliability”, ASME Transactions, Journal of Electronic Packaging, June 2021, pp. 1-36.
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Notes (Continue)
Many authors compare the reliability, 𝑵𝒇 (number of thermal cycle) to the 
cycle-to-failure at 1% failure from the reliability test. If they find the value of 
𝑵𝒇 is too big, then they compare to the cycle-to-failure at 50% or 63.2% 
failures from the reliability test. Actually, 𝑵𝒇 and the reliability from test are 
two different things and cannot be compared.

One more thing, many authors use finite element simulation to determine the
maximum value of ∆W and then substitute into Equation (1) and calculate the
𝑵𝒇. It should be emphasized that the calculated maximum value is acting only
at one point in an element (usually near the corner) of the solder joint. The
way what they do is (unknowingly) presuming that ∆W is uniformly distributed
through the whole volume of the solder joint. There is another thing, even
some authors don’t assume the uniformity of the ∆W, i.e., use Equation (2),
they still have to assume a crack propagation path of the solder joint to
calculate the Nf.

Finally, it should be pointed out that all the low-cycle thermal-fatigue life
prediction models for lead-free solder joints in the literatures have not been
experimentally (satisfactorily) verified. More works should be done in this
area.
Lau, J. H., “State of the Art of Lead-Free Solder Joint Reliability”, ASME Transactions, Journal of Electronic Packaging, June 2021, pp. 1-36.



SUMMARY AND RECOMMENDATIONS 
➢ Reliability engineering consists of three major tasks, namely, DFR (design for

reliability), reliability testing and data analysis, and failure analysis.
➢ Reliability of an interconnect (e.g., solder joint) of a particular package in an

electronic product is defined as the probability that the interconnect will
perform its intended function for a specified period of time under a given
operating condition without failure.

➢ Interconnect (e.g., solder joint) reliability should be determined by reliability
tests. The objective of reliability tests is to obtain failures (the more, the better)
and to best fit the failure data to estimate the parameters of a chosen
probability distribution, F(x). Once F(x) is estimated, the reliability, failure rate,
cumulative failure rate, average failure rate, mean-time-to-failure, etc., of the
interconnect are readily determined.

➢ The life distribution, F(x), is package/component dependent. Actually, it is also
affected by the chip size, solder alloy, type of pastes, PCB thickness, PCB
material, number of copper layer in PCB, reflow condition, solder joint volume,
voids in solder joint, test condition, continuity measurement, number of
measurement during each cycle, data acquisition system, failure criterions,
data analysis method, etc.

➢ Examples on using the Weibull and Lognormal life distributions for lead-free
solder joints under thermal-cycling and drop tests have been provided.

➢ True Weibull slope, true characteristic life, and true mean life have been briefly
mentioned.
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SUMMARY AND RECOMMENDATIONS 
➢ All the papers in the literature are dealing with liner acceleration, i.e., 𝒙𝒐 = 𝜶𝒙𝑻,

or 𝑵𝒐 = 𝜶𝑵𝑻, where α is the linear acceleration factor. Other accelerations and
factors have to be investigated.

➢ Linear acceleration factors for various lead-free solder alloys based on: (a)
frequency and maximum temperature, (b) dwell time and maximum temperature,
and (c) frequency and mean temperature have been presented.

➢ The advantages of DFR are to: (a) eliminate trial-and-error of reliability tests, (b)
provide insight into the physical, chemical, electrical, mechanical, and thermal
behaviors of the solder joints, e.g., failure location and failure mode, and (c)
provide comparison between material properties and structural geometries of
package, PCB, and solder joints.

➢ The most important property of DFR of solder joints is the constitutive equation
of the solder alloy.

➢ Norton power creep constitutive equations and examples for Au20Sn, Sn58Bi,
Sn3.8Ag0.7Cu, and Sn3.8Ag0.7Cu0.03Ce have been provided.

➢ Wises two power creep constitutive equations and examples for Sn3.5Ag and
Sn4Ag0.5Cu have been provided.

➢ Garofalo hyperbolic sine creep constitutive equations and examples for
Sn3.5Ag, Sn3Ag0.5Cu, Sn3.9Ag0.6Cu, Sn3.8Ag0.7Cu, Sn3.5Ag0.5Cu, and
Sn3.5Ag0.75Cu, Sn4Ag0.5Cu, Sn(3.5-3.9)Ag(0.5-0.8)Cu, 100In, Sn52In,
Sn3.8Ag0.7Cu0.03Ce, and Au20Sn have been provided.
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SUMMARY AND RECOMMENDATIONS 
➢ Anand viscoplasticity constitutive equations and examples for Sn3.5Ag,

Sn3Ag0.5Cu, Sn3.8Ag0.7Cu, Sn3.8Ag0.7CuCe, Sn3.8Ag0.7CuAl, Au20Sn,
Sn3.5Ag with temperature and strain rate dependent parameters, and
Sn1Ag0.5Cu, Sn2Ag0.5Cu, Sn3Ag0.5Cu, and Sn4Ag0.5Cu after extreme aging
have been provided.

➢ The above four types of constitutive equations can be input into the
commercial computer simulation codes such as ANSYS and ABAQUS.

➢ The constants αi and βi have to be determined (isothermal fatigue test) for a
specific component/package and solder alloy. However, how to relate the
isothermal fatigue to the low-cycle thermal fatigue is a key question need to be
answered. More research works need to be done in this area.

➢ The calculated value of ∆Wi depends on the accuracy of material properties of
the structures. These include the solder joint, package, PCB, etc.

➢ The accuracy of the calculated ∆Wi also depends on the construction of the
finite element model. This includes the finer meshes for the stress/strain
concentration areas of the solder joints.

➢ The reliability, 𝑵𝒇 (number of thermal cycle) obtained from DFR, e.g., Equations
(1) or (2), is not the same as the reliability (probability) obtained from reliability
tests. They cannot be compared.

➢ In this lecture, there is not any intention to present/propose thermal-fatigue life
prediction models for the determination of Nf (reliability) of lead-free solder
joints through the DFR. More new models and experimental works should be
done in this area.
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A. Reliability of 6-Side Molded Panel-
Level Chip-Scale Packages (PLCSPs)

B. Fan-Out (RDL-First) Panel-Level 
Hybrid Substrate for Heterogeneous 
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C. Development of High-Density Hybrid 
Substrate for Heterogeneous 
Integration



210

John H Lau, Cheng-Ta Ko, Chia-Yu Peng, Tzvy-Jang Tseng, Kai-Ming Yang, Tim 
Xia, Puru Bruce Lin, Eagle Lin, Leo Chang, Hsing Ning Liu, Curry Lin, Yan-Jun Fan, 

David Cheng, and Winnie Lu 

Unimicron Technology Corporation

Reliability of 6-Side Molded 
Panel-Level Chip-Scale Packages (PLCSPs)

➢ Lau, J. H., C. Ko, T. Tseng, K. Yang, C. Peng, T. Xia, P. Lin, E. Lin, L. Chang, H. Liu, and D. Cheng, “Panel-Level Chip-Scale 
Package with Multiple Diced Wafers”, IEEE Transactions on CPMT, Vol. 10, No. 7, July 2020, pp. 1110-1124.

