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Dear Readers, From the Editor’s Desk

Welcome to the inaugural issue of Feedforward, the flagship publication of 

the IEEE Computer Society, Santa Clara Valley chapter. 

Ours is the largest chapter in the Silicon Valley Section of IEEE with over 4,000 

subscribers in our mailing list, 1,400+ paid members, and a strong following of over 

12,400 on Twitter alone. We are uniquely positioned by the virtue of our location and 

available expertise. Silicon Valley is a trendsetter. It is not an exaggeration to say that 

Silicon Valley is at the heart of the innovation that is driving the world economy and the 

civilization in general. The chapter can 

play a vital role in all of this. I started Feedforward with this vision in mind and hope to 

evolve it into a full-fledged professional trade journal that will be indexed in significant 

databases. 

Along the lines of the vision, I also proposed to start an annual International 

Conference on Applied Data Science (ICADS) to focus on quick summaries of leading 

research and experience in the area from all over the world. I am fortunate to be 

supported by the ExCom that you voted for in all these endeavours. Details about 

ICADS and other upcoming events can be found inside this issue. True to its 

international vision, this issue of Feedforward presents articles written by authors from 

varied geographical regions on cutting-edge topics. Articles for future issues are 

welcome on all topics related to the IEEE Computer Society charter and if possible, 

relate to the Silicon Valley. Please submit your articles on our website here: 

https://r6.ieee.org/scv- cs/?p=2036. 

We organized and cosponsored several events this year already and more are in the 

pipeline. The list of the upcoming events curated during the month of March is posted 

on our website at https://r6.ieee.org/scv-cs/?page_id=2030. 

Please subscribe to the chapter mailing list and follow the chapter social media pages 

and groups to get timely updates and take advantage of the events. Since most events 

are online, we often get professionals from as far as Thailand attend our events. 

Networking is still one of the primary reasons we all join professional societies. Keeping 

this objective in mind, the chapter open-house is planned to be in- person in addition to a 

live broadcast over YouTube and Zoom. Most of the past events of our chapter are 

available on IEEE.tv https://ieeetv.ieee.org/search?search_q=scv-cs and on YouTube, 

where they are live broadcasted: https://www.youtube.com/playlist?list=PLLsxQYv4DdJlYcGPwqUJsnHmfqMtB3eSJ 

We are looking for more volunteers to help in various roles. You can help as a reviewer of 

the articles, papers, be a guest editor for special issues, help organize conferences and 

events, help with the publicity for our events, and more. Please consider being part of 

the success story by signing up here: https://r6.ieee.org/scv- cs/?p=2039. With the onset 

of the Spring season, let’s Feedforward the chapter to a bright new future. Hope you are 

all with me in my efforts. Happy reading and happiness always! 

With every best wish, Monday, March 28, 2022 

Vishnu  S. Pendyala   San Jose, California, USA 
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Enabling Easier Programming of 
Machine Learning Algorithms on 
Robots with oneAPI Toolkits 
Denisa Constantinescu, Angeles Navarro, Rafael Asenjo 
Computer Architecture Dpt., University of Málaga 

Juan-Antonio Fernández-Madrigal, Ana Cruz-Martín 
System Engineering and Automation Dpt., University 
of Málaga 

Abstract—This work shows that it is feasible to solve large-scale decision-making problems for 
robot navigation in real-time onboard low-power heterogeneous CPU+iGPU platforms. We can 
achieve both performance and productivity by carefully selecting the scheduling strategy and 
programming model. In particular, we remark that the oneAPI programming model creates new 
opportunities to improve productivity, performance, and efficiency in low-power systems. Our 
experimental results show that the implementations based on the oneAPI programming model 
are up to 5× easier to program than those based on OpenCL while incurring only 3 to 8% 
overhead for low-power systems. 

¢ WHEN you think of oneAPI use cases that 
leverage the performance of heterogeneous computing, 
you might first envision powerful workstations and 
multi-megawatt supercomputers loaded with big CPUs, 
GPUs, and FPGAs training complex neural networks. 
However, our team is working on the opposite end of 
the spectre. This work explores solving problems in 
systems that use compute-intensive reinforcement 
learning (RL) algorithms optimized for battery-
powered heterogeneous computing devices.  

