

 Dear Readers, F rom the Editor’s Desk

 Greetings! I’m happy to report two important milestones for our chapter. First, our
 chapter has been recognized with the Outstanding Chapter Award 2024 among all other
 chapters in the world. Second, Feedforward now has an ISSN.

 The prestigious global honor celebrates chapters that deliver a world-class membership
 experience , and I couldn't be prouder of the work.

 Over the years, I introduced several new initiatives that transformed engagement and
 enriched our community, including:

 Feedforward —our quarterly magazine https://r6.ieee.org/scv-cs/magazines/ (ISSN
 3068-2525)

 AMA Series —engaging Q&A sessions with renowned experts
 https://www.youtube.com/watch?v=x72De1pdkFY&list=PLLsxQYv4DdJlnmTJPcaPW2MLY3
 XV4bkZp

 Podcast Series —spotlighting industry leaders
 https://podcasts.apple.com/us/podcast/ieee-computer-society-santa-clara-valley-chapter/id1
 708127425

 Annual Awards —recognizing excellence https://r6.ieee.org/scv-cs/?s=awards

 ICADS — International Conference on Applied Data Science featuring speakers from all
 over the world https://www.youtube.com/@vspendyala/search?query=icads

 IEEE Xplore indexed Conference Sponsorship —boosting technical visibility
 https://ieeexplore.ieee.org/xpl/conhome/10164830/proceeding

 Social Media Pages
 https://www.linkedin.com/company/ieee-computer-society-scv-chapter/
 https://www.facebook.com/IEEEComputerSocSCVchapter

 Live-streamed Monthly Events —connecting with a global audience
 https://www.youtube.com/watch?v=ACj1GW1Zd9I&list=PLLsxQYv4DdJlYcGPwqUJsnHmfq
 MtB3eSJ

 Now, the time has come to pass the torch to the next visionary leader who will take our
 chapter to even greater heights! The call for nominations will be out soon. Please feel free to
 nominate or self-nominate for the various officer roles.

 We are always looking for more genuinely committed volunteers to help in non-officer roles
 as well. You can help as a reviewer of the articles, papers, be a guest editor for issues, help
 organize events, help with the publicity for our events, and more. Please consider being part
 of the success story by signing up here: https://r6.ieee.org/scv- cs/ . With the onset of a new
 page in the chapter’s history, let’s continue to Feedforward the chapter to a bright new
 future. Hope you are all with me in my efforts. Happy reading and happiness always!

 With every best wish, Vishnu S. Pendyala

 Wednesday, August 7, 2025 San Jose, California, USA

 1Feedforward(ISSN:3068-2525(online))

Article Type: Original

A Deep Learning Aided Approach for

Interpretation of ECG Signals and Pathology

Detection

Aushim Nagarkatti, Electrical and Computer Engineering
Carnegie Mellon University
Pittsburgh, PA 15213

Sahana Ramu, Electrical and Computer Engineering
Carnegie Mellon University
Pittsburgh, PA 15213

Sanjana Kandi, Electrical and Computer Engineering
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract—With the increased prevalence of AI in disease prediction, we are at an
excellent position for applying Deep Learning technologies for predicting cardiovascular
abnormalities. In this project, disease classification is performed on the PhysioNet
Challenge dataset from 12 lead ECGs for predicting 12 common heart conditions. The
aim is to demonstrate through DNNs an ability to achieve excellent disease classification
performance in a dataset with heavy imbalance towards Normal Sinus Rhythms (normal
heartbeats). Additionally, the paper proposes an efficient and accurate segmentation
pipeline to detect the onset and offset of different heartbeat waveforms (P-waves, QRS
complexes and T-waves), producing ECG statistics that can be used in a downstream
interpretable Machine Learning model. The proposed model also incorporates peak
detection as part of the segmentation representations which enhances its interpretability
over traditional ECG segmentation models which only segment beat boundaries.

Analysis of electrocardiogram (ECG) signals is
one of the most important steps in the diagnosis
of cardiac disorders. One of the most common

ways for physicians/cardiologists to analyse ECG wave-
forms is through visual examination of these recordings.
However, in most cases, it is difficult and extremely time
consuming to analyse such huge amount of data. In or-
der to interpret ECGs, the morphology of its three most
important component waveforms, namely, the P-wave,
QRS complex, and T-wave, are to be assessed to help
diagnose different heart diseases. Therefore, in order
to achieve high diagnostic accuracy, the ECG analysis
tools/software require the knowledge about the location
and morphology of different segment waveforms (P-
QRS-T) in ECG records. ECG segmentation can be
performed by classical mathematical methods, including

XXXX-XXX © 2025 IEEE
Digital Object Identifier 10.1109/XXX.0000.0000000

such algorithms as heuristic rules built on classical
signal processing and wavelet transforms. However,
these approaches struggle to distinguish between
beat-like artifacts and ECG segments. Deep learning
models, especially Artificial Neural Networks (ANN),
are currently the most promising way to overcome
these limitations. 1-D Convolutional Neural Networks
(CNNs) perform an excellent job in capturing short term
morphologies which is augmented by recent research
that show the benefit of adding memory networks in
CNN which preserve morphological information of an
ECG signal, thereby distinguishing between QRS like
artifacts and P-QRS-T segments.

July-September Published by the IEEE Computer Society 2Feedforward(ISSN:3068-2525(online))

FEEDFORWARD

LITERATURE REVIEW

In [1], the authors propose a simple 4-layer CNN model
for the classification of 5 typical kinds of arrhythmia
signals, i.e., normal, left bundle branch block, right
bundle branch block, atrial premature contraction and
ventricular premature contraction. The experimental
results on the public MIT-BIH arrhythmia database show
that the proposed method achieves an accuracy of 97.5
In [2], the authors use different combinations of signal
processing methods such as Non-Linear transforma-
tions, Non-Linear Principal Component Analysis (PCA),
heuristic formulae and simple Multi Layer Perceptron
(MLP) networks for performing QRS/PVC classification
or ischemia detection purposes. They also explore
RBFN for modelling ECG signals for differentiating
between normal and abnormal beats, but we do not
explore this work too much in this project. In [3], the
authors mention a few pre processing methods of which
we specifically focus on ECG de- noising. For our work,
we seek to remove environmental noise from ECG
signals such as baseline drift, and power frequency
interference by using three-scale discrete wavelet trans-
form and 2 median filters. These are standard pre-
processing steps suggested by [3]. Using DWT for initial
denoising followed by median filtering enhances signal
quality by combining frequency-specific noise removal
with robust spike suppression. In [4], [5] and [6], the
authors propose 3 different segmentation architectures,
DENS-ECG (combination of CNN and LSTM), 2-input
1-D CNN and Bidirectional RNN with LSTM layers for
identifying P, QRS, T segments. The results of these
models have been tabulated in Table 1.

TABLE 1: Comparison of Segmentation Architectures
Authors ANN

Archi-
tecture

ECG
DB

Sensitivity

Peimankar, A.,
Puthussery-
pady, S.

DENS-
ECG

QTDB P: 96.53%,
QRS: 99.70%,
T: 96.81%

Xiang Y., Lin Z.,
Meng J.

2-input
1-D
CNN

MITBIH 99.86%

Abrishami H.,
Han C., Zhou
X., Campbell
M., Czosek R.

Bidirectional
RNN
with
LSTM
layers

QTDB P: 92.00%,
QRS: 94.00%,
T: 90.00%

All mentioned architectures evaluate their models
based on F1-Score. We intend to evaluate our models
using the same metrics and additionally showcase con-
fusion matrices for both beat annotations and disease

classifications. We want to perform finer segmentation
evaluation by further dividing P, QRS and T annotations
into peak-start and peak-end statistics for each beat
annotation. We will additionally perform statistical tests
like McNamer’s test to determine the significance of
our classification results.

DATASET DESCRIPTION

PhysioNet Database: Includes data from multiple
sources: CPSC Database and CPSC-Extra Database,
INCART Database, PTB and PTB-XL Database, The
Georgia 12-lead ECG Challenge (G12EC) Database,
Undisclosed Database These training sets contain 12-
lead ECGs of lengths ranging from 6s to 30s and
varying sampling frequencies. We use the following
datasets from PhysioNet for classification and segmen-
tation tasks. We followed an 80:20 split for the train,
test sets for both databases.

PTB Dataset [9]: Initially, we would be using one
of the six datasets used in the PhysioNet Challenge
2020 to build the basic pipeline for the classification
task. The PTB Diagnostic ECG Database contains 549
records from 290 subjects (aged 17 to 87, mean 57.2;
209 men, mean age 55.5, and 81 women, mean age
61.6). The data used 16 input channels, out of which 14
were for ECG’s, 1 for respiration and 1 for line voltage.
We would be using 12 conventional ECG leads (i, ii, iii,
avr, avl, avf, v1, v2, v3, v4, v5, v6) for this project.

QTDB [10]: Consists of over 100 fifteen-minute
two-lead ECG recordings, with onset, peak, and end
markers for P, QRS, T, and (where present) U waves
from 30 to 50 selected beats in each recording. We
would be using this dataset for the segmentation task.

DATA PIPELINE

The PhysioNet data that is available to us is formatted
in WFDB format. Each ECG recording uses a binary
MATLAB v4 file for the ECG signal data and a plain
text file in WFDB header format for the recording and
patient attributes, including the diagnosis, i.e., the labels
for the recording.

Data Processing: In order to read these signals, we
use the Python waveform-database (WFDB) package
which is a library of tools for reading, writing, and
processing WFDB signals and annotations. From the
header (.hea) file of each patient, we extract information
such as recording number, sampling frequency which
are then used to extract the signal data from the
MATLAB (.mat) file for the corresponding recording
number.

1) PTB Dataset The sampling frequency for all the

July-September 2025A Deep Learning Aided Approach for Interpretation of ECG Signals and Pathology Detection3 Feedforward(ISSN:3068-2525(online))

FEEDFORWARD

ECG signals is 1000 Hz, which implies that there are
1000 samples for every second. As shown in [11], a
low sampling rate might introduce jitter, and a 500-
2000Hz sampling frequency is suitable for long-term
time domain experiments. Since the ECG signals across
all the patients vary from <5 seconds to >60 seconds,
we standardize the length of signals in our dataset by
splitting signals that are >10 secs. After performing a
binary search across the hyperparameter space, it was
determined that a 10s window yielded the best results
for segmentation. There might be some signals in our
dataset that are <10 secs and are hence padded with
0 to overcome this issue.

Finally, to get our training and validation dataset,
it is important to make sure that the dataset is not
skewed more towards one label since it would make
our dataset biased. In a classification setting, we need
to ensure that the train and test sets have approximately
the same percentage of samples of each target class as
the complete set. This can be achieved by performing
stratified split on our complete dataset by giving priority
to the labels that occur less frequently in our distribution.

2) QTDB Dataset For preprocessing this dataset
we do not perform bandpass filtering as we wanted to
compare the unfiltered results with those of the DENS-
ECG paper [4]. This dataset consists of 7 annotation
markers, out of which we use .q1c annotation markers
to find P, QRS, T peaks and their boundaries.

Initially, boundaries for waves that did not have
annotations were removed. Even after this removal,
there were parts of the wave that did not have labels.
We used a sliding window approach to discard the
window if 30% of the signal or more belonged to one
label. This means that the missing labels contributed
to one class, overpowering the other.

For the parts of signal that were padded with 0’s,
the corresponding labels were assigned to the class
7, i.e., T wave end to P wave start. Similarly, for the
4 class problem, these labels were also assigned as
above. Finally, in order for the segmentation model to
generalize better, the dataset was normalized using
min-max normalization.

