World-Wide Camera Networks

Yung-Hsiang Lu

Professor, Elmore School of Electrical and Computer Engineering, Purdue University Fellow of the IEEE (2021), Distinguished Visitor of the Computer Society (2023-2025) Distinguished Scientist and Distinguished Speaker of the ACM (2013) Director of Purdue John Martinson Engineering Entrepreneurial Center (2020-2022) Low-Power Computer Vision: Improve the Efficiency of Artificial Intelligence (ISBN 9780367744700) Intermediate C Programming (ISBN 9781498711630)

Let's have a discussion.

Outlines

- Observing Human Mobility Internationally During COVID-19
- Discovery of Network Cameras
- Resource Management for Analyzing Video Streams from Network Cameras
- Lessons learned (research vs. commercialization)

8

2020/04

2019

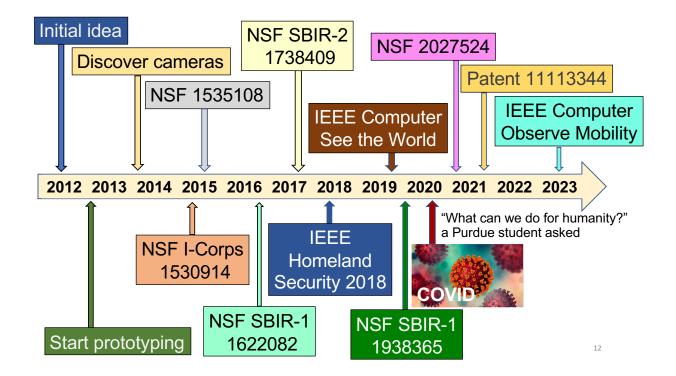
2020/04

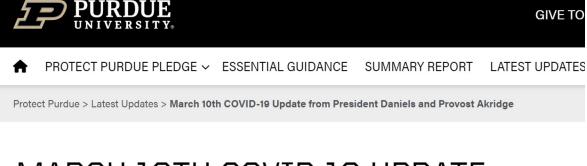
2020/04

Thank You

- Utility
- Network
- Public Safety
- First Responders
- Childcare
- Energy
- ...
- many more

Shane Allcroft^(D), Mohammed Metwaly, Zachery Berg^(D), Isha Ghodgaonkar, Fischer Bordwell^(D), XinXin Zhao, Xinglei Liu^(D), and Jiahao Xu, Purdue University


Subhankar Chakraborty, Indian Institute of Technology Madras


Vishnu Banna, Akhil Chinnakotla[®], Abhinav Goel[®], Caleb Tung[®], Gore Kao, and Wei Zakharov, Purdue University

David A. Shoham, East Tennessee State University

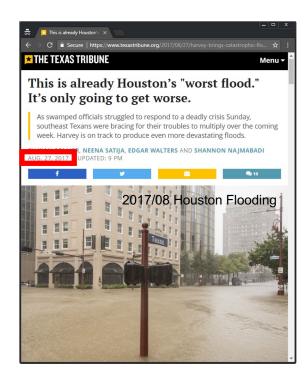
George K. Thiruvathukal[®], Loyola University Chicago **Yung-Hsiang Lu[®]**, Purdue University

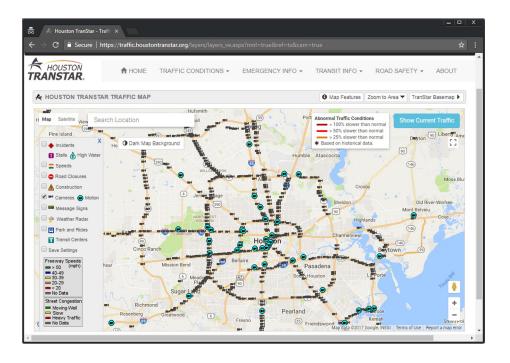
MARCH 10TH COVID-19 UPDATE FROM PRESIDENT DANIELS AND PROVOST AKRIDGE

MARCH 10, 2020

All faculty and staff should move their courses to online or alternative delivery before March 23 and should be prepared to continue as long as in-person instruction seems inadvisable 13

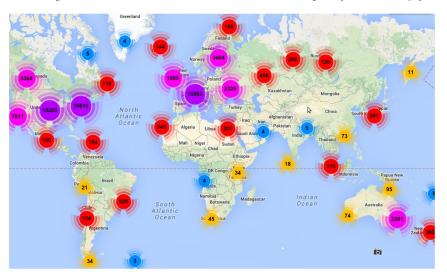
2012: "Can we see the world at home?"