We have focused for many years on productively 
exploiting heterogeneous chips leveraging Intel® 
Threading Building Blocks (TBB) as the orchestrating 
framework and developing heterogeneous scheduling 
strategies [7], [8]. So, the announcement of oneAPI was 
immediately received in our group as an enticing 
opportunity to raise the level of abstraction in our 
implementations of heterogeneous schedulers. We see 
oneAPI as a solid endorsement to SYCL and modern 
C++ as the basis for the 'homogeneous programming of 
heterogeneous platforms' idea. 

Heterogeneous computing with multiple types of 
processors can benefit large-scale and supercomputers 
to embedded systems. However, with smaller systems 
(as mobile robots), compute-intensive, automated 
decision-making algorithms need to be efficient, and 
schedulers need to be aware of energy consumption as 
they assign tasks to different processor architectures to 
optimize throughput. These aspects require new 
approaches to optimizing solutions for low-power 
systems, which we explore in this work. 

Many automated planning and decision-making 
algorithms rely on Markov Decision Processes (MDPs) 
[1] and Partially Observable MDPs (POMDPs) [2].
MDPs and POMDPs describe how an intelligent agent
with a defined goal learns to make better decisions by
doing, even without knowing the map of its
environment. POMDP and MDP agents can cope with
uncertainty, such as not knowing what lies ahead or
whether their actions will be beneficial. The literature
shows that solving real-world problems for this kind of
agent is not considered for low-power platforms [3] and
computing an optimal solution for medium to large-
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sized problems is intractable [4]. But the medium-large 
scale problems include most of the practical 
applications in autonomous robots, deep-space 
navigation, search and rescue, inspection and repair, 
toxic-waste cleanup, and much more. 

Consequently, we focus our efforts on optimizing 
decision-making and planning algorithms for mobile 
robots (illustrated as the red boxes in Figure 1). This 
niche would highly benefit from a solution for runtime 
and energy-efficient implementation. 

Figure 1. Decision making under uncertainty to 
plan for the navigation of a mobile robot modelled 
as a POMDP agent.

The primary source of uncertainty in a POMDP is 
modeled by maintaining an information state called 
belief, ! ∈ #, representing a probability distribution 
over the state space $. In practice, a particle filter (the 
yellow block in Figure 1) is used to implement a 
recursive Bayesian filter to estimate the underlying 
state %! of a dynamical system like this: !! = !(%!) ∝
*(+!|%!)∫ *(%!|%!"#, /!"#)!(%!"#)0%!"# [5]. Here, +! is 
a sensor measurement and /! is the action or control 
command; *(+!|%!) models the observations (from 
sensors) while *(%!|%!"#, /!"#) describes the system's 
dynamics (e.g., state transition due to actuators). 

At any time 1, an MDP agent is in one of the possible 
states, %!, which is known, while a POMDP agent only 
knows its belief state estimate !!. Given either the 
current state or the belief state, the agent must decide 
for and execute the action /!, given a finite set of 
possible actions. The chosen action is known as the 
policy. Taking action /! results in an immediate reward 
2! = 2(%!, /!) ∈ ℝ, and in a transition to state %!$# with 
probability *(%!$#|%!, /!). After each transition, the 
agent observes +!, and the process repeats until the 
agent reaches its goal. 

We aim to enable easy and feasible ways to 
implement decision making on low-power mobile 
platforms and focus on online planning under 
uncertainty for practical applications, such as 
autonomous driving and service robotics, that must run 
on SoC mobile platforms. These applications often 
have real-time execution constraints and run on battery-
powered platforms.  

The main challenge is to keep the runtime and 
energy performance in check while allowing the users 

(programmers) to code solvers for decision-making 
problems. Our proposed solution uses low-power 
aware heterogeneous computing strategies, sparse data 
structures to fit real-world size decision-making 
problems on SoCs (System on Chip) with scarce 
memory and computing resources, and oneAPI with 
DPC++ programming [6]. 

DEVELOPING THE SOLUTION—NAVIGATING 
NEW SPACES FOR MDP AGENTS 

Our team has created new methods, memory-
efficient data structures, and low-power aware 
heterogeneous computing schedulers [3], [7] to enable 
an intelligent agent to act autonomously in 
environments where the effects of its actions are not 
deterministic (Figure 2). For example, a rover taking 
samples from the surface of Mars may not know if a 
sample is worth taking or if the direction of travel will 
lead to worthy specimens. Or, a drone looking for 
survivors trapped after a natural disaster may not know 
if it is following a path that will eventually lead to a 
person. 