Data Labelling: The disease names, which are
a part of the meta data (present in the .hea file)
represent our 12 labels. To make this compatible for
computation, these names are converted into their
respective SNOMED CT Code as shown in Table 2.
In the challenge, the list of SNOMED CT codes and
diagnoses has been split into two CSV files: one list
for diagnoses that are included in the new scoring
function ("scored"), and another list for diagnoses that
are ignored during scoring ("unscored"). The scored
diagnoses were chosen based on prevalence of the

diagnoses in the training data, the severity of the
diagnoses, and the ability to determine the diagnoses
from ECG recordings. For our baseline model, we used
the "scored" set of labels.

SNOMED CT (Systematized Nomenclature of
Medicine – Clinical Terms) is a standardized, multi-
lingual vocabulary of clinical terminology that is used
by physicians and other health care providers for the
electronic exchange of clinical health information.

Since these labels cannot be directly used as inputs
to our model, we convert them into output labels in the
range (0,11) as shown in Table 2. Since each ECG
recording has one or more labels that describe cardiac
abnormalities (and/or a normal sinus rhythm), we can
use these recordings to perform multilabel classification.

TABLE 2: Cardiac abnormalities to label mapping
Dx SNOMED CT

Code
Label

1st degree av block 270492004 0
atrial fibrillation 164889003 1
bradycardia 426627000 2
complete right bundle
branch block

713427006 3

incomplete right bundle
branch block

713426002 4

premature atrial contrac-
tion

284470004 5

premature ventricular
contractions

427172004 6

left bundle branch block 164909002 7
sinus arrhythmia 427393009 8
sinus rhythm 426783006 9
sinus tachycardia 427084000 10
supraventricular prema-
ture beats

63593006 11

Baseline Models

Task: Classification

We intend to iterate through all of the proposed models
mentioned in our literature review. We start by designing
traditional disease classification models as proposed in
[1] and [2]. We also intend to explore models such as
1-D ResNet - 18 for performing disease classification.
We will be using only 12 of the most important diseases
for our baseline implementation.

1) ResNet-18 Implementation: The proposed model
can extract multiple features of the ECG data from the
same input, which results in efficient representation of
the characteristics of the ECG data, thus improving
the classification accuracy [7]. The ResNet-18 model
being used is an improved version of the existing basic
ResNet-18 architecture in order to extract the required

4A Deep Learning Aided Approach for Interpretation of ECG Signals and Pathology DetectionJuly-September 2025 Feedforward(ISSN:3068-2525(online))

FEEDFORWARD

characteristics of the ECG signals being fed which is
of length 10000.

For our architecture, the number of input channels
in our first layer is 12, since we are using ECG
signals acquired from 12 leads. For low-frequency,
low-sampling signals such as ECGs, using a kernel
of size 3 leads to difficulties in forming a meaningful
waveform change. ECG signals have slow-varying,
low-frequency waveforms. A small kernel size (like 3)
typically observes only a very narrow context (just 3
milliseconds at 1000 Hz), which is insufficient to capture
significant waveform characteristics. In addition, these
signals are highly susceptible to noise interference,
which could have a significant negative impact on
feature learning and, in severe cases, can even cause
ineffective learning. Therefore, the use of a large
convolution kernel size of 33 is proposed here for the
effective alleviation of this problem.

In order to achieve better performance, a batch norm
is added before the classical ResNet-18 structure to
accelerate the training of the neural network, increase
the convergence speed, and maintain the stability of
the algorithm. We also introduce a dropout layer before
the final fully connected layer for reducing over fitting
of our model by preventing complex co-adaptations on
training data [8].

Finally, the fully connected layer consisting of 12
neurons outputs a [12x1] vector corresponding to the
12 classes. This vector is then passed on to BCELoss()
function to output a [12x1] vector with each value
corresponding to a probability value for each of the
12 classes. It is important to note here that each signal
could have multiple labels, so the architecture presented
accounts for multi-label classification paradigms [13].

The hyperparameters used to train our model are:

› Learning Rate = 0.1
› Weight Decay = 5x10→5

› Momentum = 0.9
› Optimizer = SGD
› Criterion = BCELoss

Task: Segmentation DENS-ECG Implementation:
The DENS-ECG model is used for segmentation of P,
QRS and T segments from a ECG waveform [15]. This
model uses two well-known Deep Learning architec-
tures, CNN and LSTM. The primary task of extracting
high level abstract features from ECG signals is done
using three one dimensional convolutional layers. These
features are then passed into two deep LSTM layers,
followed by a dense layer to get posterior probabilities
corresponding to four classes, ie, P, QRS, T and NW
(No Wave).

For our architecture, the number of input channels

in our first layer is 1. We take only 1 channel out of the
2 since there is a very small variation between the two.
We use the parameters from the DENS-ECG paper
for our CNN layers, with kernel size 3, padding 1 and
stride 1. This is immediately followed by 2 LSTM layers
with number of layers as 1. The dropout probability in
the dropout layer is set to 0.2. The dense layer has
4 hidden units and a softmax function is used as an
activation function, which assigns a value between 0
and 1 to each sample of the input ECG signals.

In additional to this, our proposed model also
incorporates peak detection as part of the segmentation
which enhances its interpretability over traditional ECG
segmentation models which only segment beat bound-
aries [12]. Thus, we predict eight labels, in contrast to
DENS-ECG, which only predicts four.

The labels are assigned as follows:

TABLE 3: ECG segments to label mapping
ECG segment Label

P start to P wave peak 0
P peak to P end 1
P end to QRS start 2
QRS start to QRS peak 3
QRS peak to QRS end 4
QRS end to T wave peak 5
T peak to T wave end 6
T wave end to P wave start 7

The hyperparameters used to train our model are:

› Learning Rate = 0.001
› Weight Decay = 1x10→6

› Optimizer = Adam
› Criterion = CrossEntropyLoss

PROPOSED MODELS

U-Net: The U-Net architecture is a U shaped one, which
consists of a contracting path and an expansive path.
The contractive path is generally composed of several
CNN layers, followed by a ReLU activation function and
max-pooling operation. Here, the spatial information is
reduced while feature information is increased. The
expansive pathway combines the feature and spatial
information through a sequence of up-convolutions
and concatenations with high-resolution features
from the contracting path [14]. Figure 1 illustrates
the U-Net architecture used in this work, including
both the downsampling and upsampling stages. The
configuration in Table 4 details the composition of each
block, with skip connections implemented through
concatenation to preserve high-resolution features
during reconstruction.

July-September 2025A Deep Learning Aided Approach for Interpretation of ECG Signals and Pathology Detection5 Feedforward(ISSN:3068-2525(online))

FEEDFORWARD

FIGURE 1: U-Net model architecture block diagram

TABLE 4: U-Net architecture: Layer-wise configuration

Block Layer Type Parameters Output
Channels

General Dropout p=0.1, p=0.2 -
General MaxPool1D kernel_size=2 -
Block 1 Conv1D → ReLU in=1, out=8, kernel=40, stride=1, padding=’same’ 8
Block 1 Conv1D → ReLU in=8, out=8, kernel=40, stride=1, padding=’same’ 8
Block 1 BatchNorm1D num_features=8 (twice) 8
Block 2 Conv1D → ReLU in=8, out=16, kernel=20, stride=1, padding=’same’ 16
Block 2 Conv1D → ReLU in=16, out=16, kernel=20, stride=1, padding=’same’ 16
Block 2 BatchNorm1D num_features=16 (twice) 16
Block 3 Conv1D → ReLU in=16, out=32, kernel=9, stride=1, padding=’same’ 32
Block 3 Conv1D → ReLU in=32, out=32, kernel=9, stride=1, padding=’same’ 32
Block 3 BatchNorm1D num_features=32 (twice) 32
Block 4 Conv1D → ReLU in=32, out=64, kernel=9, stride=1, padding=’same’ 64
Block 4 Conv1D → ReLU in=64, out=64, kernel=9, stride=1, padding=’same’ 64
Block 4 BatchNorm1D num_features=64 (twice) 64
Block 5 Conv1D → ReLU in=64, out=128, kernel=9, stride=1, padding=’same’ 128
Block 5 Conv1D → ReLU in=128, out=128, kernel=9, stride=1, padding=’same’ 128
Block 5 BatchNorm1D num_features=128 (twice) 128
Block 6 ConvTranspose1D in=128, out=64, kernel=8, stride=2 64
Block 6 Conv1D → ReLU in=64, out=128, kernel=9, padding=’same’ 128
Block 6 Conv1D → ReLU in=128, out=64, kernel=9, padding=’same’ 64
Block 6 BatchNorm1D 128, 64 64
Block 7 ConvTranspose1D in=64, out=32, kernel=8, stride=2 32
Block 7 Conv1D → ReLU in=32, out=64, kernel=9, padding=’same’ 64
Block 7 Conv1D → ReLU in=64, out=32, kernel=9, padding=’same’ 32
Block 7 BatchNorm1D 64, 32 32
Block 8 ConvTranspose1D in=32, out=16, kernel=8, stride=2 16
Block 8 Conv1D → ReLU in=16, out=32, kernel=9, padding=’same’ 32
Block 8 Conv1D → ReLU in=32, out=16, kernel=9, padding=’same’ 16
Block 8 BatchNorm1D 32, 16 16
Block 9 ConvTranspose1D in=16, out=8, kernel=8, stride=2 8
Block 9 Conv1D → ReLU in=8, out=16, kernel=9, padding=’same’ 16
Block 9 Conv1D → ReLU in=16, out=8, kernel=9, padding=’same’ 8
Block 9 BatchNorm1D 16, 8 8
Final Conv1D + Softmax in=8, out=dim_out, kernel=1 dim_out
Output Linear in=5082, out=1000 1000

6A Deep Learning Aided Approach for Interpretation of ECG Signals and Pathology DetectionJuly-September 2025 Feedforward(ISSN:3068-2525(online))

FEEDFORWARD

For the down conv section of the proposed U-
Net model, we use Conv1D layers with stride 1 and
’same’ padding for all layers, kernel size 40 for the
first down conv layer, kernel size 20 for the second
down conv layer, and kernel size 9 for the rest of the
down conv layers. We use a ReLU activation function
after every convolution layer, followed by batchnorm
layer. An additional dropout layer with dropout value of
0.2 is used for all down conv layers, only for training.
This is then followed by another set of convolution,
ReLU and batchnorm layer. For the second half of the
U-Net structure, we perform upsampling, with kernel
size set to 9 for all up conv layers. The output of the
unsampling layer is concatenated with the output of the
corresponding down conv layer. This is again followed
by the same set of layers as discussed above.

The hyperparameters used to train our model are:

› Learning Rate = 0.0005
› Weight Decay = 1x10→6

› Optimizer = Adam
› Criterion = CrossEntropyLoss
› Scheduler = ReduceLROnPlateau

U-Net + LSTM model: We propose a Deep Learn-
ing based approach for the segmentation problem,
which is based on combination of U-Net and LSTM
architectures. The output of our U-Net is passed through
a softmax layer, followed by a linear layer. This is then
sent to our LSTM layer with number of layers set to
3 and hidden size set to 64. Post this, the block of
Linear-ReLU-Dropout is applied twice. The skeleton
architecture of the entire network can be seen in Figure
2.

FIGURE 2: Skeleton U-Net + LSTM architecture

The hyperparameters used to train our model are:

› Learning Rate = 0.001
› Weight Decay = 1x10→6

› Optimizer = Adam
› Criterion = CrossEntropyLoss
› Scheduler = ReduceLROnPlateau

Results and Inference

Classification Results: For the ResNet-18 classifi-
cation model, we measure the model’s performance
on 20% of the PTB dataset using a confusion matrix
on the validation dataset to display Accuracy and
Misclassification Rate as shown in Table 5.

