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— THE CAUSES OF ELECTROMAGNETIC
FIELDS ARE ELECTRIC CURRENTS

~ A TIME-VARYING ELECTRIC CURRENT
DIFFERS IN VALUE FROM ONE POINT
TO ANOTHER ALONG ITS PATH, ASA
RESULT OF PROPAGATION

— THEREFORE, EVERY POINT ALONG A
TIME-VARYING ELECTRIC CURRENT'S
PATH IS A FUNDAMENTAL SOURCE OF
ELECTROMAGNETIC FIELDS



Point-to-Point Circuit-Current Variations

lo

O~

Source | | Fg _

DC Source
i(2,0)
IA ) Vp
0 ' ' >

AC Source

i(¢,0)
=

Im




Point Current Variations: /4 Monopole
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THE CHARGE ELEMENT
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Point Current Fields

The Biot—Savart Law:
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Point Current Fields

Also, for r — 0, the Biot-Savart law implies
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And, with a propagation rate equal to c, the
speed of light, it would seem that, if » >> 0

L Hy() = —Qfﬁ‘?—i(r—r/c)

BUT, if a current is time-varying, di(¢f)/dt + 0,
so charge flow increases and decreases. And
that causges radiation. SO, when r >> 0 there
must be a second component of Hy(¢) that is
proportional to 1/r, and to di(¢ —r/c)/dt.



The Derivative of i(¢,) and Its Definition
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Point Current Fields

The derivative of i(¢) at ¢ is defined to be

di(t) _ lim[ i(t + Af) — i(0) ]

dt Af-0 At

So, the derivative of i(t) when-t =t—r/cis

di(t—ric) _ lim[ i(t —rlc+ AL - i(t —r/c) }
dt At-0 FAN S

And, replacing At with r/c - 0, that becomes

di(¢—rlc) _ i(t) - i(t —rlc)
dt - ric

which says, solongasr/c -~ 0,0rr - 0,
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Point Current Fields

So, it is clear that so long as r — 0,

Hy (1) dry?

_ 0sind [, , dz'(r—r/c)J
= a2 [z(z‘ ric) + - 7

However, there is not one reason — physical,
or mathematical — for the description of Hy (1)
to change as further propagation occurs and
makes r >> 0.

In other words, for all » from 0 to 00,
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Point Current Fields

Poynting's theorem says a radiated H-field
will always be accompanied by a radiated
E-field. And, those fields will be related to
each other as follows:

(@) E(¢)
A

> Propagation

H{(1)

The velocity of propégation in free space is

c = 3x10% meters/second
(b) E(t) = ZoH(1)
where Z; = 120z ohms, the characteristic

iImpedance of free space.



THE FIELDS OF A POINT CURRENT
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Point Charge Fields

Coulomb’s Law:
5
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And, the E-field of O is

~_F  newtons
E. =
4 q coulomb




Point Charge Fields

-SO for r > 0, the time-varying pomt charge
On(?) has the E—ﬁeld

E() = 2 - 0a(0)

where

0n()) = [lim1(t) ~ im1(D]dr

BUT, as with H,(¢) and i(¢), if » >> 0, then

On(t) «~ Qn(t ~rle) + L _.Q»(ta = r/c)
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and, for all » from 0 to o, B _

Er(t) | 47;’.2_ On(t r/‘?) + c—  a |7



THE CHARGE ELEMENT
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Example: Minimizing Clock-Pulse EMI

(1) Equalize the clock current rise and fall
times to minimize radiated fields.
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(2) Symmetrize the current to minimize the

inductive H-field.
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THE CURRENT ELEMENT
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T-herefore,, E.(t) = E,Ll (t)+E,2(t)
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So,
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And,
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THE CURRENT ELEMENT'S FIELDS
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EQUIVALENCE OF CHARGE ELEMENTS

AND CURRENT ELEMENTS
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