Figure 2. Robots must learn to navigate in 
uncertain environments, such as those above, 
using RL methods. We illustrate the configuration 
of different navigation scenarios in V-REP 
simulator (the black object is the robot) and how 
we use the simulated experience to plan 
navigation policies in new scenarios.

We start our journey with the Value Iteration (VI) 
algorithm, commonly used in MDPs and a core kernel 
in many RL methods, optimizing its data structures for 
memory use and access. Then, we explore ways to 
improve the performance of this planning and decision-
making algorithm. In the flow diagram from Figure 2, 
the VI algorithm is represented by the red block 
(planning algorithm). 
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Figure 3. Planning flow with a VI algorithm.

We explore different parallel implementation 
strategies on low-power SoCs to improve the VI 
runtime and energy use. We have initially implemented 
multicore parallelism, using OpenMP and TBB [8], and 
then included GPU accelerators programmed with 
OpenCL. Finally, we have added heterogeneous 
scheduling to balance and optimize the computing 
resource utilization to minimize runtime and energy 
consumption on the most resource-consuming kernel of 
VI (Evaluate policy, in red), as shown in Figure 3. 
We approach the heterogeneous scheduler code 
development using three different programming 
models: OpenCL (OCL), oneAPI with SYCL-style 
buffers (BUFF) written in DPC++, and oneAPI with 
unified shared memory (USM) written in DPC++. 

EXPERIMENTAL SETUP 
For the implementation, testing, and evaluation, we 

use Intel® DevCloud and two local mobile CPU+iGPU 
SoCs: 
• Kaby Lake - A 1.6 GHz Intel® quad-core CPU i5-

8250U, featuring a UHD 620 integrated GPU
@300 MHz, 8GB of DDR4 and a TDP of 10 to 15
Watts. OS: Ubuntu 18.04.

• Tiger Lake - A 2.8 GHz Intel® quad-core CPU i7-
1165G7, featuring an Iris Xe integrated GPU @1.3
GHz, 16GB of LPDDR4x and a TDP of 12 to 28
Watts. OS: Ubuntu 20.04.

Our parallel implementations use OpenCL, TBB, 
the oneAPI programming model, the Intel® oneAPI 
Base Toolkit, and Intel® oneDPL. We have installed 
the oneAPI DPC++ 2021.1 Compiler and the 
corresponding Intel® NEO Graphics Drivers on each 
platform. We measure energy use with PCM library 
[9]. 

We have chosen Intel low-to-medium-power 
processors as testbeds in our experiments because they 
are energy-efficient and powerful enough to run at least 
some AI benchmarks onboard a mobile robot. Besides, 
the quality and ease of use of the Intel profiling, 
debugging, and supporting tools now included in the 
Intel® oneAPI toolkits—Intel® VTune™ Profiler, 
Intel® Advisor and its Flow Graph Analyzer feature, 
Intel® Inspector—add to the "productivity" factor that 
we consider key to democratizing parallel and 
heterogeneous programming. 

EVALUATING THREE PROGRAMMING MODELS 
The oneAPI programming model creates new 

opportunities to improve performance and efficiency in 
low-power systems. We implement three 
heterogeneous schedulers for orchestrating CPU+GPU 
execution and evaluate them for low-power use cases. 

We use the Cyclomatic complexity (CC) and 
Programming Effort (PE) metrics to measure how easy 
(or difficult) it is to program a code [10] and show the 
results in Figure 4. Higher values for CC and PE mean 
it is more complicated for a programmer to code the 
algorithm. 

Figure 4. CC and PE results across multiple 
implementations of heterogeneous schedulers 
using OpenCL (OCL) and oneAPI (BUFF, USM). 

We have found that because DPC++ code is more 
compact and efficient to program than OpenCL, it is as 
much as five times easier to program than OpenCL. 
With a careful scheduling strategy, it only adds three to 
eight per cent overhead. 

Figure 5 shows results with MDP problems using 
three heterogeneous schedulers for CPU+GPU 
execution: HO uses a static partitioning strategy, HD a 
dynamic partitioning strategy, and HL an adaptive 
strategy. Each scheduler has an OpenCL (OCL) and 
oneAPI (ONE) version. TBB and OCL are CPU-only 
and GPU-only implementations, respectively, and the 
rest are CPU+GPU optimizations.  