➢ Lau, J. H., C. Ko, T. Tseng, T. Peng, K. Yang, T. Xia, P. Lin, E. Lin, L. Chang, N. Liu, C. Lin, D. Cheng, and W. Lu, “Six-Side Molded 
Panel-Level Chip-Scale Package with Multiple Diced Wafers”, IMAPS Transactions, Journal of Microelectronics and Electronic 
Packaging, Vol. 17, No. 4, December 2020, pp. 111-120.



211

CONTENTS➢ INTRODUCTION
➢ TEST CHIP AND TEST PACKAGE
➢ PROCESS FLOW IN FABRICATING THE 6-SIDE 

MOLDED PLCSP
➢ PCB ASSEMBLY OF THE PLCSPs
➢ THERMAL CYCLING TEST OF PLCSPs
➢ THERMAL CYCLING SIMULATION OF THE 

PLCSP PCB ASSEMBLIES
➢ SUMMARY

CONTENTS



Why use the Higher Cost 6-Side Molded PLCSP?

Because:
➢of the delamination of the dielectric layer in the front-side of 

the WLCSP, which is particularly true for advanced nodes  
(< 14nm process technology) products with fragile 
polyimides, 

➢of the back-side chipping and sidewall cracking due to the 
mechanical blade dicing the wafer, 

➢of the concern of the handling and SMT (surface mount 
technology) pick and place to damage the chip, and  

➢in automotive electronics, the trends are driving lead-free 
solder joint reliability for new functions such as the 
advanced driver-assistance systems (ADAS), under-the-
hood operations often require high sustained 
heating/cooling temperatures.

Why use the Higher Cost 6-Side Molded PLCSP?
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(a)Test chip. 
(b) Top-view of the test package.

5mm x 5mm

Cu pad

UBM

Cu-contact pad

PI1

PI2

Ф40/35

Ф110/50

130x130/70x70

8

Si

(a)

Test Chip
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(a)Test chip. 
(b) Top-view of the test package.

6-side Molded PLCSP
⚫ Package Size: 5mm X 5mm
⚫ RDL L/S : 20/20μm 
⚫ Via drill/Pad : 50/110μm
⚫ Ball pitch: 0.4mm
⚫ Ball Pad: 300μm
⚫ Ball SRO: 220μm
⚫ Ball Size: 200μm
⚫ Ball Count: 99 

Original Outer Pads RDLsFinal Pads

Solder Balls Mechanical (Dummy) BallsOriginal Inner Pads

Top-View of the Test Package
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Cross section of the 6-side molded PLCSP

PLCSP

6-side Molded PLCSP

Solder ball
MoldMold

6-side Molded PLCSP

Passivation
Cu-contact pad

Al or Cu Pad

Metal layer

ABF Passivation or solder mask

Dielectric layer

Metal layer of RDL
Dielectric layer (ABF) of RDL

Solder ball

ENEPIG

Not-to-Scale

Mold

Mold
Mold

Cross Section of the 6-Side Molded PLCSP



Key process steps in fabricating the PLCSP
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Laminate a TRF 
on a PCBPCB

TRF

Wafer 
Preparation

Cavities forming on 
another PCB and place 

it on top of the PCB 
with TRF. Then place 

the wafers through the 
cavities on top of the 

PCB with TRF.

Lamination of  
Ajinomoto 

Build-up Film 
(ABF) 

Laser drilling

Cu Pad 

Wafer

Passivation
Cu Stud 

PCB with cavities

PCB

PCB

Desmear 
and 

Electroless 
Cu 

Photoresist 
Dry film 

lamination

Laser direct 
imaging (LDI) 

and 
development

PCB Cu 
plating

PCB
PCB

ABF

PCB

Electroless Cu

PCB

Photoresist

PCB

Cu
RDL

Wafer



Continue to fabricate the 6-side molded PLCSP.
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ENEPIG 
surface 
finish, 
Wafer 

(thermal) 
Debonding 
from PCBs

Dry film strip 
and Cu seed 

etching

ABF 
Lamination, 

Laser 
drilling, 

Desmear

PCB

Cu
RDL

PCB

Cu
RDLABF

Cu
RDLABF

Solder 
ball

Cu
RDLABF

Solder 
Ball

Solder ball 
mounting

ENEPI
G

Silicon

Dice the wafer 
into individual
6-side molded 

packages

PCBPCB

Half-cut (350μm) 
of the Streets on 

the wafer
EMC (350μm) 
Lamination

Backgrind 
the Si wafer
Lamination of 
Backside EMC

PLCSP from 
PCB process

Plasma etch 
Front-side EMC

SMT assembly 
of the 6-side 

molded PLCSPs
On PCB
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(a) 3D-view of the 6-side molded PLCSP. 
(b) Cross section view of the 6-side molded PLCSP.

25μm111.2μm

72.8μm (ABF+EMC)

45.6μm

82.9μm (ABF+EMC)

ABF (25μm)

EMC 
(53μm) 

Various-View of the 6-side Molded PLCSP



Solder ball height. (a) Ordinary PLCSP. (b) 6-side molded PLCSP. (c) Ordinary 
PLCSP solder ball image. (d) 6-side molded PLCSP solder ball image.
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Mean BH = 
147.6μm

Mean BH = 
102.6μm

(c) (d)

Solder Mask (ABF): 
25μm

Ordinary PLCSP

Solder Ball150μm

Dielectric (ABF): 
25μm

Surface 
Finishing

Solder 
Ball

6-side Molded PLCSP

100μm

Solder 
Ball

EMC (ABF): 50μm

Dielectric (ABF): 
25μm

Solder Mask 
(ABF): 25μm 

(a) (b)

780μm
390μm

Not-to-scale



(a) Reflow profile. (b) Ordinary PLCSP. 
(c) 6-side molded PLCSP.
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Thermal cycling chamber, thermal couple, 
and data acquisition system.