2014 Thanksgiving Parade in NYC

16

1-69 Eastex @ Parker


20

We discovered more than 120,000 cameras now, analyze 5 seconds/camera ⇒ 7 days (no sleep)

Camera

Database

How to Discover and Use the Data?

- "Automated Discovery of Network Cameras in Heterogeneous Web Pages ", ACM Transactions on Internet Technology, Vol. 22, Issue 1. February 2022
- "Observing Human Mobility Internationally During COVID-19", Computer 2023
- "Adaptive Resource Management for Analyzing Video Streams from Globally Distributed Network Cameras", IEEE Transactions on Cloud Computing, Vol. 9, Issue 1, January 2021.

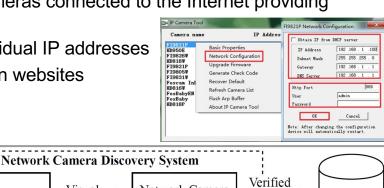
Discover Network Cameras

Network cameras: cameras connected to the Internet providing (near) real-time data.

Visual

Data Links

1. Cameras with individual IP addresses


Web Crawler

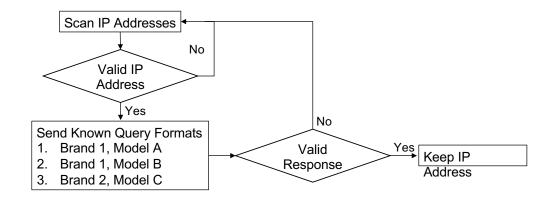
Scrapy

2. Multiple cameras on websites

←нттр

Web pages

Network


Cameras

- 1

Network Camera

Identification

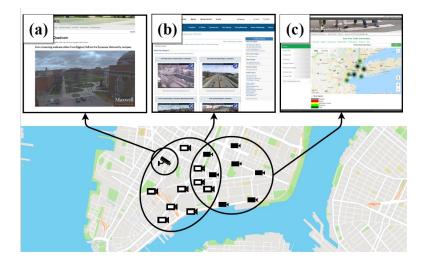
Cameras with Individual IP Addresses

IP Address Ranges of Universities

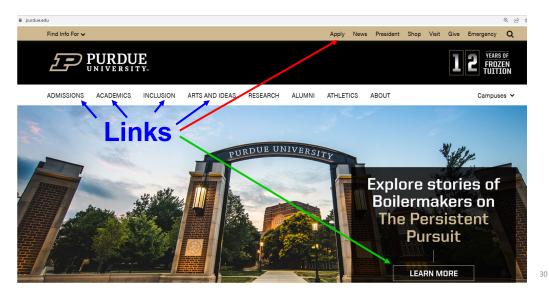
URL	IP Address
www.purdue.edu	128.210.7.200
www.stanford.edu	146.75.30.133
www.mit.edu	23.79.197.77
www.berkeley.edu	141.193.213.21

- Informed Purdue Network Security Office before the scan
- Problems:

Slow (one minute per camera), Low success rate (< 0.1%)


o Discover only several known brands

 $_{\odot}$ Miss many cameras that do not have individual IP addresses


o Cannot find cameras' locations easily

• Appear security attacks (denial of service, vulnerability exploration)

Cameras on websites (three organizations)

How do web crawlers work?

Engineering Webcams

UNIVERSITY. The Engineering Computer Network maintains webcams in several buildings. They do construction projects and provide a glimpse into Purdue for those far away.

Click on a photo to view a slide show from the past day, month, year or all images.