TABLE 5: Accuracy and Misclassification Results
Class Disease Name Accuracy Misclassification

rate

1 1st degree av
block

0.95 0.04

2 atrial fibrillation 0.92 0.07
3 bradycardia 0.92 0.07
4 complete right

bundle branch
block

0.99 0.009

5 incomplete right
bundle branch
block

0.97 0.02

6 premature atrial
contraction

0.94 0.05

7 premature ven-
tricular contrac-
tions

0.98 0.01

8 left bundle
branch block

0.99 0.006

9 sinus arrhythmia 0.97 0.02
10 sinus rhythm 0.96 0.03
11 sinus tachycar-

dia
0.831 0.16

12 supraventricular
premature
beats

0.69 0.30

Accuracy =
TP

TP + FP

Misclassification Rate =
FP + FN

TP + FP + TN + FN
where

› TP: True Positives
› FP: False Positives
› TN: True Negatives
› FN: False Negatives

July-September 2025A Deep Learning Aided Approach for Interpretation of ECG Signals and Pathology Detection7 Feedforward(ISSN:3068-2525(online))

FEEDFORWARD

FIGURE 3: Segmentation outputs from U-Net model

FIGURE 4: Segmentation outputs from DENS ECG model

8A Deep Learning Aided Approach for Interpretation of ECG Signals and Pathology DetectionJuly-September 2025 Feedforward(ISSN:3068-2525(online))

FEEDFORWARD

Segmentation Results For the segmentation task,
we compare the F1 scores of the baseline DENS-ECG
model with the U-Net + LSTM model proposed for
both 4-class and 8-class problem. For this purpose,
we use 20% data from Physionet’s QTDB dataset. In
addition to this, the results are compared by visualizing
the waveforms after segmentation. The segments are
assigned different colors to differentiate them better.

TABLE 6: F1 Score: DENS-ECG vs U-Net + LSTM for
4 class problem

Model architec-
ture

P QRS T NW

DENS-ECG 0.81 0.90 0.86 0.89
U-Net + LSTM 0.87 0.83 0.94 0.98

While the F1 scores of some of the labels predicted
by the U-Net and U-Net + LSTM are lower than that of
the baseline DENS-ECG, the overall performance is still
comparatively better when we visualize the predicted
segments of the waveform for these two U-net based
models.

The graphs shown in Figure 3. and Figure 4. com-
pare the original ECG waveform, predicted segmented
waveform and the actual segmented waveform. In the
case of DENS-ECG, the graph shows that the labels
predicted are in the incorrect order when compared to
the actual labels. On the other hand, the U-Net model
predicts the labels in the same order as the actual
labels.

TABLE 7: F1 Score: DENS-ECG vs U-Net vs U-Net +
LSTM for 8 class problem

Model
architecture

0 1 2 3 4 5 6 7

DENS-ECG 0.68 0.71 0.74 0.86 0.74 0.88 0.74 0.82
U-Net 0.64 0.69 0.76 0.81 0.70 0.86 0.74 0.81
U-Net + LSTM 0.70 0.66 0.74 0.77 0.74 0.89 0.70 0.90

REFERENCES

1. D. Li, J. Zhang, Q. Zhang and X. Wei, "Classification of
ECG signals based on 1D convolution neural network,"
2017 IEEE 19th International Conference on e-Health
Networking, Applications and Services (Healthcom),
2017, pp. 1–6, doi: 10.1109/HealthCom.2017.8210784.

2. N. Maglaveras, T. Stamkapoulos, K. Diamantaras,
C. Pappas, M. Strintzis, "ECG pattern recognition
and classification using nonlinear transformations and
neural networks: a review," Int. J. Med. Inform., vol. 52,
pp. 191–208, 1998.

3. J. Li, Y.J. Si, T. Xu, S.B. Jiang, "Deep convolutional
neural network based ECG classification system using
information fusion and one-hot encoding techniques,"
Math. Probl. Eng., vol. 2018, Article ID 1387979, 2018.

4. A. Peimankar and S. Puthusserypady, "DENS-ECG: A
deep learning approach for ECG signal delineation,"
Expert Syst. Appl., vol. 165, Article ID 113911, 2021.

5. Y. Xiang, L. Zhitao and M. Jianyi, “Automatic QRS
complex detection using two-level convolutional neural
network,” Biomed. Eng. Online, vol. 17, no. 13, Jan.
2018.

6. H. Abrishami, C. Han, X. Zhou, et al., “Supervised ECG
Interval Segmentation Using LSTM Neural Network,”
in Proc. BIOCOMP Conf., 2018, pp. 71–77.

7. E. Jing, et al., “ECG Heartbeat Classification Based
on an Improved ResNet-18 Model,” Comput. Math.
Methods Med., vol. 2021, Article ID 6649970, Apr. 2021,
doi: 10.1155/2021/6649970.

8. G. E. Hinton et al., “Improving neural networks by
preventing co-adaptation of feature detectors,” arXiv
preprint arXiv:1207.0580, 2012.

9. A. L. Goldberger et al., “PhysioBank, PhysioToolkit, and
PhysioNet: Components of a new research resource
for complex physiologic signals,” Circulation, vol. 101,
no. 23, pp. e215–e220, 2000.

10. P. Laguna, R. G. Mark, A. Goldberg, and G. B.
Moody, "A database for evaluation of algorithms for
measurement of QT and other waveform intervals in the
ECG," Comput. Cardiol., vol. 24, pp. 673–676, 1997,
doi: 10.1109/CIC.1997.648140.

11. Task Force of the ESC and NASPE, "Heart rate
variability: standards of measurement, physiological
interpretation and clinical use," Circulation, vol. 93, no.
5, pp. 1043–1065, 1996.

12. A. M. M. Khandoker, S. Palaniswami, and C. Kar-
makar, "Deep Learning and Electrocardiography: Sys-
tematic Review of Current Advancements," Biomed.
Eng. Online, vol. 24, no. 1, Mar. 2025.

13. K. M. Morshed, M. N. Uddin, and T. Rahman, "En-
hanced ECG Signal Classification with CNN-LSTM
Networks Using Aquila Optimization," Eng. Technol.
Appl. Sci. Res., vol. 15, no. 3, pp. 10492–10500, Jun.
2025.

14. X. Yang, L. Zhang, and Y. Liu, "Deep Learning Hybrid
Model ECG Classification Using AlexNet and Dual
Branch Fusion Network," Sci. Rep., vol. 14, Article
78028, Nov. 2024, doi: 10.1038/s41598-024-78028-8.

15. S. Abedi, R. Gharaviri, and M. Mohebbi, "Robust 12-
Lead ECG Classification with Lightweight ResNet,"
Electronics, vol. 14, no. 10, p. 1941, May 2024, doi:
10.3390/electronics14101941.

July-September 2025A Deep Learning Aided Approach for Interpretation of ECG Signals and Pathology Detection� Feedforward(ISSN:3068-2525(online))

Optimized Techniques for Scalable Parallel
Processing of Dynamic Graphs: Advances and
Real-World Applications
Shubham Malhotra, Rochester Institute of Technology, Rochester, NY, USA, 14623

Dr. Meenu Gupta, Chandigarh University, Punjab, India, 140413

Fnu Yashu, Stony Brook University, Stony Brook, NY, USA

Abstract—Dynamic graphs, whose boundaries and nodes change all the time, are

proving more useful in real life for things like social networks, finding fraud, and

transport systems. To work with these enormous, changing datasets, we need

strategies that can grow, work quickly, and change as needed. This study addresses

an innovative approaches in the parallel processing for changing graphs, highlighting

maximizing a efficiency strategies that will also boost a speed, minimize latency,

and retain then a accuracy. We give a complete assessment of partitioning systems,

incremental processing approaches, and parallel frameworks designed for dynamic

situations. We also offer an efficient hybrid model integrating message-passing

and shared-memory concepts to achieve great adaptability across heterogeneous

infrastructures. Real-world case studies, which includes social media analytics

and real-time traffic monitoring, are utilized to verify the suggested methodologies.

Our results emphasize considerable gains in estimation time and resource use,

establishing a stable platform for future breakthroughs in dynamic graph evaluating.

INTRODUCTION

Dynamic illustrations are data establishes that change
constantly over time by clarifying, removing, or altering
nodes and edges. These sorts of graphs are becoming
widespread in sectors such as social networks, decep-
tion recognition systems, dialog structures, and transit
networks. The continually altering nature of dynamic
graphs offers new computing hurdles, especially when
analyzing them in tangible time at scale. [1] [2] Con-
ventional static graph processing approaches typically
fail to effectively manage the flexible nature of chang-
ing datasets. As a consequence, dynamic graph neu-
ral networks (DGNNs) and parallel regulations have
evolved to solve these challenges. Contemporary work,
such as the Decoupled Graph Neural Network (DGNN)
architecture, offers flexible solutions for huge dynamic
datasets, while approaches like the Recurrent Structur-
ereinforced Graph Transformer (RSGT) represent edge
time frame states for higher correctness. [3],[4],[5] Sur-
vey studies in this dependent have classified flexible
graph analyzing prototypes by how they manage time
and structure, and they give useful perspectives into
present limits and future research objectives. [6] A
important area of progress has been in perpendicu-
lar evolving graph computing, where models like Dy-

ComPar have proven shared-memory analogy to find
communities in enormous networks. [7] Other improve-
ments include GPU-based exciting graph interpreting
platforms, which allows an fast connectivity computing
while resolving memory management difficulties. [8]
Additionally, regulations such as SciDG have devel-
oped objectives for assessing dynamic plot archives in
scientific uses, while systems like PiPAD allow effective
identical coaching of DGNNs on GPU clusters. [9]
These methods underscore the need for mixed models
that interact the capabilities of shared-memory and
messagepassing tactics to manage diverse systems.
This study adds to the area by offering an optimal
hybrid model for perpendicular absorbing of dynamic
graphs. The simulation is assessed via practical appli-
cations use cases, ranging from social structure eval-
uation and real period traffic surveillance, exhibiting
gains in execution, flexibility, and asset effectiveness.