TCT ChamberData Acquisition 
System (DAS)

Control Panel

Thermal Sensitive 
Resistor (TSR)

Thermal cycling chamber, thermal couple, and data 
acquisition system
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Test boards with 6-die molded PLCSPs and 
ordinary PLCSPs inside thermal cycling 

chamber.

Test boards with 6-die molded PLCSPs and 
ordinary PLCSPs inside thermal cycling 

chamber
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Thermal cycling temperature profile.
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TEST RESULTS OF THE 6-SIDE MOLDED PLCSP AT 
50%, 5%, AND 95% RANKS

S

Failure
Order

Cycles-to-
Failure

F(x)
Median 

(50%) Rank
90% Confidence

5% Rank 95% Rank

1 638 2.88 0.21 11.73
2 638 6.98 1.50 18.29
3 712 11.08 3.50 23.98
4 712 15.17 5.90 29.23
5 788 19.27 8.59 34.18
6 872 23.37 11.49 38.91
7 872 27.46 14.57 43.47
8 872 31.56 17.80 47.87
9 872 35.66 21.26 52.14
10 872 39.75 24.64 56.29
11 872 43.85 28.24 60.32
12 872 47.95 31.94 64.24
13 872 52.04 35.76 68.06
14 1096 56.14 39.68 71.76
15 1096 60.24 43.71 75.36

Sample Size = 24  Failed = 15

Test Results of the 6-Side Molded PLCSP at 
50%, 5%, and 95% Ranks
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Weibull plot of the 6-side molded PLCSP 
solder joint at median rank.

Characteristic life = 1,037 cycles
Weibull Slope = 5.53
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Weibull plot of the 6-side molded PLCSP 
solder joint at median rank
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Weibull plot of the 6-side molded PLCSP 
solder joint at 90% confidence.

12001000
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At 90% Confidence 
& 63.2% Failed:
𝜷50 = 5.53; θ50 = 1037 cycles
𝜷5 = 8.38; θ5 = 1069 cycles
𝜷95 = 4.05; θ95 = 958 cycles

500

The true characteristic life 
(θt) at 90% confidence is:

958 ≦θt ≦1,069 cycles.

The true Weibull slope (βt) 
at 90% confidence is:

3.93 ≦ βt ≦ 7.13.

Weibull plot of the 6-side molded PLCSP 
solder joint at 90% confidence
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Failure location and failure mode of the 
6-side molded PLCSP solder joints.

A B C E F G H ID6-side Molded PLCSP
EMC

EMC

EM
C

EMCEMC

Cu-pad on PCBCu-pad on PCB

Solder Joint Solder Joint
Crack Crack

RDL

Cu-pad on 6-side Molded PLCSP Cu-pad on 6-side Molded PLCSP

Failure location and failure mode of the 
6-side molded PLCSP solder joints
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TEST RESULTS OF THE ORDINARY PLCSP AT 
50%, 5%, AND 95% RANKS

Sample Size = 48  Failed = 48

Failure Order Cycles-to-
Failure

F(x)

Median 
(50%) Rank

90% Confidence

5% Rank 95% Rank

1 155 1.44 0.11 6.05

2 177 3.51 0.75 9.51

3 180 5.57 1.73 12.54

4 186 7.64 2.90 15.37

5 193 9.70 4.20 18.06

6 195 11.77 5.59 20.66

7 199 13.84 7.05 23.19

8 200 15.90 8.57 25.65

9 203 17.97 10.15 28.07

10 205 20.04 11.76 30.44

11 213 22.10 13.42 32.77

12 213 24.17 15.10 35.07

13 250 26.23 16.83 37.34

14 250 28.30 18.57 39.57

15 250 30.37 20.35 41.78

16 250 32.43 22.15 43.97

17 250 34.50 23.98 46.13

18 250 36.56 25.83 48.27
19 300 38.63 27.70 50.38

20 300 40.70 29.59 52.48

21 300 42.76 31.50 54.55

22 300 44.83 33.43 56.60

23 300 46.90 35.39 58.63

24 300 48.96 37.36 60.65

25 350 51.03 39.35 62.64

26 350 53.09 41.37 64.61

27 350 55.16 43.40 66.57

28 350 57.23 45.45 68.50

29 350 59.29 47.52 70.41

30 350 61.36 49.62 72.30

31 400 63.43 51.73 74.17

32 400 65.49 53.87 76.02

33 400 67.56 56.03 77.85

34 400 69.62 58.22 79.65

35 400 71.69 60.43 81.43

36 400 73.76 62.66 83.17

37 450 75.82 64.93 84.90

38 450 77.89 67.23 86.58

39 450 79.16 69.56 88.24

40 450 82.02 71.93 89.85

41 450 84.09 74.35 91.43

42 450 86.15 76.81 92.95

43 500 88.22 79.4 94.41

44 500 90.29 81.94 95.80

45 500 92.35 84.63 97.10

46 500 94.42 87.46 98.27

47 500 96.48 90.49 99.25

48 500 98.55 93.95 99.89

Test Results of the Ordinary PLCSP at 
50%, 5%, and 95% Ranks
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Weibull plot of the ordinary PLCSP 
solder joint at median rank
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Characteristic life = 368 cycles
Weibull Slope = 3.34

Weibull plot of the ordinary PLCSP 
solder joint at median rank
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Weibull plot of the ordinary PLCSP 
solder joint at 90% confidence.
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At 90% Confidence &
63.2% Failed:
𝜷50 = 3.3; θ50 = 368 cycles
𝜷5 = 4.1; θ5 = 403 cycles
𝜷95 = 2.9; θ95 = 326 cycles

The true characteristic 
life (θt) at 90% 
confidence is:

326 ≦θt ≦403 cycles.

The true Weibull slope (βt) 
at 90% confidence is:

2.6 ≦ βt ≦ 4.1.

Weibull plot of the ordinary PLCSP 
solder joint at 90% confidence
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Failure location and failure mode of the 
ordinary PLCSP solder joints.

PLCSP

PLCSP RDL

RDL

Solder JointSolder Joint

Cu-pad on PCBCu-pad on PCB

CrackCrack

RDL

Cu-pad on PLCSPCu-pad on PLCSP

PCBPCB

Failure location and failure mode of the ordinary 
PLCSP solder joints
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Comparison between the 6-side Molded PLCSP 
and the Ordinary PLCSP solder joints

S

100 15001000
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6-side 
PLCSP

Ordinary  
PLCSP

Mean Life
(330 cycles)

Mean Life
(958 cycles)

47.5%

50.2% In 999 out of one 
thousand cases the 
mean life of the 
6-side molded PLCSP 
solder joint is superior 
(by 2.9 times) to the 
ordinary PLCSP.