Bowen Labs Cam 1

Last updated April 15, 2023 10:40 am

Bowen Labs Cam 2

st updated April 15, 2023 10:40 am

Bowen Labs Cam 3

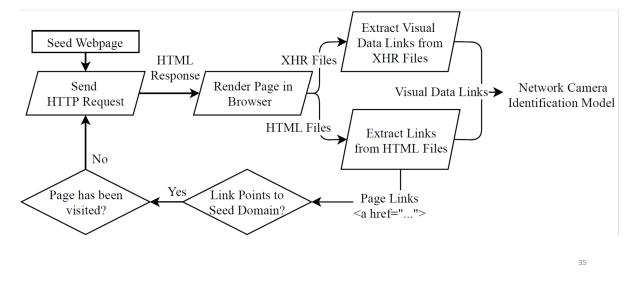
Last updated April 15, 2023 10:40 am

Purdue Memorial Union South Terraces

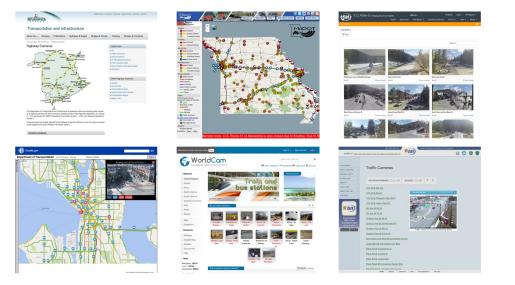
University of Illinois Alma Cam

32

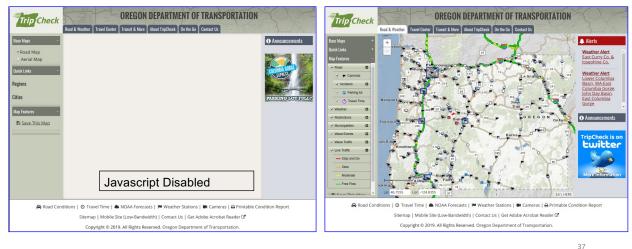
University of Iowa Pentacrest Webcam

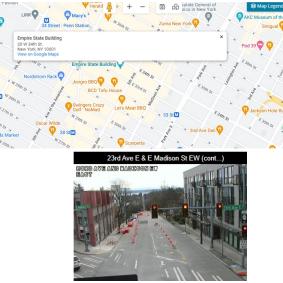


Tokyo Shinjuku

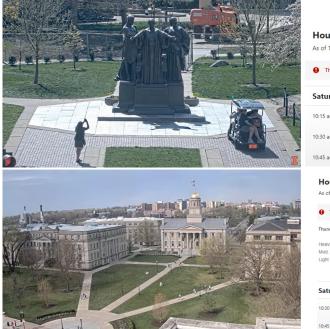


Japan Intersection




Challenge 1: different HTML structures

Challenge 2: Javascript



Challenge 3: Locations

From Data Sources

Match weather reports Hourly Weather - Urbana, IL As of 10:22 am CDT						
						There is a possible risk of severe weather today.
Saturday, April	15					
10:15 am 74°	🔆 Sunny	/ 0%	🗳 SSW 15 mph			
10:30 am 75°	🔆 Sunny	/ 0%	🗳 SSW 15 mph			
10:45 am 76°	🔆 Sunny	/ 0%	🚔 SSW 15 mph			
Hourly Weath As of 10:25 am CDT						
	risk of severe weather today.					
Heavy Mod. Light Now	after 11 am.		5p			
Saturday, April 1	5					
10:30 am 63°	🔆 Sunny	🖌 7% 🚔 SSW	18 mph			
10:45 am 64°	🔆 Sunny	🖌 11% 🗳 SSW	19 mph 39			