LITERATURE REVIEW
PiPAD is a transmitted and adjacent DGNN training
framework aimed to boost end-to-end efficiency on
GPUs. In their work, the authors presented a system
that integrates fast identical multi-snapshot analyzing
together with runtime-level canal orchestration. This

July-September Published by the IEEE Computer Society Santa Clara Valley Chapter 1�Feedforward (ISSN:3068-2525 (online))

FEEDFORWARD

technique tries to overcome many fundamental difficul-
ties in DGNN technology, including unnecessary data
transfer, unused parallelism, and recollection access
inefficiencies. Initial assessments reveal that PiPAD
outperforms previous DGNN structures delivering im-
provements stretching from 1.22! to 9.57!. [10] Xin
et al. stated GraphX, a dispersed regulations that
integrates data-parallel and graph-parallel execution.
It solves ineffectiveness in standard graph lines that
depend on exterior systems. GraphX proposes an
unifying data emulate managing graphs and accu-
mulations as superior objects. It employs relational
joins and compilations for graph processing and in-
corporates database methods like gauge scans. The
strategy delivers profitability equivalent to specialist
graph programs while keeping flexibility. Manufacturing
implementation indicated an accelerates of improve-
ment to a couple orders of magnitude. [11] Chakar-
avarthy et al. completed one of the early research con-
centrating on the capacity of training dynamic Graph
Neural Networks (GNNs). They presented a graph-
difference focused approach to minimize CPU-toGPU
movement duration and established a snapshotbased
strategy for distribution. Their approach uses periodic
features of dynamic graphs to boost training efficiency.
The authors also highlighted potential research topics,
including hybrid partitioning for big snapshots and
spanning computing with communication. Additionally,
they explored the difficulty of scaling Continuous-Time
Dynamic Graphs (CTDGs). The work gives essential
insights into rapid fluid GNN activation at scale. [12]
Dhulipala et al. established that theoreticallyefficient
simultaneous algorithmic graphs may achieve great
speed and capacity on real-world datasets. The re-
searchers parsed the biggest accessible actual graph
utilizing only one shared-memory machine with 1TB
RAM. They developed software tools and algorithms
designed to allow massive graph computation. Their
approaches outperformed distributed-memory systems
while utilizing fewer amenities. Notably, efficiency per
core was greatly enhanced. This work verifies the
practical feasibility of shared-memory computations in
parallel for substantial graph insights. [13] Teixeira et
al. proposed Arabesque, a distributed graph mining
system meant to an address the scalability issues
of the transforming centralization procedures into a
dispersed solutions. Unlike previously the TLV or TLP
methodologies, Arabesque was created from bottom
up to facilitate scalable graph extraction. It provides
an straightforward and intuitive API, allowing novices
to construct the distributed mining applications. in-
fluenced by the frameworks like MapReduce and
Pregel, it aspires to an reduce barriers to large-scale

graph analysis. The system demonstrated outstanding
performance and scalability across varied workloads.
This paper underlines the significance of reconsidering
graph mining for distributed systems. [14]

METHODOLOGY
The proposed research proposes an integrated ap-
proach to tackle the issues presented by perpetually
changing graph structures, we suggest an integrated
parallel computation design aimed at real-time scala-
bility and adaptability. This approach is organized into
three fundamental contributions:

Adaptive Structure Partitioning:
The input dynamic net has been split into acces-

sible subgraphs with a reactive split algorithm. This
approach monitors node/edge changes and redirects
payloads to guarantee balanced computing across
worker nodes. Partition boundaries are dynamically
modified to prevent load imbalances caused by rapid
topology alterations.

Progressive Processing:
Alternative to updating the whole graph’s layout

following any of an alteration, the system executes up-
dates just on the impacted sections. This is a achieved
utilizing methods like delta arithmetic and it also in-
fluenced by the events activates which drastically de-
crease time required for processing. Volatile networks,
defined by continually growing nodes and connections,
offer new problems that typical static graph machines
unable successfully manage. To address these is-
sues, we present a hybrid perpendicular computation
system that incorporates adaptive vertex splitting, in-
cremental computing, and a dual-model concurrency
approach combining message-passing mixed shared-
memory approaches. Our solution starts with adapt-
able graph separation, where the continually changing
graph is separated into numerous divisions that may
be adjusted on-the-fly to meet changes in topological
and demand. This decreases load imbalance concerns
frequently found with static division strategies when
the frequent graph changes occur. By concentrating
on impacted subgraphs via continuous processing, we
avoid an expensive recomputation of the whole graph,
instead performing delta computations prompted by
event-driven modifications such as node or edge in-
serting tasks and removal. The primary improvement is
in a hybrid concurrent model building design, depicted
in a system diagram below. The framework consists of
an Administrator Node, which operates as a centralised
coordinator capable of the managing job shipment,
checking system health, and coordinating update dis-
persion. The Worker Nodes work in parallel, each

July-September 2025A Scalable Cloud-Based System for Real-Time Deepfake Detection11 Feedforward(ISSN:3068-2525(online))

FEEDFORWARD

FIGURE 1. Working Diagram for Proposed Method

handling an division of the graph. Within every single
worker node, shared-memory multiple processors is
implemented to provide effective intra-node concurrent
calculations in a local section data. This multitasking
method saves overhead and uses multi-core systems
well.

Figure 1 shows the working model for proposed
methodology. The design employs a Master Node to
organize tasks and handle graph splitting. Personnel
which the Nodes execute graph fragments in par-
allel using shared-memory multithreading. Message
Passing provides the dialogue among the nodes for
an continuous updates. This blended technique offers
rapid, scalable, and accurate dynamic graph synthesis.

The figure 2 depicts the underlying notion of the
continuously processing an huge, changing networks
utilizing an in parallel processing architecture. At the
top, the changing graph is depicted with linked nodes
and an emphasized red edge, indicating a real-time
change (which could be an added or amended con-
nection). These dynamical changes are continually
happening in everyday systems like social media or
transportation networks.

Experimental Setup:
The experimental assessment was conducted on a

machine equipped with an AMD Ryzen 9 5900X CPU
featuring 12 cores, 64 GB of RAM, and an NVIDIA RTX
3080 GPU running Ubuntu 22.04. The implementation
in the employed PyTorch and the Deep Graph Library
(DGL) for graph neural network operations, in conjunc-
tion with MPI for message-passing and custom CUDA
kernels to optimize shared-memory processing. Two
large-scale dynamic datasets were utilized to validate
the system: the SNAP Twitter Social Network dataset,
encompassing roughly 41.6 million vertices and 20.4
million nodes, and the NYC Open Traffic dataset, which
records around 6.3 million updates each day across

FIGURE 2. Architecture Diagram for Proposed Methodology

450,000 nodes. The system was evaluated on sev-
eral graph activities including community recognition
using the Louvain method, shortest path updates via
a Dijkstra-based approach, and frequent edge inser-
tion and deletion events in to the averaging 5,000
alterations per second. This arrangement facilitated a
rigorous evaluation of the proposed model’s efficiency
and scalability in managing real-time dynamic graph
workloads.

RESULT
The recommended hybrid parallel processor architec-
ture it was thoroughly examined utilizing immediate
data sets from the two essential domains: community
insights and also an real-time traffic monitoring. These
categories were chosen from the owing to their ex-
tremely flexible and heavy on data character, which
make them excellent for assessing the performance
and adaptability of fluid graph mining systems. The
design was examined based on essential performance
criteria such as the processed latency as well as effi-
ciency, flexibility, and accuracy in computations includ-
ing finding an communities and path revisions. The pro-
posed mixed strategy integrating messagepassing and
shared-memory techniques provided a 3.4! accelerate
over stationary systems. It lowered delay from 320ms
to 95ms and boosted bandwidth to 1340 updates/sec
with 94.8derive from flexible segmentation and delta-
based updates, avoiding entire graphing recomputa-
tion. The simulator displayed stable and scalable ef-
fectiveness across varied datasets.

July-September 2025 12A Scalable Cloud-Based System for Real-Time Deepfake DetectionFeedforward(ISSN:3068-2525(online))

FEEDFORWARD

CONCLUSION AND FUTURE
ENHANCEMENT

Volatile graphs provide substantial hurdles for typical
static approaches, particularly in the real-time set-
tings needing quick, fast processing. This study pro-
vides an hybrid parallelism model that utilizes shared-
memory and message-passing methods with flexible
partitions and incremental updates, yielding enhanced
the latency, scalability, and also an accuracy. Potential
updates that include incorporating edge computing,
artificial intelligence for predictive dividing, support for
heterogeneous graphs, including an energy-efficient
analysis. Adding real-time visualization and enhanc-
ing tolerance for failure and cryptography will further
increase usability and dependability, make the frame-
work well-suited for convoluted, vital applications.

REFERENCES
1. C. C. Aggarwal and K. Subbian, “Evolutionary net-

work analysis: A survey,” ACM Computing Surveys
(CSUR), vol. 47, no. 1, pp. 1–36, 2014

2. N. K. Ahmed, J. Neville, and R. Kompella, “Network
sampling: From static to streaming graphs,” ACM
Transactions on Knowledge Discovery from Data
(TKDD), vol. 8, no. 2, pp. 1–56, 2014

3. A. Longa et al., “Graph neural networks for temporal
graphs: State of the art, open challenges, and oppor-
tunities,” arXiv preprint arXiv:2302.01018, 2023.

4. L. Yang, S. Adam, and C. Chatelain, “Dynamic graph
representation learning with neural networks: A sur-
vey,” arXiv preprint arXiv:2304.05729, 2023.

5. S. Hu et al., “Dynamic graph representation via edge
temporal states modeling and structure-reinforced
transformer,” arXiv preprint arXiv:2304.10079, 2023.

6. B. Chakraborty et al., “Dynamic graph structure esti-
mation using spiking neural networks,” arXiv preprint
arXiv:2504.01246, 2025.

7. S. Malhotra et al., “Efficient algorithms for parallel
dynamic graph processing,” International Journal of
Computer Network and Information Security (IJC-
NIS), vol. 15, no. 2, pp. 519–534, 2023.

8. H. Gao et al., “A survey on dynamic graph processing
on GPUs,” Frontiers of Computer Science, vol. 18,
article 184106, 2024.

9. C. Zeng et al., “SciDG: Benchmarking scientific dy-
namic graph queries,” in Proceedings of the 2023
International Conference on Scientific and Statistical
Database Management (SSDBM 2023), 2023.

10. C. Wang, D. Sun, and Y. Bai, “PiPAD: Pipelined and
parallel dynamic GNN training on GPUs,” in Pro-

ceedings of the ACM Symposium on Principles and
Practice of Parallel Programming (PPoPP), 2023.

11. . R. S. Xin, D. Crankshaw, A. Dave, J. E. Gonzalez,
M. J. Franklin, and I. Stoica, “GraphX: Unifying dat-
aparallel and graph-parallel analytics,” unpublished
manuscript

12. V. T. Chakaravarthy et al., “Efficient scaling of
dynamic graph neural networks,” arXiv preprint
arXiv:2109.07893, 2021.

13. L. Dhulipala et al., “Theoretically efficient parallel
graph algorithms can be fast and scalable,” arXiv
preprint arXiv:1805.05208, 2018.

14. C. H. C. Teixeira et al., “Arabesque: A system
for distributed graph mining,” in Proceedings of the
25th Symposium on Operating Systems Principles
(SOSP’15), 2015.

Shubham Malhotra is a seasoned software engi-
neer and technology innovator with extensive expertise
in cloud computing, distributed systems, performance
engineering and optimization, DevOps, and full-stack
development. He has driven the design and deploy-
ment of scalable, secure systems at leading organi-
zations like AmazonAWS, Microsoft Azure, where his
work has streamlined operations and enhanced real-
time data processing. Shubham’s innovative approach
has led him to develop distributed automation tools
and API solutions that integrate cutting-edge tech-
nologies with robust cloud infrastructures. His passion
for leveraging technology to solve complex challenges
is further evident in his pioneering projects, such as
an AI powered sales simulation platform and intelli-
gent data analysis systems. In addition to his tech-
nical contributions, Shubham is a dedicated thought
leader - actively participating in elite tech communi-
ties, reinforcing his commitment to shaping the future
of modern software solutions. Contact him at shub-
ham.malhotra28@gmail.com.

Dr. Meenu Gupta is with the Department of Com-
puter Science & Engineering at Chandigarh University,
Punjab, India. Her current research interests include
artificial intelligence, deep learning, and computer vi-
sion. Contact her at gupta.meenu5@gmail.com.

Fnu Yashu is a forward-thinking technology strate-
gist and Senior Member of Technical Staff at Broad-
com, renowned for her expertise in bridging software-
defined data centers with modern cloud computing
services. With years of industry experience, she has
spearheaded initiatives that deploy advanced cloud
agents to transform traditional infrastructures into ag-
ile, scalable, and secure ecosystems. Yashu’s career
spans influential roles at VMware and Informatica,
where she consistently delivered innovative microser-
vices architectures through robust CI/CD pipelines.

