EFFECTIVE MATERIALS FOR HIGH FREQUENCY EMC DESIGN

Dr. Bruce Archambeault

IEEE Fellow

iNARTE Certified Master EMC Design Engineer
Missouri University of Science/Technology Adjunct Professor

Archambeault EMI/EMC Enterprises
PO Box 1265
Four Oaks, NC 27524 USA
bruce@brucearch.com

March 2014

Shielding

- One of the primary EMI control techniques
- Depends on a EM tight enclosure
 - Electrically small openings
 - Conflicts with thermal and functionality
- We are reaching the practical limit of using shielding
 - Emissions can easily occur in tens of GHz range
 - At 10 GHz, lambda = 3 cm
- How effective is a slot opening??

Slot Leakage vs Size and Wavelength

What Can We do to Improve Shielding?

- Reduce hole size options limited
- Add thickness to metal?
 - Honey comb air filters are effective to a certain frequency
 - Limited by wavelength
 - Expensive

Air Vent Geometry

TOTAL AREA = 15cm x 15cm

1mm spacing between holes

Hole Sizes

4mm x 4mm

5mm x 5mm

7mm x 7mm

9mm x 9mm

Metal panel thickness varied 1 – 10mm

Shielding performance for 9x9 mm holes Array 15x15 holes = 18,225 sq mm total open

Shielding performance for 7x7 mm holes Array 18x18 holes = 15,876 sq mm total open

10 Mar 2015

Bruce Archambeault, PhD

Shielding performance for 5x5 mm holes Array 25x25 holes = 15,625 sq mm total open

10 Mar 2015

Bruce Archambeault, PhD

Shielding performance for 4x4 mm holes Array 30x30 holes = 14,400 sq mm total open

10 Mar 2015

Bruce Archambeault, PhD

Even additional thickness has limitations once ½ Lambda is reached

So What Now?

- When Shielding fails us.....
- And we can not reduce the energy at the source
 - Direct from the IC
 - Signals needed for proper operation
- Absorption with lossy materials is the only alternative

Material Parameters

- Sigma → electrical conductivity
- Eps → dielectric properties
- Mu → magnetic properties

$$\mathcal{E} = (\mathcal{E}_r' + \mathcal{E}_r'') \mathcal{E}_0$$

$$\mu = (\mu_r' + \mu_r'') \mu_0$$

Single 'for phase delay

Double "for loss

Example of Lossy Material EPS

10 Mar 2015

Bruce Archambeault, PhD

Example of Lossy Material Mu

Using Lossy Materials

- With perforated panel air vents
- Under IC heatsinks
- Coating cables
- Resonant cavities

Lossy Material Sandwiched Between Perforated Panles

Edge View

Shielded Air Vent with 3 Different Lossy Materials with 3 Different Stackup Structures

Heatsinks Can Increase Emissions

- Grounding heat sinks to PCB groundreference is commonly used to reduce heat sink emissions
 - Can actually <u>increase</u> emissions if not enough contact points!
 - Without continuous contact, improvement typically limited to < 3-5 GHz
- Lossy materials can make significant improvement at high frequency
 - Reverb chamber used for all measurements

Geometry

Test Fixture Example

21

Lossy Material Cut into Square 'Donut'

Measurement Techniques

- Semi-anechoic chamber
 - Limited area where emissions are received
- Reverb Chamber
 - Capture emissions regardless of direction of propagation
 - Immune to test fixture size/length, position, configuration resonances

Test Set up in Reverb Chamber

10 Mar 2015

Bruce Archambeault, PhD

Mode Stirrer

Bruce Archambeault, PhD

Emissions Reduction from Heatsink WT-BPJA Material

10 Mar 2015

Bruce Archambeault, PhD

Emissions Reduction from Heatsink WT-EFIG Material

10 Mar 2015

Bruce Archambeault, PhD

Emissions Reduction from Heatsink UD11554 Material

UD11554 Material

10 Mar 2015

Powerplane1

Ground1
Powerplane2
Ground2

Powerplane3

Bruce Archambeault, PhD

10 Mar 2015

Bruce Archambeault, PhD

Heatsink Summary

- All materials reduce emissions above 3-4 GHz
- Wider material gives more loss
- Full height between heat sink and PCB give more loss than partial height

Emissions from Cables

- Often the largest emissions source from a system
- Often unshielded cables
 - High speed differential pairs (with common mode noise)
- Difficult to provide cost effective shielding at > GHz frequencies
- Lossy material examined to determine reduction in cable emissions

Motivation Eliminate Ferrite Cores on Cables

Reverb Chamber Test Configuration

10 Mar 2015

Bruce Archambeault, PhD

Ethernet Cable with and without Lossy Heat Shrink

Lossy Material Benefits

- Does not require a "water-tight" connection at connectors
 - Shielding requires complete coverage
- Potential to be extruded onto cable during cable manufacturing
 - Reduce cost