Comparison between the 6-side Molded PLCSP 
and the Ordinary PLCSP solder joints
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Geometry and boundary-value problem.

10mm

10
m

m

PCB

6-side Molded PLCSP

5mm

5m
m

6-side Molded PLCSP

Solder Balls
Mol

d

Mol
d
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Geometry and Boundary-Value Problem
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Finite element model for simulations.

Fine mesh

Coarse mesh

Fine mesh

Fine mesh

Coarse mesh

Coarse mesh

Corner solder joint

Finite Element Model for Simulations
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MATERIAL PROPERTY
Materials CTE 

(10-6/oC)
Young’s 
Modulus 

(GPa)

Poisson’s 
Ratio

Copper 16.3 121 0.34

PCB αx = αy = 18
αz = 70

Ex = Ey = 22
Ez = 10

0.28

Silicon 2.8 131 0.278

Solder 21 + 0.017T 49 - 0.07T 0.3

ABF 7.0 7.0 0.3

T is in Celsius

Materials Property
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Accumulated creep strain at the 
corner solder joint of the 6-side molded PLCSP. 
PLCSP PCB assembly. (a) At 85oC (450s). (B) At -

40oC (2,250s).

Max.

0.038 Max

0.034
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0.029
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0.021
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0.008

0.004
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0.096 Max

0.086

0.065

0.075

0.000 Min

0.054

0.043

0.033

0.022

0.011

Accumulated creep strain at the 
corner solder joint of the 6-side molded PLCSP 
PCB assembly. (a) At 85oC (450s). (b) At -40oC 

(2,250s).

(a) (b)
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Accumulated creep strain at the 
corner solder joint of the ordinary PLCSP. 
PCB assembly. (a) At 85oC (450s). (B) At -

40oC (2,250s).
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Accumulated creep strain at the 
corner solder joint of the ordinary PLCSP. PCB 

assembly. (a) At 85oC (450s). (b) At -40oC (2,250s).

(a) (b)
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SUMMARY

➢ PCB assemblies of the 6-side molded PLCSP and the ordinary PLCSP have 
been subjected to thermal cycling test (-55oC ⇆ 125oC, 50-minute cycle). 
The sample size of the 6-side molded PLCSP is 24 and that of ordinary 
PLCSP is 48. The test stopped at 1,300 cycles. There were 15 failures of the 
6-side molded PLCSP samples and 48 failures of the ordinary PLCSP 
samples.

➢ The failure criterion is when the resistance of the daisy chain of the PLCSP 
PCB assembly increases by 50%. 

➢ For median rank, the Weibull slope and the characteristic life of the 6-side 
molded PLCSP solder joints are, respectively 5.53 and 1,037 cycles. For 
90% confidence, the true Weibull slope is 3.93 ≦ βt ≦ 7.13 and the true 
characteristic life is 958 ≦θt ≦1,069 cycles.

➢ The failure location of the 6-side molded PLCSP is along the outer row (near 
the corner) of solder joints. The failure mode is the cracking of solder near 
the interface between the PCB and the bulk solders.

➢ For median rank, the Weibull slope and the characteristic life of the ordinary 
PLCSP solder joints are, respectively 3.34 and 368 cycles. For 90% 
confidence, the true Weibull slope is 2.6 ≦ βt ≦ 4.1 and the true 
characteristic life is  326 ≦ θt  ≦403 cycles.

➢ The failure location of the ordinary PLCSP is along the outer row (near the 
corner) of solder joints. The failure mode is the cracking of solder near the 
interface between the chip and the bulk solders.

SUMMARY
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SUMMARY
➢ By comparing the mean life between the 6-side molded PLCSP solder joint (958 cycles) 

with the ordinary PLCSP solder joints (330), it has been determined that in 999 out of 
one thousand cases, the mean life of the 6-side molded PLCSP is 2.9 times of the 
ordinary PLCSP.

➢ A non-linear time and temperature dependent 3D finite element simulation of the 6-side 
molded PLCSP PCB assembly showed that the maximum accumulated creep strain 
occurs near the interface between the PCB and the bulk solders. Thus, any failure 
should occur (initially) at this location. This confirms with the failure mode from the 
thermal cycling test results.

➢ The simulation of the ordinary PLCSP PCB assembly showed that the maximum 
accumulated creep strain occurs near the interface between the chip and the bulk 
solders. Thus, any failure should occur (initially) at this location. This confirms with 
the failure mode from the thermal cycling test results.

➢ The reason for the switch of the failure mode from the interface between the PCB and 
the bulk solders (for the 6-side molded PLCSP) to the interface between the chip and 
the bulk solders (ordinary) is because there is protection of the upper solder joint from 
the EMC molding.

➢ The maximum values of the accumulated creep strain in the corner solder joint for the 
6-side molded PLCSP and the ordinary PLCSP are about the same. However, this 
maximum values only occurred at a very small volume of the 6-side molded PLCSP 
solder joint. The accumulated creep strain in most of the volumes of the 6-side molded 
solder joint is smaller than those in the ordinary PLCSP solder joins. Thus, the 
thermal-fatigue life of the 6-side molded PLCSP should be longer than that of the 
ordinary PLCSP.

SUMMARY
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INTRODUCTION
The 2.3D IC integration is defined as fabricating a coreless organic 

interposer (substrate) on top of a build-up package substrate.

HBM_Functional

µbump
HBM_Mechanical

Organic
Interposer

C4 Bumps

Die2Die1

Package Substrate
RDLs

EMC

ASE’s FOCoS (Chip-First) 
ECTC2016

Underfill Solder Balls C4 bumpsC4 
Bumps

Underfill

ASE’s FOCoS (Chip-Last) 
ECTC2020

Cisco SAP/PCB
ECTC2016

Package Substrate

C4 Bumps

μBumps
Die1 Die2 RDLs

EMC

Underfill

PCB

Underfill

INTRODUCTION
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INTRODUCTION
Chip-First (Face-Down), 

e.g., eWLB
Chip-First (Face-Up),  

e.g., In_FO
Chip-Last

(RDL-First), e.g., SiWLP
Chip Size ≦ 5 x 5mm1 ≦ 12 x 12mm1 ≦ 20 x 20mm

Package Size ≦ 10 x 10mm2 ≦ 25 x 25mm2 ≦ 40 x 40mm
RDL (Metal L/S) ≦ 10μm ≦ 5μm ≧ 2μm or < 1μm3

RDL (Layers) ≦ 3 ≦ 4 ≦ 6
Wafer bumping No No Yes

Chip-to-substrate bonding No No Yes
Underfill or MUF No No Yes
Process steps Simple Slightly more More

Cost Low Middle High
Performance Low Middle High
Applications Baseband, MCU, 

RF/analog, PMIC, etc.
Apple’s Application 

processors
High-performance and 

high-density (Not in HVM)

1Limited by die shift; 2Limited by warpage; 3With PECVD, Cu damascene + CMP

INTRODUCTION



Test chips: 10mm x 10mm and 5mm x 5mm 
with 50μm-pitch.