Match Google Street

Network Camera

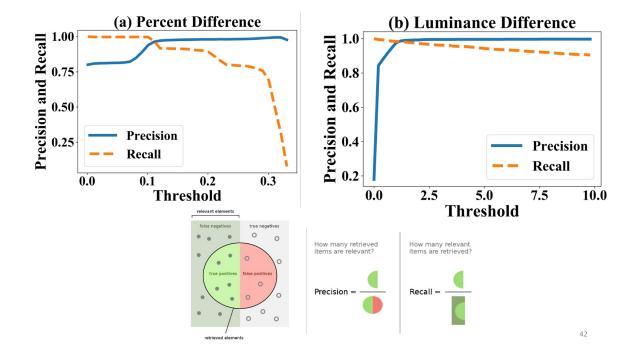
Google Street

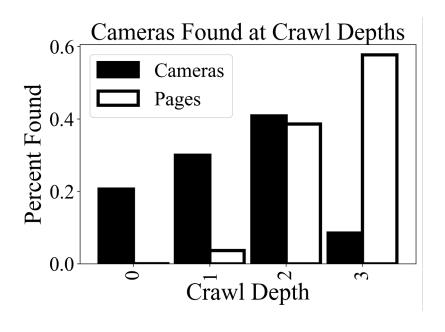
Detect Static Visual Data

Detect and exclude static visual data (icons and recorded videos)

Icons:

Good Result:

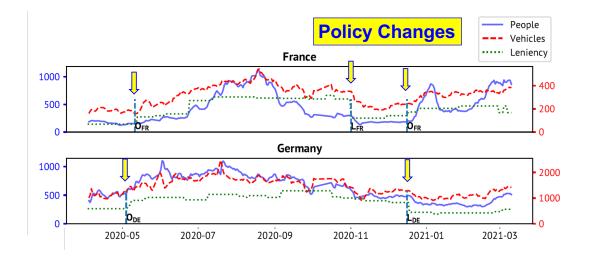


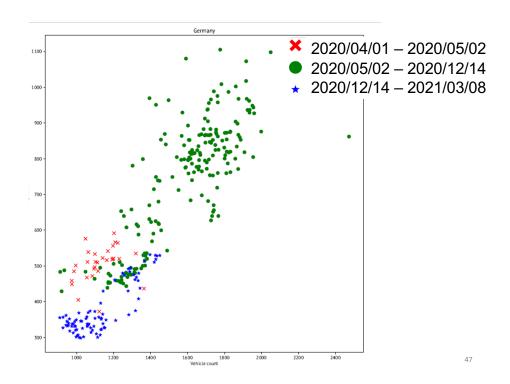


False Positive:

Count People during COVID




2020/08/11 France


2020/12/29 Kerns

2020/05/15 Zatec

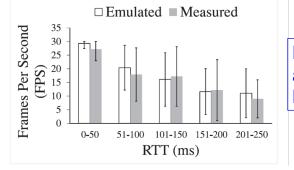
44

Limitations of this study

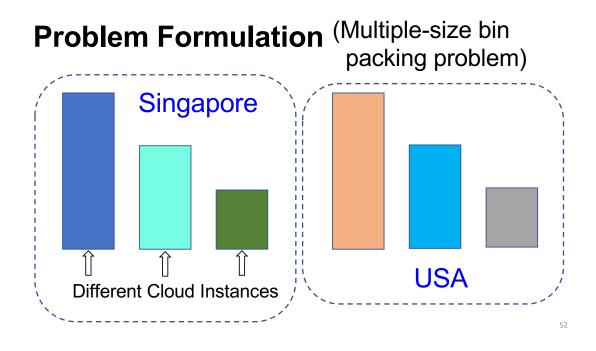
- No historical data for seasonal adjustments
- · Only outdoor data, only public locations
- Due to the volume of data, low sampling rates
- Cannot detect face masks (too few pixels for faces)
- · Cameras may be disconnected by owners
- Privacy Policy: This project is approved by Purdue's Institutional Review Board (IRB). The project counts numbers of people and vehicles. The project does not recognize faces or license plates.

Questions and Discussion

Analyze Global Real-Time Video Streams


- The cameras are globally distributed.
- Moving data across long distances increases latency and reduces frame rates.
- Cloud instances have different costs at different locations

Instance	Virginia, Oregon	Frankfurt	Singapore	Tokyo
m3.medium	0.067	0.079	0.098	0.096
m3.large	0.133	0.158	0.196	0.193
m3.xlarge	0.266	0.316	0.392	0.385
m3.2xlarge	0.532	0.632	0.784	0.770


Amazon EC2 m3 instance cost per hour

Research Questions

- Where should the data be analyzed?
- Which cloud instances should be used?
- · How many should be allocated?

Commercialization?