July-September 2025A Scalable Cloud-Based System for Real-Time Deepfake Detection13 Feedforward(ISSN:3068-2525(online))

FEEDFORWARD

Her pioneering work, underscored by filed and ap-
proved patents, highlights her commitment to driving
technological evolution in data center automation. An
alumnus of Stony Brook University and Thapar Institute
of Engineering Technology. Yashu continues to push
the boundaries of software engineering, solidifying her
reputation as a key influencer in the digital transforma-
tion landscape using cloud computing.

July-September 2025 14A Scalable Cloud-Based System for Real-Time Deepfake DetectionFeedforward(ISSN: 3068-2525(online))

An LLM-Powered API Navigator: Building an
Intelligent Assistant for API Specification
Understanding
Ahmed Aziz Ben Aissa, Aivancity, La Grande Ecole De L’intelligence Artificielle Et De La Data, 57 Av. du

Président Wilson, 94230 Cachan, France

Thibaut Goutorbe, Aivancity, La Grande Ecole De L’intelligence Artificielle Et De La Data, 57 Av. du Président

Wilson, 94230 Cachan, France

Ravi Prakash V, FIDE (formerly Beckn Foundation), Bangalore, India

Anuradha Kar, Aivancity, La Grande Ecole De L’intelligence Artificielle Et De La Data, 57 Av. du Président Wilson,

94230 Cachan, France

Abstract—Developers often find it challenging to understand the intricacies

of complex and constantly changing API specifications, both when dealing

with broad standards like OpenAPI and also specialized protocols in certain

domains. To address this, we have created an open source AI-powered tool

to explore APIs, designed to make navigating API documentation much easier

using advanced large language models. Our Python-based system leverages

semantic search, vector embeddings, and AI-driven query processing to provide

precise, contextually relevant answers straight from API documentation. We use

LlamaIndex for data ingestion and indexing, MistralAI for creating embeddings,

and ChromaDB for storing these embeddings long-term. LangGraph manages

the query process, enabling us to select relevant documents dynamically, rewrite

queries for better understanding, and retrieve information semantically. The user

interface, built with FastAPI, allows for an interactive experience where developers

can explore API structures and definitions in real time. Testing with OpenAPI

and another domain-specific protocol shows that the tool is highly effective

at handling both common and unique API formats, ultimately improving developer

access to complicated technical information through intelligent AI assistance.

Introduction
In today’s world of software development which re-
quires APIs for communication, integration, and data
exchange, understanding complex API specifications
has become a critical skill for developers, technical
writers, and system architects. Examples of API stan-
dards include OpenAPI and domain-specific ones like
the Beckn protocol as these provide structured def-
initions of endpoints, request and response formats,
and schema relationships. However, navigating these
documents, most of which are written in YAML or
markdown can be difficult and error-prone, especially
for users who are not familiar with their structure or
syntax.

The requirement for intelligent tools that support
natural language interaction with API documentation
is therefore growing 1. Traditional keyword based

search tools offer limited support for dynamic, seman-
tically rich exploration. In contrast, recent advances in
retrieval-augmented generation (RAG), vector embed-
dings, and large language models (LLMs) open new
possibilities to improve how users interact with and
understand API specifications2 3.

Recent advances in large language models
(LLMs) have enabled a variety of developer-assistive
tools4 5 6 7. Notable examples include GitHub Copilot
and OpenAI Codex 8 9, which generate code snip-
pets and pro vide autocomplete capabilities within
integrated development environments (IDEs). Other
systems have explored retrieval-augmented generation
(RAG) pipelines for code search 10 and natural lan-
guage interfaces to query databases and APIs11 12.

However, these tools primarily target generalpur-
pose code generation or question answering. Few

July-September Published by the IEEE Computer Society Santa Clara Valley Chapter 15Feedforward (ISSN:3068-2525 (online))

FEEDFORWARD

studies have addressed the challenge of navigat-
ing and transforming highly structured API specifica-
tions—especially those defined in machine-readable
formats such as OpenAPI YAML and domain-specific
protocols like Beckn. Our work is novel in combining
semantic retrieval, query reformulation, and transfor-
mation code generation within a unified system tai-
lored specifically to API specification comprehension
and mapping. This approach supports both general
REST APIs and specialized protocols, bridging a gap
between LLM-powered assistants and structured inter-
operability standards.

In this article we present an intelligent API doc-
umentation explorer assistant that enables users to
query and comprehend complex API specifications
using natural language. Our system integrates se-
mantic indexing, document embeddings, and dynamic
workflow routing to deliver context-aware, precise an-
swers from technical API documents. It supports both
general-purpose APIs like OpenAPI and domainspe-
cific standards such as Beckn protocol, and is de-
signed to assist users in identifying endpoints, under-
standing schema definitions, and comparing structural
elements without requiring deep familiarity with the
source format.

By combining LlamaIndex for semantic indexing,
MistralAI embeddings for vector representation, and
LangGraph for flexible query routing and processing,
we demonstrate a robust approach to augmenting
technical documentation with AI. Our assistant is de-
ployed via a FastAPI based web interface, providing
an interactive method for understanding API specifica-
tions. This work contributes to the growing field of AI
assisted developer tools, showcasing how LLM based
retrieval systems can improve accessibility, efficiency,
and comprehension in technical documentation work-
flows.

In this article,we first present the challenges faced
by developers in dealing with complex API specifi-
cations, followed by description of our LLM based
API explorer, its workflow and finally discussing the
challenges faced by LLM based API interpretation as
concluding remarks.

CHALLENGES OF COMPLEX API
INTERPRETATION

Interpreting and effectively using complex APIs comes
with a number of challenges. These are especially
evident when working with large-scale, poorly docu-
mented, or highly abstracted APIs. Typical problems
faced by developers include 1) Complex structures:
Complex APIs often involve hierarchies and abstract

classes, making it difficult for developers to estimate
the correct way to use them without extensive dig-
ging 2) Poor or incomplete documentation: Many APIs
sometimes have missing, outdated, or unclear docu-
mentation, that miss critical details 3) Hidden setup
and dependencies: Many APIs rely on implicit context
(e.g., initialization, environment settings) that is not ob-
vious from the interface, leading to confusion and run-
time errors. 4) Unclear use patterns and error handling:
Finding out the correct order of method calls, state
transitions, or properly handling errors can be difficult,
especially when examples or guidelines are lacking.
5) Version mismatches and unexpected side effects:
Developers may run into problems due to changes
in API versions or mainly when the documentation
doesn’t include the latest updates.

AN LLM POWERED INTELLIGENT
API EXPLORER

We developed an intelligent assistant to help users
query and interpret complex API specifications, with
a focus for generic and domain specific protocols. The
system uses semantic search, vector embeddings, and
large language models (LLMs) to generate accurate,
context-aware responses directly from API documen-
tation.

This work draws on two primary sources of API
documentation:

1) OpenAPI (https://www.openapis.org/): OpenAPI
is a specification13 for building APIs that allows
developers to describe the structure, endpoints,
and behavior of RESTful web services in a stan-
dardized, machine-readable format. It is a widely
used standard for documenting RESTful APIs.
We used the official OpenAPI 3.1.0 Markdown
specification to capture core elements such as
endpoints, parameters, and request bodies. The
structure and components of OpenAPI v2.0 and
v3.0 are shown in Figure 1.

2) Beckn API (https://becknprotocol.io/): The Beckn
protocol14 is an open, domain-specific standard
designed for decentralized digital commerce. Its
modular, layered architecture presents a chal-
lenging and rich test case for API interpretation.
The Beckn protocol architecture is shown in Fig-
ure 2, whereas the Beckn ecosystem outlining
developer resources is shown in Figure 3.

For this study, we used a collection of OpenAPI-
compliant YAML files covering key Beckn domains
such as transaction, registry, and metadata, along with
their corresponding schema index files and component

July-September 2025An LLM-Powered API Navigator: Building an Intelligent Assistant for API Specification Understanding16 Feedforward(ISSN:3068-2525(online))

https://www.openapis.org/
https://becknprotocol.io/

FEEDFORWARD

FIGURE 1. Overview of the OpenAPI specification structure,
that shows the hierarchical organization of components such
as paths, operations, hosts, request bodies, responses, and
reusable schemas defined in the components section.)

FIGURE 2. Overview of the Beckn architecture which pre-
scribes multiple layers stacked on top of one another, each
with clearly defined roles and functions. (Adapted from
https://developers.becknprotocol.io/ with permission.

definitions, organized under /api/ and /schema/ direc-
tories. All files were parsed, semantically structured
into document chunks, embedded using LLM-based
embedding models, and stored in a vector database
for efficient semantic search and retrieval. Our system
is designed with a modular architecture that integrates
several key components:

• MistralAI15 supports both document embed-
ding and question answering, leveraging the
mistral-small and mistral-medium mod-
els.

• LlamaIndex16 is used to build and query seman-
tic indices from the ingested API documentation.

FIGURE 3. A schematic diagram of various components of
the Beckn ecosystem or its “building blocks”. (Adapted from
https://developers.becknprotocol.io/ with permission)

• LangGraph17 functions as a custom graph-
based flow controller, managing the sequence
of operations including classification, rewriting,
querying, and retrieval.

• ChromaDB18 acts as the persistent vector store
for storing and retrieving embedded document
vectors.

• FastAPI19 serves as the lightweight web frame-
work, powering the application and providing a
form-based user interface.

STEP-BY-STEP WORKFLOW
The first major stage of our system involves building
a semantic search foundation by transforming raw API
documentation into vectorized, searchable representa-
tions. This process, which we call an ingestion pipeline,
also ensures that natural language queries can later
be matched accurately to relevant sections of the
API specs. The pipeline consists of the following key
components: document loading, text splitting, semantic
embedding, and persistent storage. The steps are
illustrated in Figure 4.

Step 1: Ingestion Pipeline and Vector Store
Document loading: This initial step handles the ex-
traction and parsing of API specification files from
multiple formats and structures. The system supports
both general-purpose API standards and domainspe-
cific protocols. For example, OpenAPI documenta-
tion is ingested in Markdown or YAML format (ope-
napi.yaml). In the case of the Beckn protocol, we
process OpenAPI-compliant YAML files corresponding
to specific domains like transaction.yaml, registry.yaml,
and meta.yaml, along with their associated schema
files. Each document is parsed and converted to struc-
tured objects. For YAML files, both endpoint details and

17An LLM-Powered API Navigator: Building an Intelligent Assistant for API Specification UnderstandingJuly-September 2025 Feedforward(ISSN:3068-2525(online))

FEEDFORWARD

FIGURE 4. Functional components of the Query interpreta-
tion and response generation workflow (Step 2)

nested schema definitions are extracted. This deep
parsing enables the creation of richly indexed doc-
uments that support cross-referencing between end-
points and data schemas.

Text Splitting and Embedding: In this step, once
documents are loaded, they are broken down into
semantically coherent chunks to ensure meaningful
retrieval, while ensuring the contextual integrity across
sections. Each chunk is then embedded using a cus-
tom wrapper that interfaces with Mistral’s embedding
API. The wrapper includes a throttling mechanism to
manage API rate limits. The resulting embeddings are
high-dimensional vector representations that encode
the semantic content of the documentation segments,
making them suitable for similarity-based retrieval.

We chose Mistral AI embeddings in combination
with LlamaIndex and ChromaDB for several reasons.
First, Mistral provides lightweight embedding mod-

els (mistral-embed) with 768-dimensional vectors that
strike a balance between computational efficiency and
retrieval performance. In contrast, larger embeddings
(e.g., OpenAI Ada or Cohere) incur higher latency
and cost, especially when indexing large YAML files.
Second, Mistral models integrate seamlessly with Lla-
maIndex pipelines and support high-throughput in-
gestion with effective throttling and batching. Finally,
Mistral’s licensing and deployment options are favor-
able for research prototypes and low-resource en-
vironments. Although LlamaIndex supports multiple
embedding providers, our experiments showed Mis-
tral embeddings maintained consistent retrieval quality
while reducing memory footprint and response times
in the vector store. This makes the stack particularly
wellsuited for interactive API exploration tools.