Unit: μm

Si-Wafer

Not-to-Scale

50

32

20

22

15

40

40
775

5
5

Cu

SnAg
Ni

400 @ 10mm x 10mm chips
804 @ 5mm x 5mm chips

Si

10mm x 10mm chip

300mm wafer

50μm

Test chips: 10mm x 10mm and 5mm x 5mm 
with 50μm-pitch.
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(a) Schematic of the test package. (b) Assembled test package. Chips are bonded 
on the hybrid substrate which consists of the (20mm x 15mm) fine metal L/S 

RDL- substrate and (23mm x 23mm) build-up substrate.
(a) .

Chip 1
Chip 2

(a)

Chip 1 Chip 2

Build-up substrate

Fine metal L/S RDL-substrate

Underfill

(b)

(a) Schematic of the test package. (b) Assembled test 
package. Chips are bonded on the hybrid substrate which 

consists of the (20mm x 15mm) fine metal L/S RDL- substrate 
and (23mm x 23mm) build-up substrate.
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Pad

Pad

EMC
Chip 1 Chip 2

Cu
Solder Cap

Pad
RDL1
RDL2
RDL3

DL01

DL12

DL23

ML1

ML2

ML3
C4 bump

Build-up Package Substrate

Solder 
BallNot-to-scale

μbump

Underfill

Underfill

Solder Mask

Solder Mask

Pad

Schematic of the cross section of the 
heterogeneous integration test package



247

(a) Panel for fabricating the RDL-substrate and the 
assembled one. (b) Fine metal L/S RDL-substrate. 

25
7.

5m
m

255mm

154 @ 20mm x 15mm RDL-substrates

510m
m

51
5m m

(b)

Pad

Pad

RDL1
RDL2
RDL3

DL01

DL12

DL23

ML1

ML2

ML3 Solder Mask
◆ Pad diameter = 36μm; Pad thickness = 6μm
◆ Via opening: V01 = 10μm; V12 = 20μm; V23 = 18μm 
◆ Dielectric thickness: DL01 = 3μm; DL12 = 6μm; DL23 = 4μm
◆ Metal thickness: ML1 = 3μm; ML2 = 5μm; ML3 = 5μm
◆ L/S: ML1 = 2/2μm; ML2 = 5/5μm; ML3 = 10/10μm and ball pad = 105μm
◆ Solder Mask opening = 80μm; Thickness (DL3B) = 2μm 

V01

V12

V23

DL3B

(a)

(a) Panel for fabricating the RDL-substrate and the 
assembled one. (b) Fine metal L/S RDL-substrate. 



(a) Schematic of the top-view of RDL-substrate. (b) 
Top-view of the fabricated RDL-substrate.                 

(c) Schematic of the bottom-view of RDL-substrate. 
(d) Bottom-view of the fabricated RDL-substrate.

.
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20mm
15

m
m

10
m

m

5m
m

10mm

5mm

3592 pads
1072 pads

20mm

15
m

m

➢ Number of pads = 
4039 

➢ Pitch = 225μm
➢ Pad size = 105μm 
➢ Pad opening = 80μm

(a)

(b)

(c)

(d)
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Key process steps to fabricate the hybrid substrate 
(fine metal L/S RDL-substrate + build-up substrate)

DL01 : Photosensitive Polyimide (PID)

Temporary Glass Carrier

Released Film & PVD Seed Layer

Pad : Photoresist & LDI

Pad : ECD (Plating) Cu

Pad : Strip-off Photoresist

DL01 : LDI

ML1 : TiCu (Seed Layer) Sputtering

ML1 : Strip Photoresist & Etch TiCu

ML1 : Photoresist & LDI

ML1 : Plating Cu

Surface Finish (ENEPIG)

DL3B : PID Coating & LDI

Repeat the above processes 
to get ML2 and ML3

Temporary Glass Carrier

In parallel, make the build-up 
substrate with solder bump

Hybrid substrate formation

Build-up substrate

Hybrid Substrate 

Underfill and glass debond to expose the Cu-pad

Temporary Glass Carrier

Key process steps to fabricate the hybrid substrate 
(fine metal L/S RDL-substrate + build-up substrate)

Key process steps to fabricate the hybrid substrate 
(fine metal L/S RDL-substrate + build-up substrate)



Cross sections of SEM image of 
RDL-substrate. 
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2-2-2 build-up package substrate panel. (a) Schematic. 
(b) Panel size. (c) Cross section image. (d) Tow- view 

of the fabricated build-up substrate. (e) Bottom-view of 
the fabricated build-up substrate.

251

510mmx510m
m Panel

(e)(d)

(c)(b)(a)

0.225mm

PT
H
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Individual build-up package substrate. (a) Schematic of the top-view of the build-up 
substrate. (b) Top-view of the fabricated build-up substrate. (c) Schematic of the bottom-

view of the build-up substrate. (d) Bottom-view of the fabricated build-up substrate.

23mm

23
m

m

23mm
23

m
m

(a)

(b)

(c)

(d)

Individual build-up package substrate. (a) Schematic of the 
top-view of the build-up substrate. (b) Top-view of the 

fabricated build-up substrate. (c) Schematic of the bottom-
view of the build-up substrate. (d) Bottom-view of the 

fabricated build-up substrate.
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SEM images of the fabricated 2-2-2 build-up 
package substrate with C4 bumps.

Build-up package substrate

225μm

30μm

Build-up layer

Top-side

Bottom-side

SEM images of the fabricated 2-2-2 build-up 
package substrate with C4 bumps.



Shadow Moire warpage measurement of build-up 
substrate (BU), fine metal L/S RDL-substrate on 

glass carrier RDL(G), and fine metal L/S RDL-
substrate on organic carrier RDL(O).
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30oC 100oC 150oC 180oC 200oC 220oC 240oC 260oC 240oC 220oC 200oC 180oC 150oC 100oC 30oC

BU 16.9 -12.8 -16.2 -19.7 -17.8 -20.2 -23.1 -20 -17.1 -18.8 -15.5 -16.5 -16.8 16.1 19.1

RDL(O) 41.7 -19.9 -51.5 -82.8 -101 -110.3 -125.9 -138.3 -135.6 -129.2 -117.4 -110.8 -92.9 -64.9 -35.8

RDL(G) 4 -8 -7 4 4 4 -4 6 6 4 5 6 5 5 5

-160

-140

-120

-100

-80

-60

-40

-20

0

20

40

60

W
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e
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μ
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Hybrid substrate = fine metal L/S RDL-substrate 
soldered on top of the build-up package substrate.