- We created "interesting" technology (papers + patents)
- We could see many places in the world instantaneously.
- We have methods to analyze the data efficiently.
- What is the product? Who are the customers?
- Three people in this research team joined NSF I-Corps for "customer discovery"

Business Model Canvas					
Key Partners	Key Activities	Value Proposition	Customer Relationships	Customer Segments	
	Key Resources		Channels		
Cost Structure		Revenue Streams			
				54	

56

Research vs. Commercialization

- Publishing papers different from developing products
- Creating profitable products require long-term planning
- University structures create predictable disruptions:

 Semester breaks
 - oExisting students graduate, new students join
 - o"Build from scratch" common; "Build upon existing" rare
 - oDocumentation and transition not emphasized
 - oLow correlations between grades and research abilities

Summary

- Network cameras provide (near) real-time visual data
- · Discovering network cameras has to handle heterogeneity
- Analyzing the data efficiently needs to consider locations of computation
- Research different from commercialization
- Please share your comments, questions, and suggestions to yunglu@purdue.edu.
- Thank you.

Representative Publications

- "Observing Human Mobility Internationally During COVID-19", Computer 2023, Volume: 56, Issue: 3, pages 59-69, DOI: https://doi.org/10.1109/MC.2022.3175751
- "Automated Discovery of Network Cameras in Heterogeneous Web Pages ", ACM Transactions on Internet Technology, Vol. 22, Issue 1. February 2022, DOI: https://doi.org/10.1145/3450629
- "See the World through Network Cameras", IEEE Computer pages 30-40, Vol. 52, Issue 10, October 2019. DOI: https://doi.org/10.1109/MC.2019.2906841
- "Adaptive Resource Management for Analyzing Video Streams from Globally Distributed Network Cameras", IEEE Transactions on Cloud Computing, Vol. 9, Issue 1, January 2021. Pages: 40-53. DOI: https://doi.org/10.1109/TCC.2018.2836907
- "Cloud Resource Management for Analyzing Big Real-Time Visual Data from Network Cameras", IEEE Transactions on Cloud Computing, Pages 935-948, Vol. 7, Issue 4, October-December 2019. DOI: https://doi.org/10.1109/TCC.2017.2720665
- "Large-Scale Object Detection of Images from Network Cameras in Variable Ambient Lighting Conditions", IEEE International Conference on Multimedia Information Processing and Retrieval 2019. DOI: https://doi.org/10.1109/MIPR.2019.00080

- "Cross-referencing social media and public surveillance camera data for disaster response", IEEE Symposium on Technologies for Homeland Security 2018. DOI: https://doi.org/10.1109/THS.2018.8574200
- "Location Based Cloud Resource Management for Analyzing Real-Time Video from Globally Distributed Network Cameras", IEEE International Conference on Cloud Computing Technology and Science (CloudCom) 2016. Pages: 176-183. DOI: https://doi.org/10.1109/CloudCom.2016.0040
- "Improve Safety using Public Network Cameras, IEEE Symposium on Technologies for Homeland Security 2016. DOI: https://doi.org/10.1109/THS.2016.7568911
- "Large-scale Image Processing using Amazon EC2 Spot Instances", IS&T International Symposium on Electronic Imaging in the Image Quality and System Performance Conference 2016. DOI: https://doi.org/10.2352/ISSN.2470-1173.2016.13.IQSP-226
- "Cloud Resource Management for Image and Video Analysis of Big Data from Network Cameras", International Conference on Cloud Computing and Big Data 2015. Pages: 287-294, DOI: https://doi.org/10.1109/CCBD.2015.8
- "Multimedia Content Creation using Global Network Cameras: The Making of CAM2", IEEE Global Conference on Signal and Information Processing 2015. Pages: 15-18. DOI: https://doi.org/10.1109/GlobalSIP.2015.7416927

Patents

- 11113344, "Automated Discovery of Network Camera in Heterogeneous Web Pages"
- 10904317, "System and Method for Identifying Publicly Available Cameras (1)"
- 10367877, "System and Method for Identifying Publicly Available Cameras (2)"
- 10506201, "Public Safety Camera Identification and Monitoring System and Method (1)"
- 10341617, "Public Safety Camera Identification and Monitoring System and Method (2)"