Text Splitting and Embedding Configuration
During ingestion, API documentation was split into
semantically coherent units using the SentenceSplitter
transformation. The main hyperparameters were:

1) Chunk overlap: chunk_overlap = 0. This
means no sentences were repeated between
adjacent chunks, avoiding redundancy.

2) Chunk size: The SentenceSplitter was
used in sentence-based mode, relying on default
behavior that groups sentences into chunks with
an approximate maximum size of 500 tokens,
depending on sentence boundaries.

3) Embedding configuration: We used the
ThrottledMistralAIEmbedding wrapper
configured with the following:

• Embedding model: mistral-embed
• Embedding dimensionality: 768
• Distance metric: Cosine similarity

4) Throttling mechanism: Enabled to ensure com-
pliance with API rate limits. This configuration
was selected to balance embedding throughput
with retrieval precision.

Vector storage: The final step involves storing
semantic vectors in ChromaDB which is a persis-
tent vector database optimized for high-performance
similarity search. We structure the data into distinct
collections based on the source and type of docu-
mentation. These include embeddings from the official
OpenAPI Markdown specification, vectors generated
from user-provided OpenAPI YAML files, and domain-
specific Beckn API definitions and schema embed-
dings. To minimize redundant processing and reduce
API calls, the ingestion pipeline first checks ChromaDB
for existing vector IDs before embedding new con-
tent. This ensures that documents are embedded only

July-September 2025An LLM-Powered API Navigator: Building an Intelligent Assistant for API Specification Understanding18 Feedforward(ISSN:3068-2525(online))

FEEDFORWARD

once unless modifications are detected. This ingestion
pipeline forms the backbone of our intelligent API
documentation assistant, enabling fast, accurate, and
semantically rich query responses across complex API
specifications.

Step 2: Query Interpretation and Response
Generation: Once the API documentation is ingested,
user queries are handled through a modular and intel-
ligent workflow powered by LangGraph. The workflow
is visualized as a conditional state graph that enables
flexible routing based on the nature of the query. The
steps of query interpretation and response generation
consist of the following:

Initialization and Routing: The process begins
with checking whether the user has selected a specific
document source. If the source is set to auto, the query
is routed to the classify node.

Classification: Using the Mistral small model, the
system classifies the query based on its semantics. For
example it can classify Beckn specific terms, generic
OpenAPI concepts and mapping code if the goal is
code transformation between APIs. The classification
result determines the document collection to be used
for retrieval.

Setup and Indexing: The setup node loads the
correct ChromaDB collection, wraps it in a ChromaVec-
torStore, and builds a semantic index via LlamaIndex.
A query engine and retriever are initialized for semantic
search.

Query Reformulation: At the rewrite node, the
user query is reformulated using the LLM to en-
hance clarity and search performance. The reformu-
lated query is more likely to match relevant documen-
tation chunks.

Conditional execution: If the goal is mapping
code, the workflow branches to generate code, which
retrieves relevant documentation from both OpenAPI
and Beckn collections, builds a mapping prompt, and
invokes the LLM to return a mapping guide and a
Python transformation function. Otherwise, the query
is passed to the query node, where the query engine
performs semantic retrieval and generates an answer.

Final Retrieval and Output: From the query node,
the flow continues to retrieve, which extracts the top-k
document chunks and their scores. The final output
includes: a) The rewritten query b) LLM-generated
answer c) Retrieved documents d) Confidence score (if
available). These results are rendered in the FastAPI
interface and delivered back to the user. This struc-
tured and conditional architecture supports a broad
range of use cases from basic documentation lookup
to advanced code generation tasks.

Summary of workflow: Relationship between

FIGURE 5. The technical components of our LLM powered
API explorer assistant

Ingestion Pipeline and LangGraph Workflow To
summarize the workflow, the ingestion pipeline trans-
forms raw API documentation into semantic embed-
dings stored in ChromaDB. It includes document load-
ing, sentence splitting (chunk overlap=0), embedding
with MistralAI, and persistent vector storage. This
process is performed once per API dataset to cre-
ate a searchable vector index. This is followed by
query interpretation and Response Generation. The
Figure 4 exclusively illustrates this stage. It shows
the LangGraph-based workflow that processes user
queries dynamically. Nodes in Figure 4 correspond to:

• init: Session initialization and context setup.
• classify: Query classification to select relevant

API sources.
• setup: Retrieval configuration for ChromaDB

collections.
• rewrite: Query reformulation to improve retrieval

accuracy.
• query: LLM-based semantic search.
• retrieve: Top-k document chunk extraction.
• generate code: Code mapping (if applicable).

This separation clarifies that ingestion and indexing
are decoupled from the runtime query flow depicted in
Figure 4.

All these steps as seen from the user point of view
are shown in Figures 5 and 6.

EVALUATION AND TESTING
To validate the system’s performance, we manually
tested the query pipeline with various types of ques-
tions targeting both OpenAPI and Beckn specifications.

19An LLM-Powered API Navigator: Building an Intelligent Assistant for API Specification UnderstandingJuly-September 2025 Feedforward(ISSN:3068-2525(online))

FEEDFORWARD

FIGURE 6. Sequential overview of the input and output stages
of the API explorer

These tests aimed to assess the accuracy, relevance,
and formatting of the LLM-generated answers, as well
as the quality of the retrieved documents.

We evaluated 30 representative queries across
three categories:

• 10 Beckn-specific queries
• 10 general OpenAPI queries
• 10 mapping queries (transforming OpenAPI

structures to Beckn equivalents)

Each query was assessed using four criteria:

1) Answer Precision – accuracy and complete-
ness.

2) Confidence – retrieval confidence more than 85
percent.

3) YAML Retrieval – correctness of schema extrac-
tion.

4) Latency – response time under 3 seconds.

The results demonstrate consistently high perfor-
mance on Beckn and OpenAPI queries, while mapping
queries—being inherently more complex—showed
modestly lower success rates in YAML extraction and
answer precision.

Example queries included: OpenAPI:

• What is the difference between parameters
and requestBody?

• How are enums represented in OpenAPI 3.1?

Beckn Protocol:

• What is the purpose of the on_search end-
point?

• Which fields are mandatory in a cancel re-
quest?

For each query, we evaluated the following:

FIGURE 7. Performance estimates of the query pipeline

1) Answer precision: Whether the LLM provided
an accurate and complete answer.

2) Confidence score: Returned by the query
engine, typically above 85 percent for well-
structured queries.

3) YAML retrieval: Whether the raw structure was
correctly extracted and displayed.

4) Responsiveness: System latency was accept-
able (<3 seconds) even with multiple LangGraph
steps.

The performance evaluation results are presented
in Figure 7. Overall, the assistant performed well on
most queries. Its performance was particularly effective
for queries involving known schema terms and stan-
dard OpenAPI elements.

CHALLENGES AND CONCLUSION
This article outlines the development of a new and
open source intelligent assistant powered by a fine-
tuned LLM designed to automate the interpretation of
API documentation. Built using the Mistral LLM, the
system is trained to read API specifications, generate
developer-friendly resources, and promote interoper-
ability across sectors. While it performs well on stan-
dard schema and OpenAPI elements, challenges re-
main particularly in handling ambiguous user queries,
which often lack clarity or specificity. Additionally, with-
out real-time access to the latest API updates, the
model risks producing outdated suggestions in rapidly
evolving API domains. Real-time performance is a con-
cern, because deploying large models in environments
like IDEs requires low-latency inference that may not
be feasible on constrained hardware. In addition, eval-
uating the effectiveness of the assistant remains diffi-
cult due to the lack of standardized benchmarks that
reflect real-world development tasks. Despite these
challenges, our LLM-driven framework bridges the gap
between complex API documentation and practical
API exploration. Future work in this direction includes
expanding support for additional API specification for-
mats, integrating multimodal capabilities (e.g., code

July-September 2025An LLM-Powered API Navigator: Building an Intelligent Assistant for API Specification Understanding2� Feedforward(ISSN:3068-2525(online))

FEEDFORWARD

+ visual schema parsing), and improving real-time
performance.

SUPPLEMENTARY MATERIAL
The repository describing the implementation of
the LLM-based API explorer can be found here:
https://github.com/zaizou1003/AICLINIC.

REFERENCES
1. R. Lehmann, “Towards Interoperability of APIs - an

LLM-based approach,” Proc. 25th Int. Middleware

Conf.: Demos, Posters and Doctoral Symposium,
Hong Kong, Hong Kong, pp. 29–30, 2024.

2. D. Nam, A. Macvean, V. Hellendoorn, B. Vasilescu
and B. Myers, “Using an LLM to Help with Code
Understanding,” 2024 IEEE/ACM 46th Int. Conf.

Software Engineering (ICSE), Lisbon, Portugal, pp.
1184–1196, 2024. doi: 10.1145/3597503.3639187

3. M. Kim, T. Stennett, D. Shah, S. Sinha, and A.
Orso, “Leveraging Large Language Models to Im-
prove REST API Testing,” Proc. 2024 ACM/IEEE

44th Int. Conf. Software Engineering: New Ideas

and Emerging Results, Lisbon, Portugal, pp. 37–41,
2024.

4. J. Chen et al., “When LLMs meet API documentation:
Can retrieval augmentation aid code generation just
as it helps developers?,” arXiv [cs.SE], 2025.

5. J. Liu, Y. Yang, K. Chen, and M. Lin, “Generating
API parameter security rules with LLM for API misuse
detection,” arXiv [cs.CR], 2024.

6. H. Liu, J. Liao, D. Feng, K. Xu, and H. Wang, “Aut-
oFeedback: An LLM-based framework for efficient
and accurate API request generation,” arXiv [cs.SE],
2024.

7. Y. Wu, P. He, Z. Wang, S. Wang, Y. Tian, and T.-
H. Chen, “A comprehensive framework for evaluat-
ing API-oriented code generation in large language
models,” arXiv [cs.SE], 2024.

8. GitHub, “GitHub Copilot.” [Online]. Available: https://
github.com/features/copilot

9. M. Chen et al., “Evaluating Large Language Mod-
els Trained on Code,” ArXiv, vol. abs/2107.03374,
2021. [Online]. Available: https://doi.org/10.48550/
arXiv.2107.03374

10. P. Lewis et al., “Retrieval-augmented generation
for knowledge-intensive NLP tasks,” arXiv [cs.CL],
2020. [Online]. Available: https://doi.org/10.48550/
arXiv.2005.11401

11. S. Zhou, U. Alon, F. F. Xu, Z. Wang, Z. Jiang, and G.
Neubig, “DocPrompting: Generating code by retriev-

ing the docs,” arXiv [cs.CL], 2022. [Online]. Available:
https://doi.org/10.48550/arXiv.2207.05987

12. O. Khattab and M. Zaharia, “ColBERT: Efficient and
Effective Passage Search via Contextualized Late
Interaction over BERT,” Proc. 43rd Int. ACM SIGIR

Conf. Research and Development in Information Re-

trieval, Virtual Event, China, pp. 39–48, 2020. [On-
line]. Available: https://doi.org/10.48550/arXiv.2004.
12832

13. OpenAPI Initiative, “OpenAPI Specification v3.1.0,”
2021. [Online]. Available: https://spec.openapis.org/
oas/v3.1.0

14. Beckn Protocol, “Beckn Protocol Documentation,”
2023. [Online]. Available: https://becknprotocol.io/

15. Mistral AI, “Mistral API Documentation,” 2024. [On-
line]. Available: https://docs.mistral.ai/

16. LlamaIndex, “LlamaIndex Documentation,” 2024.
[Online]. Available: https://docs.llamaindex.ai/

17. LangGraph, “LangGraph Framework,” 2024. [Online].
Available: https://www.langgraph.dev/

18. ChromaDB, “Chroma Vector Database,” 2024. [On-
line]. Available: https://docs.trychroma.com/

19. FastAPI, “FastAPI Framework,” 2024. [Online]. Avail-
able: https://fastapi.tiangolo.com/

• Ahmed Aziz Ben Aissa is a Master’s student in
AI and Data Science at Aivancity School in Paris
with interests in LLMs, Agentic AI, and software
engineering.