Build-up package 
substrate

Fine metal L/S 
RDL-substrate

Site for Large chip 
(Chip 1)

Site for Small chip 
(Chip 2)

Hybrid substrate = fine metal L/S RDL-substrate 
soldered on top of the build-up package substrate.
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Cross section image of the 
hybrid substrate

Build-up package substrate

Fine metal L/S RDLsC4 bump Underfill

Build-up layer

Glass carrier

Cross section image of the 
hybrid substrate
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Close-up look at the cross section SEM 
images of the hybrid substrate.

C4 bump

C4 bump

Underfill

Underfill

RDLs

RDLs

Cu pad

Cu pad

Build-up substrate

Build-up substrate

Solder Mask

Cu pad

Solder Mask

Close-up look at the cross section SEM images of 
the hybrid substrate
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Heterogeneous integration of 2-chip package on the hybrid 
substrate = fine metal L/S RDL-substrate + build-up substrate.

CHIP

Cu

Solder
Daisy-ChainUnderfill

RDLs

C4 Bump

Build-up Package Substrate

Build-up Layers

Underfill

50μm

Solder Mask Pad

Heterogeneous integration of 2-chip package on 
the hybrid substrate = fine metal L/S RDL-

substrate + build-up substrate.
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The structure and μbump joints and 
solder joints.

RDL-Substrate
(Equivalent block)

Cu-pillar

32μm

22μm

18μm

32μm

32um

μbumps under chips 

PCB

CuSR (PCB)

80μm

RDL-Substrate
(Equivalent block)

Underfill
Solder joint under RDL 

A B C Dμbumps: FESolder joints: 

Chip 1 Chip 2

Build-up Substrate

A B C

E F

D

A and B are the μbumps under Chip 1. C and D are the μbumps under Chip 2. 
E and F are the solder joints under the RDL-substrate.

RDL-Substrate

The structure and μbump joints and 
solder joints
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Finite element modeling of the PCB assembly of 
heterogeneous integration of 2 chips on hybrid substrate.

Chip 1 Chip 2

μbump B μbump 
C

Chip 1

100μm 
gap

Underfill

Chip 2

RDL-Substrate

PCB

Chip 2A B C

E F

D

A and B are the μbumps under Chip 1. C and D are the μbumps under Chip 2. 
E and F are the solder joints under the RDL-substrate.

RDL-Substrate
Chip 1

Build-up Substrate

Finite element modeling of the PCB assembly of 
heterogeneous integration of 2 chips on hybrid substrate
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Material Properties for simulationMaterials CTE 
(10-6/oC)

Young’s 
Modulus (GPa)

Poisson’s 
Ratio

Copper 16.3 121 0.34
PCB αx = αy = 18

αz = 70
Ex = Ey = 22

Ez = 10
0.28

Solder Mask (RDL) 60 2.1 0.3

Solder 21 + 0.017T(oC) 49 - 0.07T(oC) 0.3
EMC(PID) 60 2.1 0.3

Silicon 2.8 131 0.278
Solder Mask (PCB) 39 4.1 0.3

RDL Equiv. block 35.58 68.54 0.32
Underfill 50 4.5 0.35

𝑑𝜀

𝑑𝑡
= 500000 𝑠𝑖𝑛ℎ(0.01𝜎) 5𝑒𝑥𝑝 −

5800

𝑇
The constitutive equation of solder:
where T is in Kelvin and σ is in MPa.

Material Properties for simulation



Temperate boundary condition
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➢The temperature is −40 ⇆ 85oC. 
➢The cycle time is 60 min.
➢The ramp-up, ramp-down, dwell-at-hot, and dwell-at-cold are each 15 min.
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Deformed shape (color contours) and un-deformed shape 
(dark lines). (a) At 450s (85oC). (b) At 2250s (-40oC).

(a)

(b)

450s (85oC)

2250s (-40oC)

Deformed shape (color contours) and un-deformed 
shape (dark lines). 

(a) At 450s (85oC). (b) At 2250s (-40oC).
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Accumulated creep strain contour distributions in μbump 
joints A, B, C, and D, and solder joints E and F.

Chip 1 Chip 2A B C

E F

D

A and B are the μbumps under Chip 1. C and D are the μbumps under Chip 2. 
E and F are the solder joints under the RDL-substrate.

RDL-Substrate

μbump under 
Chip 1

μbump under 
Chip 2

Solder Joint under 
RDL

A

B

C

D

Max.

Ma
x.

Ma
x.

Max.

E
Max.

F
Max.

A

B

C

D

Ma
x.

Max.

Max.
E

Max.

F
Ma
x.

Max.

(a)

(b)

450s (85oC)

2250s (-40oC)

Build-up Substrate

Accumulated creep strain contour distributions in 
μbump joints A, B, C, and D, and solder joints E and F.
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Accumulated creep strain time-history in μbump 
joints A, B, C, and D, and solder joints E and F.

0.00

0.05

0.10

0.15

0.20

0.25

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

ubump A:3.925%(per cycle)

ubump B:3.388%(per cycle)

ubump C:4.827%(per cycle)
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μbump A: 3.9% per cycle
μbump B: 3.4% per cycle
μbump C: 4.8% per cycle
μbump D: 3.9% per cycle
Solder bump E: 0.88% per cycle
Solder bump F: 0.87% per cycle

C

A D

B

E F

Chip 2A B C

E F

D

A and B are the μbumps under Chip 1. C and D are the μbumps under Chip 2. 
E and F are the solder joints under the RDL-substrate.

RDL-SubstrateChip 1

Build-up Substrate

Accumulated creep strain time-history in μbump 
joints A, B, C, and D, and solder joints E and F.



266

Creep strain energy density contour distributions in 
μbump joints A, B, C, and D, and solder joints E and F.

Build-up Substrate

Chip 1 Chip 2
A B C

E F

D

A and B are the μbumps under Chip 1. C and D are the μbumps under Chip 2. E and F are the solder 
joints under the RDL-substrate.

RDL-Substrate

μbump under Chip 1 μbump under Chip 2 Solder joint under RDL

A

B

C

D

E

F

Max.

