

Submicron Nanosecond Thermoreflectance

Imaging for Thermal and Failure Analysis

Dr. Mo Shakouri

Microsanj LLC

Silicon Valley, USA

Mo@Microsanj.com

Santa Clara Valley IEEE Electronics Packaging Chapter -- January 26, 2023

Objective

- To introduce thermoreflectance & its applications to failure analysis & thermal characterization
- To detect thermally dependent failures/defects
 - Submicron defects
 - Time dependent thermal events (ESD, latch-up, etc)
 - 3D effects (3DIC, Voids, buried defects)
 - GaN, SiC,....
- To characterize thermal properties of thin films and interfaces
 - Interfaces in IC packages
 - Thermal Boundary Resistance of GaN on SiC, Diamond, etc.

2

Microsanj

Outline

- Introduction to Thermoreflectance
- Spatial Resolution
- Temporal Resolution Applications
 - TBR
 - Latch-up
 - ESD
 - 3D defect depth
- Conclusion

4

3

- Smaller features
- Low Power/Temperature
- Buried Defects/Voids
- Higher Speeds
- New Materials
 - Diamond, MoS2, GaN, etc

IR, TR, & EMMI

	Infrared Emission (IR)	Thermoreflectance (TR)	Emission (EMMI)
Spatial	2-10 μm Diffraction limited	250 to 700 nm Diffraction limited	>700 nm Diffraction limited
Sensitivity (NETD)	~10-100 μK	~1-250 mK	No temperature
Transient Analysis	ms	ps to µs	ms
Notes	Metals have very low emissivity	Equally applicable for metals or semiconductors	Transistor/diode leakage only
Physics	Planck Law / Blackbody Radiation	Reflection / Fresnel / Maxwell's Equations	Electron-Hole recombination
Non-Invasive?	Yes, unless coating used	Yes	Yes
	Related Power Density Planck Law 90 90 90 90 90 90 90 90 90 90 90 90 90	$R_{0} \xrightarrow{\text{Electrical}} R_{1} \xrightarrow{\Delta T = \frac{\Delta R}{R_{0} \cdot C_{A}}}$	

Lock-in Thermography (LIT)

- LIT is a non-destructive averaging technique that can be used to improve detection of low power defects
- Resolution can be improved by
 - 1/vN (N is the number of pixels)
 - 1/Vt (t is the averaging time)

Improving Thermal Interfaces (TBR)

- Transient Temperature measurements help isolate dominant thermal interfaces
- Thermal Boundary Resistance (TBR) can be obtained from the heating curve

Transient Thermal Imaging of Latch-up

- High speed imaging allows you to view the progression of the failure
- Pulsing at kHz or MHz localizes the failure location and prevents damage

• Nanosecond thermal imaging allows for imaging of current filaments

HBM ESD Current Filaments

Conclusion

- Thermoreflectance is shown as another valuable FA technique
- Sub-micron thermal defects are found with TR
- Nanosecond thermal images show current filament location & propagation
- Support analysis of next generation 5G and 3DIC Semiconductors

21