• Thibaut Goutourbe is a Master’s student in AI
and Data Science at Aivancity School in Paris,
with interest in LLMs, computer vision, and real-
time AI applications.

• Ravi Prakash V is the Head of Architecture
and Technology Ecosystem at FIDE (previously
Beckn Foundation). He is the genesis co-author
of the Beckn protocol specification.

• Anuradha Kar is an Associate Professor in AI
and Robotics at Aivancity Paris Cachan, France,
where she teaches and mentors graduate stu-
dents in deep learning, AI for health, computer
vision, explainable AI, and human-computer in-
teractions. Contact her at kar@aivancity.ai.

21An LLM-Powered API Navigator: Building an Intelligent Assistant for API Specification UnderstandingJuly-September 2025 Feedforward(ISSN:3068-2525(online))

https://github.com/zaizou1003/AI_CLINIC
https://doi.org/10.1145/3597503.3639187
https://github.com/features/copilot
https://github.com/features/copilot
https://doi.org/10.48550/arXiv.2107.03374
https://doi.org/10.48550/arXiv.2107.03374
https://doi.org/10.48550/arXiv.2005.11401
https://doi.org/10.48550/arXiv.2005.11401
https://doi.org/10.48550/arXiv.2207.05987
https://doi.org/10.48550/arXiv.2004.12832
https://doi.org/10.48550/arXiv.2004.12832
https://spec.openapis.org/oas/v3.1.0
https://spec.openapis.org/oas/v3.1.0
https://becknprotocol.io/
https://docs.mistral.ai/
https://docs.llamaindex.ai/
https://www.langgraph.dev/
https://docs.trychroma.com/
https://fastapi.tiangolo.com/

A Scalable Cloud-Based System for Real-Time
Deepfake Detection
Shubham Malhotra, Rochester Institute of Technology, Rochester, NY, USA, 14623

Dr. Meenu Gupta, Chandigarh University, Punjab, India, 140413

Muhammad Saqib, Texas Tech University, Lubbock, TX, USA, 79409

Abdul Muqtadir Mohammed, University at Buffalo Getzville, NY, USA, 14068

Abstract—In the era of digital media, the rapid development of AI-based
manipulation techniques like deepfakes and audio-video lip-sync changes
has raised concerns about the truthfulness of video footage. These technologies
are increasingly being used by malicious actors to spread false information,
slander people, or produce convincingly fraudulent videos. To solve this important
problem, we suggest that can reliably identify videos as authentic or fraudulent
based on audio-visual coherence. The hybrid deep learning (DL) framework
used in our method integrates Long Short-Term Memory (LSTM) networks for
periodic sequence prediction with ResNet-based Convolutional Neural Networks
(CNNs) for spatial feature extraction. The suggested model illustrates enhanced
performance in comparison to traditional deep learning techniques with a highest
test accuracy of 99.67testing by using confusion matrices, pair plots, heatmaps,
and accuracy comparison tests confirms the accuracy and stability of the model.
Streamlit is used to enable simple installation of the system as a web application,
hence increasing its accessibility and usability by enabling users to provide videos
and obtain real-time lip-sync authenticity analysis in a fast manner. The project
seeks to provide a trustworthy tool for the detection of tampered video content,
hence benefiting journalism, media forensics, and digital content verification.

INTRODUCTION
In the past decade, there has been an unprecedented
increase in the efficiency of visual speech recognition
software, due to the breakthroughs in deep learning
techniques and the affordability of big data sets[1].

Lip comprehension may be described as the ca-
pacity to interpret what individuals communicate via
their perception of lip movement. Reading one’s lips is
a tough skill for humans since lip motions pertaining to
distinct letters are outwardly identical (e.g., b and p or
d and t)[2].

To properly capitalize on the data obtained, we
constructed a deep neural system which takes the
characteristic of the voice as input and produces the
3D vertex distortion. The voice component is extracted
using a voice recognition model trained, and the pixel
displacement is utilized to drive 3D mesh simulations
to produce realistic face motions coordinated with the
input vocal sound. The proposed network combines
a one-dimensional convolution and LSTM (long-short-

term memory) and is able to generate realistic, smooth,
and natural facial animations [3].

This technology combines artificial intelligence,
computer vision, and natural language processing to
create a lifelike digital representation of a person,
delivering speech realistically and expressively. This
paper presents an SLR to provide insight into the
advances, limitations, and gaps in facial expression
and lip movement synchronization of an audio track.
Initially [4], researchers heavily depended on the Hid-
den Markov Model (HMM) for facial animation, with the
aim of capturing the dynamics of video and speech
sequences [5].

To achieve faithful speaking face generation, two
critical issues need to be considered: the high fidelity of
the subject’s appearance details and the synchroniza-
tion of lip movement with the audio input. To generate
lip-synced talking videos, prior methods directly model
the mapping between the audio signal and visual
content [6].

Standard video counterfeiting includes painstak-

July-September Published by the IEEE Computer Society Santa Clara Valley Chapter 22Feedforward (ISSN:3068-2525 (online))

FEEDFORWARD

ing frame-level changes using programs like Adobe
Premiere, frequently leaving obvious spatial artifacts.
However, Deepfakes employ computational models to
make lifelike alterations. Contemporary detection relies
on temporal irregularities and cognitive discrepancies,
such as intermittent blinking and odd head movements
[7,8,9,10].

Lip-sync deepfake scams utilize two distinct tech-
nologies. First, a celebrity’s voice undergoes cloning
from genuine audio samples. Previously requiring
hours of recordings for realistic voice replication, mod-
ern methods achieve this with mere minutes of authen-
tic audio. Deepfake denotes deployment of deep learn-
ing algorithms to fabricate manipulated digital con-
tent— video or audio—frequently employed maliciously
for fraud, defamation, and spreading disinformation
or propaganda. Small- and large-scale fraud, and to
produce dis-information designed to disrupt democratic
elections and sow civil unrest.

LITERATURE REVIEW
Recent advancements in audio-visual deepfake detec-
tion have shown significant promise in lip-sync analysis
using hybrid neural architectures. For example, the
LSTM module utilizes a 0.5 dropout probability to
iteratively evaluate frame sequencing efficiently, allow-
ing end-to-end model training requiring explicit loss
coefficients. Since manipulations may happen at any
moment of deepfake production, fixed-length uninter-
rupted frame sections served as input, providing a
classification efficiency of 97% on footage segments
under 2 seconds [11].

Researchers have also made a lot of progress in
lipreading by using deep learning systems including
3D convex networks, MouthNet, Bi-LSTM layers, and
CTC goal inside an functions. The model worked well,
as shown by high classification accuracies 96.2% and
also 93.8% on the Oulu-VS2 and GRID information
sets, correspondingly [12].

Moreover, the precision in identifying deepfake
movies altered by Faceswap and FSGAN increased
from 0.91 to 0.98 and 0.96, respectively, by supplying
extra details to the model, so illustrating the efficacy of
multisensory fusion [13].

In a separate procedure, the integration of spa-
tial convolutions with residual and Bi-LSTM nets has
demonstrated stable performance on real-life data
sets. On the Lipreading In-The-Wild benchmark, a
tough sample of 500 target words, an average pro-
ficiency of 83% was attained—surpassing prior stan-
dards by 6.8% [14].

Nevertheless even powerful APIs like those of the

two giants may be misled. It has been revealed that
78of deepfake material successfully misled through the
Microsoft Azure testing API, underlining the demand
for more robust detection mechanisms [15].

In the case of Faceswap Wav2Lip, FSGAN
Wav2Lip, and related test sets, detection accuracy
reached 98%, 97%, 96%, 94%, and 94% respectively.
Nonetheless, the performance declined slightly on cer-
tain test sets like RTVC, due to specific challenges
associated with those datasets [16].

Another study reported an impressive 92.3% test-
ing accuracy, 94.3% recall, and 93.3% F1 score on the
LRW dataset. The use of band-pass filters and dual-
resolution image streams enhanced performance, with
peak accuracies of 94%, indicating effective detection
of forged video content [17]. Moreover, average detec-
tion accuracy exceeded 95.3% in spotting lip-syncing
videos, outperforming baseline methods. Even in real-
world scenarios like WeChat video calls, the model
achieved up to 90.2accuracy, showcasing robustness
across varying environment [18]. A face-swapping-
based approach combining InceptionV3 (CNN) and
LSTM was proposed, where CNN extracts frame-level
features and LSTM constructs sequential descriptors.
This model achieved over 97accuracy in distinguishing
between pristine and manipulated videos [19].

Common CNN architectures like ResNet, Incep-
tionV3, VGG-16, and MobileNet have also been em-
ployed as lip feature extractors. Despite noise in the
data, these models demonstrated strong real-world
applicability, achieving 74–75% across all performance
metrics [20].

Finally, temporal dynamics modelled through LSTM
and their fusion using Bi-LSTM have shown consistent
improvements. In particular, this approach reported a
9.7% absolute improvement on the OuluVS2 dataset
and 1.5% on the CUAVE dataset, confirming the value
of sequence modelling in visual speech recognition
[21].

The literature study presents a complete basis for
understanding current breakthroughs and also limits in
the audio-visual deepfake and lip-syncs detection. By
reviewing the major studies that employ CNNs, LSTMs,
BiLSTMs, and also the hybrid models, it shows the
continued search of accurate and real-time detection
approaches. This research together stresses the rel-
evance of spatiotemporal features, multimodal incon-
sistencies, and resilient model designs in the attain-
ing high detection of the performance. The literature
also underlines how deepfake material may trick even
commercial APIs, thus emphasizing the importance of
accurate detection methods. The selection of relevant
research gives insight into datasets, experimental set-

July-September 2025A Scalable Cloud-Based System for Real-Time Deepfake Detection23 Feedforward(ISSN:3068-2525(online))

FEEDFORWARD

FIGURE 1. Architecture of Deep Fake Detection

tings, and assessment methodologies, which influence
the development of our proposed hybrid CNN-LSTM
model. This foundation supports the research direction
and verifies the design choices used in the offered
study. Ultimately, the literature analysis supports the
paper’s objective of constructing a high-accuracy, web-
accessible detection system that answers the critical
demand for trustworthy tools in media integrity verifi-
cation.

METHODOLOGY
The structure of our AI Lip the Sync button iden-
tification system comprises of interconnected mod-
ules built for real-time, accurate identification of the
edited movies. It starts with an Streamlit-based web
interaction for user footage upload, providing real-
time analysis. In the preliminary processing step, each
video is divided into frames, and audio is individu-
ally extracted. Lip characteristics such as the height,
breadth, and mouth element in the ratio—are extracted
from preserves while auditory features like MFCCs are
calculated. Data capture is carried out to the acquire
isolated, frontal video data for dependable input [22].