Max.

Max.

Ma
x.

Max.

Max.

A

B

C

D

E

F

Max.

Max.

Max.

Max.

Max.

Max.

(a)

(b)

450s (85oC)

2250s (-40oC)

Build-up Substrate

Creep strain energy density contour distributions in 
μbump joints A, B, C, and D, and solder joints E and F
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Creep strain energy density time-history in μbump joints 
A, B, C, and D, and solder joints E and F.

Build-up Substrate
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μbump A: 1.61MPa per cycle
μbump B: 1.36MPa per cycle
μbump C: 2.06MPa per cycle
μbump D: 1.58MPa per cycle
Solder bump E: 0.27MPa per cycle
Solder bump F: 0.27MPa per cycle

C

A D

B

E F

Chip 2A B C

E F

D

A and B are the μbumps under Chip 1. C and D are the μbumps under Chip 2. 
E and F are the solder joints under the RDL-substrate.

RDL-SubstrateChip 1

Build-up Substrate

Creep strain energy density time-history in μbump joints A, B, 
C, and D, and solder joints E and F.
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SUMMARY

Build-up Substrate

➢The feasibility of the design, materials, process, fabrication, and reliability of 
a heterogeneous integration of two chips with 50μm-pitch on a hybrid 
substrate by a fan-out chip-last (or RDL-first) panel-level packaging has been 
demonstrated.

➢ In order to increase throughput, the fine metal L/S (2μm/2μm) RDL-substrate 
has been fabricated on a 515mm x 510mm temporary glass panel.

➢The hybrid substrate has been fabricated by soldering the fine metal L/S 
RDL-substrate on top of a build-up package substrate and underfilled.

➢The 50μm-pitch microbumped chips are bonded to the hybrid substrate and 
underfilled. There is not any carrier transferred.

➢Reliability of the heterogeneous integration of two chips on the hybrid 
substrate assembly has been demonstrated by the thermal cycling 
simulation. It is found that: (a) the maximum accumulated creep strain pre 
cycle and creep strain energy density per cycle of the microbump solder 
joints between the chips and the RDL-substrate is larger than that between 
the RDL-substrate and the build-up package substrate, and (b) the maximum 
values of the accumulated creep strain per cycle and the creep strain energy 
density pre cycle are too small to create reliability concerns in most 
operating conditions.

SUMMARY
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20mm

2
0

m
m

Chip 1

Chip 2B

C
hi

p 
2A

Chip Chip

Solder BallNot-to-scale

Fine metal 
L/S RDL-
substrate

Build-up 
substrate or HDI 

Interconnect-
Layer 

Flip chip with 
μbump

Top-view and cross-section view of chiplets 
heterogeneous integration on hybrid substrate
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300μmϕ350μm

HDI PCB
(8-layer, ~1mm)

Conductive Paste

Prepreg

100μmϕ

80μmϕ

Interconnect- Layer 
(~60μm) V

ia

Fine metal L/S RDL-
substrate (~37μm)

300μmϕ350μm

Not-to-scale

2/2μm5/5μm

Chip 2Chip 1
Cu

Solder Cap
Chips with μbump

60μm

Key parts of the test package
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Schematic of the test chips
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RDLs Key Elements of RDL Line width/ 
Spacing (L/S)

Thickness
(H)

Via Dia. 
(T/B)

RDL1

ML1 (Metal layer 1) 2/2μm 2.5μm NA

DL01 (Dielectric layer between Pad and ML1) NA 7.5μm NA

V01 (Via opening between contact Pad and ML1) NA NA 17/10μm

RDL2

ML2 (Metal layer 2) 5/5μm 3.5μm NA

DL12 (Dielectric layer between ML1 and ML2) NA 6.5μm NA

V12 (Via opening between ML1 and ML2) NA NA 32/25μm

RDL3

ML3 (Metal layer 3) (PAD) NA 5μm NA

DL23 (Dielectric layer between ML2 and ML3) NA 5μm NA

V23 (Via opening between ML2 and ML3) NA NA 32/25μm

RDL1

RDL2

RDL3

DL01

DL12

DL23

ML1

ML2

ML3

Pad
V01

V12

V23

Pad thickness = 7μmPad diameter = 35μm

PAD

PAD diameter = 300μm PAD thickness = 5μm

Fine metal L/S 3-layer RDL-substrate
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132

77

20 20

(a)

(b) (c)

(a) Panel for making the RDL-substrates.
(b) Top-view. (c) Bottom-view
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Glass Carrier

ML3: Stripping and Etching

Released Film and 
Seed Layer Coating

ML2: Photoresist and LDI

ML1: Seed Layer Sputtering

ML1: Photoresist and LDI

DL12: PID Coating and LDI

ML2: Plating Cu

ML2: Stripping and Etching

DL23: PID Coating and LDI

ML3: Photoresist and LDI

ML2: Seed Layer Sputtering

Pad: Photoresist and LDI

DL01: PID Coating and LDI

ML1: Plating Cu

ML1: Stripping and Etching

Pad: Seed Layer Sputtering

ML3 (PAD): Plating Cu

Released Film Seed Layer 

Organic panel and adhesive 
Lamination

Glass Debond

Pad: Stripping and 
seed layer etching

Pad: Plating Cu

Key process steps in making the RDL-substrate
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Glass Carrier

20mm
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m

Bonging pads for Chip 1 
and Chip 2A & 2B

20mm
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Chip 1
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C
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Glass panel for making the RDL-substrate
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MR: 
X1000

MR: 
X1000

MR: 
X1000

MR: X500

OM images of the RDL-substrate (top-side)
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ML1

Contact Pad

ML2

ML3 (PAD)

Typical OM image of the Cross Section of the RDL-
substrate
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7.92 7.72

2.842.83 5.61

1.91 1.98 1.91 1.78

2.31 2.37 2.37

3.1 3.1ML1

ML2

ML3 (PAD)

Units in μm

Cross section SEM image of the RDL-substrate
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PP

Laser Drill Via

Conductive Paste 
Printing

PP

Strip-off PET

PP

Prepreg (PP)

Polyester (PET)  Lamination

PET
Via

β-StageConductive Paste

Interconnect-Layer

PP with vias 
(no conductive paste)

PP with vias 
filled with conductive paste

Interconnect-layer (PP and paste are in β-stage)
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Category Layer Material Item Diameter/
Width (μm)

Thickness  
(μm)

HDI

L1 Cu Pad Dia. 300 22

PP 1067 Bottom Dia. 100 55

L2 Cu Pad Dia. 200/400 25

PP 1067 Bottom Dia. 250 60

L3 Cu Pad Dia. 400 17

Core MTH Dia. 250 254

L4 Cu Pad Dia. 400 17

PP 1067 Bottom Dia. 250 55

L5 Cu Pad Dia. 400 17

Core MTH Dia. 250 254

L6 Cu Pad Dia. 400 17

PP 1067 Bottom Dia. 250 60

L7 Cu Pad Dia. 200/400 25

PP 1067 Bottom Dia. 100 55

L8 Cu Pad Dia. 200 22

SR Bottom Dia. 600 20

HDI Total Thickness 975

HDI PCB Materials and Specifications
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(a) Glass panel for making the RDL-substrate. 
(b) RDL-substrate with organic panel without glass panel.