Partial Coverage Tests

10 Mar 2015

Bruce Archambeault, PhD

Partial Coverage Tests

- Determine the effect of which end driven
 - End with lossy material
 - End w/o lossy material
- Determine the effect of not-full coverage
 - Cracks in material
 - Catastrophic in traditional shielding

Ethernet Cable Emission Reduction (When Drive Signal at Same End of Cable) ARC Lossy Material Covers Partial Length

10 Mar 2015

Ethernet Cable Emission Reduction (When Drive Signal at Opposite End of Cable) ARC Lossy Material Covers Partial Length

10 Mar 2015

Ethernet Cable Emission Reduction (When Drive Signal at Same End of Cable) ARC Lossy Material Covers Partial Length

10 Mar 2015

EMI Control for I/O Cables – Absorbing Material Performance

10 Mar 2015

Cable Summary

- Cables coated with lossy material reduces emissions from cables
- Full coverage not required
 - Effective at transmit end
- Compete (water tight) coverage not required
 - Cracks in lossy material not a concern as for traditional shielding

Reducing Resonance in Cavities

- Empty (or partially empty) enclosures allow standing wave resonant modes to be established
 - If dimensions are right...hard to predict in complex enclosures
- Empty metal box allows us to measure effect of various materials

Metal box photos

Fig 1a - Front view showing horizontal slot

Fig 1c - Inside view showing probe element

Fig 1b - Rear view showing veritcal slot

Fig 1d – Inside view showing application of ARC material 5

Metal box high order modes computation (up to 2.5GHz)

$$f = \frac{1}{2\sqrt{\mu\epsilon}}\sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2 + \left(\frac{l}{d}\right)^2}$$

Г							
	12 in	10 in	6 in	TE	(n,m,l)		FREQ [GHz]
	0.3048	0.254	0.1524	1	1	0	0.768725362
	0.3048	0.254	0.1524	1	0	1	1.100427154
	0.3048	0.254	0.1524	0	1	1	1.147825176
	0.3048	0.254	0.1524	-1	1	1	1.248875742
	0.3048	0.254	0.1524	2	0	1	1.391942483
	0.3048	0.254	0.1524	1	2	1	1.614293255
	0.3048	0.254	0.1524	1	0	2	2.029087414
	0.3048	0.254	0.1524	1	1	2	2.113278598
	0.3048	0.254	0.1524	2	1	2	2.278708052
	0.3048	0.254	0.1524	0	2	2	2.295650352
	0.3048	0.254	0.1524	2	2	2	2.497751484
L							

UD-175mil material on top-side

Top -vs- Left side comparison

UD material on Top & Left sides

Effect of adding material around H-slot

Effect of WT-BPIG material

Effects with Reverb Measurement

- Previous tests show effect w/o reverb within the box
 - Modes must be established before lossy material will have impact
- When reverb inside enclosure, then single port measurement allows Q-factor to be determined
 - Eliminates requirement for slot in box to allow energy out!
- Following slides courtesy of ARC Technology
 - David Green, "ONE-PORT TIME DOMAIN MEASUREMENT TECHNIQUE FOR QUALITY FACTOR ESTIMATION OF LOADED AND UNLOADED CAVITIES," IEEE EMC Symposium, August 2013, Denver

CENTER OF LID ABSORBER PLACEMENT – 3.5 GHZ CENTER FREQUENCY

	Cavity Setup	Measured Q (dB)	I liada a valana
	No Absorber	29.78	Higher slope
	UD11554	23.56	means more
COLUMN TO SERVICE STATE OF THE PARTY OF THE	UD11557	23.67	absorption/loss!
10 Mar 20	WX-A	26.45	53
TO War Ze	EFIG	25.54	

CENTER OF LID ABSORBER PLACEMENT – 10 GHZ CENTER FREQUENCY

	Cavity Setup	Measured Q (dB) 3.5 GHz	Measured Q (dB) 10 GHz
	No Absorber	29.78	34.62
	UD11554	23.56	28.57
	UD11557	23.67	29.03
	WX-A	26.45	32.07
I0 Ma	EFIG	25.54	29.33

54

Summary

- Traditional approaches to EM shielding at high frequencies will not work in practical products without excessive cost, weight, etc.
- Using lossy/absorbing materials allows designers to reduce EMC issues (emissions and immunity)
- Lossy/absorptive materials can be used
 - Under heatsinks
 - As coating to cables
 - To break cavity based resonances

Further Development Needed!

- Currently, it is difficult to predict effects of materials from simple material parameter analysis
- Full wave simulations with complex eps & mu are possible and on-going
- More work needed to allow relationship between complex eps & mu vs. frequency to help predict performance faster