Audio-visual features are synchronized using times-
tamps. Feature vectors are generated from lip se-
quences using a pre-trained ResNet-18 model [23].
These vectors are passed into a VGG19-LSTM hybrid,
where CNN extracts spatial features and LSTM cap-
tures temporal dependencies. Results are visualized
with metrics and confidence scores in the Streamlit
interface. as shown in figure:1

Resnet
The Res2Net architecture aims at improving multi-
scale representation by increasing the number of avail-
able receptive fields. This is achieved by connecting

FIGURE 2. Demonstrate the Formation and Testing Accuracy
of the Restnet procedure model

FIGURE 3. Provides a comparison effectiveness graph, high-
lighting several models is assessed

smaller filter groups within one block in a hierarchical
residual-like style [24].

LSTM
With LSTM, neural networks can recall both current
data and more distant past data. Since LSTM can
discover without disregarding a long-term prerequisites
using its memory indefinite model, it can be used to
orderly and time series issues.

Video
The DeepFake videos are created in two major ways
(i) Face swapping and (ii) Face morphing. Both of
these techniques operate in different ways. The main
difference lies in the way these techniques manipulate
and transform facial features [25].

The suggested ResNet + LSTM hybrid building
design greatly exceeds than others, obtaining an peak
reliability of 99.67%. This emphasizes it is an greater

24A Scalable Cloud-Based System for Real-Time Deepfake DetectionJuly-September 2025 Feedforward(ISSN:3068-2525(online))

FEEDFORWARD

capabilities in collecting both spatial and temporal data
for robust categorization.

The suggested technology may be used in a lot
of different sectors. For communication sites, it can
help verify popular videos and find political information
that has been changed. In human resources, it may
be used with video interview platforms like Zoom,
Microsoft Teams, or specialist screening technologies
like HackerRank and Codility to check the identification
of candidates and make sure their interview answers
are real. In journalism and media fabrication, it helps
make sure that source footage is accurate so that false
information doesn’t get out. The Streamlit-based de-
ployment makes it even easier for non-technical people
to operate, allowing for smooth immediate operation
throughout all sectors.

RESULT AND CONCLUSION
The recommended hybrid profoundly learning system
shows outstanding an efficiency in identifying altered
movies based on visual or audio coherence. By inte-
grating an Long Short-Term Memory (LSTM) coalitions
for temporal trends recognition with ResNet-based
Convolutional Neural Networks (CNNs) for spatial fea-
tures extraction, the simulation obtained an maximum
test precision of 99.67% on a dataset of 20,000 labeled
films. This indicates an major improvement greater
than typical CNN or LSTM-only models.

Conclusion and Future Enhancement
The put forth hybrid LSTM-ResNet model efficiently
identifies manipulated movies with an excessive accu-
racy of 99.67%, providing accurate lip-sync reliability
analysis. Its combination with Streamlit provides im-
mediate time user involvement, aiding media forensics
and digital authentication. In future, the framework may
be upgraded with real-time the flow identification, a
bilingual datasets, and adversarial resilience. Handy
and edge execution may boost accessibility. Utilizing
explainable AI will boost transparency. Lastly, enabling
automatic report production may help forensic record
keeping.

One of the most captivating aspects about it
is that it focuses on lip-sync designs, which is an
area of deepfake detection that hasn’t been studied
enough. It also has an immediate, intuitive with an
Streamlit interface. The model was evaluated on varied
datasets (e.g., VoxCeleb2, FaceForensics++) encom-
passing Equal gender, different nations, various na-
tions, and variable video/audio quality, displaying con-
stant resilience. The system also gives understandable

results through per-frame score confidence and audio-
video alignment graphs. In the future, visual warmth
maps will be added to make the system even better.
The contribution is important for multimedia forensics
and real-world use, but it will be more useful and have
a bigger impact in production contexts if it is tested
more thoroughly, made easier to understand, and given
a wider range of data sets.

REFERENCES
1. T. Afouras, J. S. Chung, and A. Zisserman, “Deep

lip reading: a comparison of models and an online
application,” arXiv preprint arXiv:1806.06053, 2018.

2. A. M. Sarhan, N. M. Elshennawy, and D. M. Ibrahim,
“HLR-Net: a hybrid Lip-Reading model based on
deep convolutional neural networks,” Computers, Ma-
terials & Continua, vol. 68, no. 2, pp. 1531–1549,
2021.

3. X. Li et al., “A novel speech-driven lip-sync model
with CNN and LSTM,” Proc. 14th Int. Congr. Image
Signal Process., BioMedical Eng. Inform. (CISPB-
MEI), 2021.

4. M. H. Alshahrani and M. S. Maashi, “A Systematic
Literature Review: Facial expression and lip Move-
ment Synchronization of an audio track,” IEEE Ac-
cess, vol. 12, pp. 75220–75237, 2024.

5. D. Pawar, P. Borde, and P. Yannawar, “Generating dy-
namic lip-syncing using target audio in a multimedia
environment,” Natural Language Processing Journal,
vol. 8, p. 100084, 2024.

6. W. Zhong et al., “High-fidelity and Lip-synced Talk-
ing Face Synthesis via Landmark-based Diffusion
Model,” arXiv preprint arXiv:2408.05416, 2024.

7. Y. Gu, X. Zhao, C. Gong, and X. Yi, “Deepfake video
detection using Audio-Visual Consistency,” Lecture
Notes in Computer Science, pp. 168–180, 2021.

8. M. Bohacek and H. Farid, “Lost in Translation: Lip-
Sync Deepfake Detection from Audio-Video Mis-
match,” Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., 2024.

9. A. Kharel, M. Paranjape, and A. Bera, “DFTrans-
Fusion: Multimodal deepfake detection via lip-
audio cross-attention and facial self-attention,” arXiv
preprint arXiv:2309.06511, 2023.

10. S. Agarwal et al., “Detecting deep-fake videos
from phoneme-viseme mismatches,” Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. Workshops,
2020.

11. S. Tipper, H. F. Atlam, and H. S. Lallie, “An Investiga-
tion into the Utilisation of CNN with LSTM for Video
Deepfake Detection,” Applied Sciences, vol. 14, no.
21, p. 9754, 2024.

July-September 2025A Scalable Cloud-Based System for Real-Time Deepfake Detection25 Feedforward(ISSN:3068-2525(online))

FEEDFORWARD

12. L. He, B. Ding, H. Wang, and T. Zhang, “An optimal
3D convolutional neural network based lipreading
method,” IET Image Processing, vol. 16, no. 1, pp.
113–122, 2021.

13. S. A. Shahzad et al., “AV-Lip-Sync+: Leverag-
ing AVHuBERT to exploit multimodal inconsis-
tency for video deepfake detection,” arXiv preprint
arXiv:2311.02733, 2023.

14. T. Stafylakis and G. Tzimiropoulos, “Combining
Residual Networks with LSTMs for Lipreading,” arXiv
preprint arXiv:1703.04105, 2017.

15. F. Abbas and A. Taeihagh, “Unmasking deepfakes: A
systematic review of deepfake detection and gener-
ation techniques using artificial intelligence,” Expert
Syst. Appl., vol. 252, p. 124260, 2024.

16. S. A. Shahzad et al., “Lip sync matters: A novel mul-
timodal forgery detector,” Proc. APSIPA ASC, 2022.

17. Y. Liu et al., “Lip-Audio Modality fusion for deep
forgery video detection,” Computers, Materials &
Continua, vol. 0, no. 0, pp. 1–10, 2024.

18. W. Liu et al., “Lips are lying: Spotting the temporal
inconsistency between audio and visual in lipsyncing
deepfakes,” Advances in Neural Information Process-
ing Systems, vol. 37, pp. 91131–91155, 2024.

19. A. Malik, M. Kuribayashi, S. M. Abdullahi, and A. N.
Khan, “DeepFake detection for human face images
and Videos: a survey,” IEEE Access, vol. 10, pp.
18757–18775, 2022.

20. S. Vekkot, T. S. Gupta, K. P. Karthik, and D. Kaushik,
“Enhanced lip reading using deep model feature fu-
sion: A study on the MIRACL-VC1 dataset,” Procedia
Comput. Sci., vol. 258, pp. 1189–1198, 2025.

21. S. Petridis, Z. Li, and M. Pantic, “End-to-end visual
speech recognition with LSTMs,” Proc. IEEE Int.
Conf. Acoust., Speech Signal Process., 2017.

22. N. Aripin and A. Setiawan, “Indonesian Lip-Reading
Detection and Recognition based on lip shape using
face mesh and Long-Term Recurrent Convolutional
Network,” Appl. Comput. Intell. Soft Comput., vol.
2024, p. 6479124, 2024.

23. X. Li et al., “Replay and synthetic speech detec-
tion with res2net architecture,” Proc. IEEE Int. Conf.
Acoust., Speech Signal Process., 2021.

24. Ü. Atila and F. Sabaz, “Turkish lip-reading using
BiLSTM and deep learning models,” Engineering Sci-
ence and Technology, an International Journal, vol.
35, p. 101206, 2022.

25. R. Khan et al., “Comparative study of deep learning
techniques for DeepFake video detection,” ICT Ex-
press, 2024.

Shubham Malhotra is a seasoned software engi-
neer and technology innovator with extensive expertise
in cloud computing, distributed systems, performance

engineering and optimization, DevOps, and full-stack
development. He has driven the design and deploy-
ment of scalable, secure systems at leading organi-
zations like AmazonAWS, Microsoft Azure, where his
work has streamlined operations and enhanced real-
time data processing. Shubham’s innovative approach
has led him to develop distributed automation tools
and API solutions that integrate cutting-edge tech-
nologies with robust cloud infrastructures. His passion
for leveraging technology to solve complex challenges
is further evident in his pioneering projects, such as
an AI powered sales simulation platform and intelli-
gent data analysis systems. In addition to his tech-
nical contributions, Shubham is a dedicated thought
leader - actively participating in elite tech communi-
ties, reinforcing his commitment to shaping the future
of modern software solutions. Contact him at shub-
ham.malhotra28@gmail.com.

Dr. Meenu Gupta is with the Department of Com-
puter Science & Engineering at Chandigarh University,
Punjab, India. Her current research interests include
artificial intelligence, deep learning, and computer vi-
sion. Contact her at gupta.meenu5@gmail.com.

Muhammad Saqib is a technology expert and
researcher in the fields of artificial intelligence, cloud
computing, and cybersecurity systems. He has applied
intelligent technologies to real-world issues in areas
like healthcare, financial services, and the manufac-
turing industries. In the area of cybersecurity, he has
assisted in the creation of deep learning models that
can identify threats in real-time through the use of
pattern recognition and anomaly detection methods.
These systems are designed to protect data, adapt
to new threats, and reduce human intervention. He
is also deeply involved in the formation of secure,
scalable cloud-based platforms to support modern
business applications. He is involved in the integration
of AI with cloud infrastructure to develop systems
that are not only technically powerful but also ethical,
transparent, and user-friendly. Contact him at saqi-
braopk@hotmail.com.

Abdul Muqtadir Mohammed is a seasoned soft-
ware engineer affiliated with the Department of Com-
puter Science at the State University of New York. His
work spans AI/ML, intelligent routing, and large-scale
logistics systems. He holds professional honors as a
Senior Member of IEEE and a Fellow of BCS. His
focus lies in building scalable, real-world AI solutions.
Contact him at am287@buffalo.edu.

2�A Scalable Cloud-Based System for Real-Time Deepfake DetectionJuly-September 2025 Feedforward(ISSN:3068-2525(online))

	INTRODUCTION
	LITERATURE REVIEW
	METHODOLOGY
	Resnet
	LSTM
	Video

	RESULT AND CONCLUSION
	Conclusion and Future Enhancement

	REFERENCES
	REFERENCES