Glass Carrier

Organic panel (100 μm )

adhesiv
e (25μm)

(a) (b) 283



Adhesive Plasma Etching

Dry Film Stripping

Organic panel debonding

Cu Foil Etching
Surface Finishing

Hybrid Substrate Pre-Bonding 

Hybrid Substrate Lamination 
and Dry Film Lamination

Process steps in making the hybrid substrate
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8-layer HDI

Interconnect-layer

Fine metal L/S 
RDL- substrate

Conductive Paste Prepreg

ML1 ML2 ML3

A typical cross section of the hybrid substrate
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Conductive paste

Fine metal L/S 
RDL Interposer

HDI

ML1 ML2
ML3

Prepreg

ML1 (2/2μm)
ML2 (5/5μm)

Conductive paste

ML3 (300μm) PAD

Prepreg
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Drop Tower

Hybrid Substrate Test Board

4-wire Measurement

Drop test set-up and measurement
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Materials CTE (10-6/oC) Young’s Modulus
(GPa)

Poison’s 
Ratio

Copper 16.3 121 0.34

HDI PCB αx = αy = 18
αz = 70

Ex = Ey = 22
Ez = 10 0.28

Silicon (Chip) 2.8 131 0.278
EMC 10 (< 150oC) 19 0.25

Solder 21 + 0.017T 49 – 0.07T 0.3
RDL Substrate 27.9 47.8 0.3

Conductive Paste 19.01 20.33 0.3
Prepreg (Interconnect-layer) 15 26 0.39

Underfill 50 4.5 0.35

𝑑𝜀

𝑑𝑡
= 500000 sinh(0.01𝜎) 5exp −

5800

𝑇

where T is in Kevin and σ is in MPa.

where T is in Celsius
The constitutive equation for solder is:

MATERIAL PROPERTIES
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85oC (450s)

-40oC (2250s)

(a)

(b)

Unit: μm

Unit: μm

Structural deformation during the first thermal cycle. 
(a) At 85 ◦C (450 s). (b) At −40 ◦C (2250 s)
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(a) 85oC (450s)

(b) -40oC (2250s)

Units: MPa

Von Mises stress acting at the via filled with 
conductive paste. (a) 85 ◦C (450 s). (b) −40 ◦C (2250 s)
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85oC (450s) 85oC (450s)

-45oC (2250s) -45oC (2250s)

(a) (b)

Accumulated creep strain at solder joint A during the 
first thermal cycle. 

(a) At 85 ◦C (450 s). (b) At −40 ◦C (2250 s)
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(a) (b)

Creep strain energy density at solder joint A during 
the first thermal cycle. 

(a) At 85 ◦C (450 s). (b) At −40 ◦C (2250 s).
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SUMMARY
➢ A high-density organic hybrid substrate for chiplets heterogeneous

integration has been developed. This hybrid substrate consists of
three major parts, namely the fine metal L/S RDL-interposer, the
interconnect-layer, and the HDI PCB.

➢ The fine metal L/S RDL-interposer with a minimum L/S = 2μm has been
fabricated by a fan-out panel-level RDL-first process.

➢ The interconnect-layer has been fabricated by the PP and vias filled
with conductive paste in β-stage.

➢ The 8-layer HDI PCB has been fabricated by the conventional process.
➢ The hybrid substrate has been formed by thermocompression and the

interconnect-layer become in C-stage.
➢ Hybrid substrate characterizations such as OM, x-ray, and SEM

demonstrated that the interconnect-layer (both conductive paste and
prepreg), MLs, pad for chip bonding, daisy-chains on PCB, etc. are
properly fabricated. Continuity checks of the hybrid substrate have
been passed.
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Thank You Very Much for Your 
Attention!

☺
305


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216: Key process steps in fabricating the PLCSP
	Slide 217: Continue to fabricate the 6-side molded PLCSP.
	Slide 218
	Slide 219: Solder ball height. (a) Ordinary PLCSP. (b) 6-side molded PLCSP. (c) Ordinary PLCSP solder ball image. (d) 6-side molded PLCSP solder ball image.
	Slide 220: (a) Reflow profile. (b) Ordinary PLCSP.  (c) 6-side molded PLCSP.
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248: (a) Schematic of the top-view of RDL-substrate. (b) Top-view of the fabricated RDL-substrate.                 (c) Schematic of the bottom-view of RDL-substrate. (d) Bottom-view of the fabricated RDL-substrate. .
	Slide 249
	Slide 250: Cross sections of SEM image of  RDL-substrate.   
	Slide 251: 2-2-2 build-up package substrate panel. (a) Schematic. (b) Panel size. (c) Cross section image. (d) Tow- view of the fabricated build-up substrate. (e) Bottom-view of the fabricated build-up substrate.
	Slide 252
	Slide 253
	Slide 254: Shadow Moire warpage measurement of build-up substrate (BU), fine metal L/S RDL-substrate on glass carrier RDL(G), and fine metal L/S RDL-substrate on organic carrier RDL(O).
	Slide 255
	Slide 256
	Slide 257
	Slide 258
	Slide 259
	Slide 260
	Slide 261
	Slide 262: Temperate boundary condition
	Slide 263
	Slide 264
	Slide 265
	Slide 266
	Slide 267
	Slide 268
	Slide 269
	Slide 270
	Slide 271
	Slide 272
	Slide 273
	Slide 274
	Slide 275
	Slide 276
	Slide 277
	Slide 278
	Slide 279
	Slide 280
	Slide 281
	Slide 282
	Slide 283
	Slide 284
	Slide 285
	Slide 286
	Slide 287
	Slide 288
	Slide 289
	Slide 290
	Slide 291
	Slide 292
	Slide 293
	Slide 294
	Slide 295
	Slide 296
	Slide 297
	Slide 298
	Slide 299
	Slide 300
	Slide 301
	Slide 302
	Slide 303
	Slide 304
	Slide 305