To configure the best CPU+iGPU workload 
partition for HO-OCL, we apply brute force offline 
exploration and tune HO with problem-specific know-
how and optimizations. As a result, HO-OCL has no 
overhead, and the performance improvement is highest, 
but more painful and time-consuming to get it right. 
However, applications using the oneAPI 
Implementation of HL are extremely easy to code in 
comparison. We pay for productivity with some 
performance loss compared to HO-OCL due to the 
abstraction overhead. HD scheduler uses a strategy in 
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between HO and HL in terms of efficiency and ease of 
programming. 

Figure 5. Speedup and energy improvement 
results across multiple implementations of 
heterogeneous schedulers using OpenCL (OCL) 
and oneAPI (ONE) on the Kaby Lake platform.  

From the three scheduling strategies evaluated, 
static scheduling (HO) performs best in performance 
and energy efficiency, but it requires exhaustive offline 
searching. Adaptive scheduling provides good results 
with no previous training (HL), when using the USM 
approach to code the kernels and scheduler for large 
problem sizes. 

ENHANCING ONLINE PLANNING FOR POMDP 
Next, we apply these lessons learned from 

optimizing MDP planning with VI [12] to more 
complex decision-making procedures for POMDP 
agents. 

We enhance a state-of-the-art POMDP online 
planner, DESPOT-4 [11], by adding an efficient 
experience memory based on Bloom filters to it. This 
data structure is used to recall policies from experience 
with similarity search. In our preliminary evaluation, 
we compare the planning time of the baseline planner 
(baseline_p), DESPOT-4, and our proposal (recall_p). 

Figure 6 summarizes our preliminary results for 
two known benchmarks in the literature of robot 
navigation with POMDPs, Tag and RockSample [2]. 
The recall_p (yellow lines) is sequential and brings 
little to no improvement in the planning time compared 
to baseline_p (blue lines). Both use the maximum time 
available to search for the navigation action (one 
second) and obtain indistinguishably "good" policies in 
most experiments. 

Then we compare the results to other versions of the 
recall_p that implement the similarity search method 
with oneDPL. The recall_p_cpu implementation 

offloads the kernel to the multicore (green lines) and 
reacall_p_gpu to the integrated GPU (red lines). For the 
multicore implementation with oneDPL, we see a 2.5 
to 5 × reduction in the planning time, enabling real-
time performance for the evaluated benchmarks. 

Figure 6. POMDP planning time evaluation for 
baseline_p, recall_p, recall_p_cpu, and 
recall_p_gpu on Tiger Lake platform. On the X-
axis, we use as a timescale the planning 
timestep. Y-axis shows the planning time.

By carefully setting the experience memory 
parameters, recall_p may converge in fewer time steps 
and produce a superior policy. For example, we have 
the Tag benchmark evaluation in Figure 6, where the 
robot tags its target in 16 moves (time steps or actions) 
when using our experience memory data structure. In 
comparison, baseline_p requires 21 moves, given the 
same scenario and initial conditions.  

SUMMARY OF RESULTS 
During the first development phase, we have 

evaluated three different programming models, 
including oneAPI using the DPC++ programming 
language for planning sequences of actions for mobile 
robot navigation. When the scheduling strategy is 
carefully selected, we have found DPC++ to be five 
times easier to program while incurring only three to 
eight per cent of overhead. 

In the second part, we take the lessons learned from 
optimizing Value Iteration for low-power execution 
and apply them to POMDPs—a more complex 
autonomous decision-making framework that accounts 
for all sources of uncertainty in the agent interaction 
with the environment. We propose a new method for 
online planning under uncertainty for POMDPs, 
Recall-Planner, that outperforms the state-of-the-art 
online planners for a set of benchmarks.  

A novelty of our solution is that it allows us to plan 
for large problems on low-power SoCs, and we actively 
seek to achieve energy efficiency and not just make 
code run fast. Also, we have created a set of robot 
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navigation benchmarks for testing decision-making for 
basic navigation to a goal. The source code is available 
on bitbucket [13]. 

CONCLUSION 
Memory and power are scarce for low-power 
embedded systems and mobile robotics computing. 
Despite this, applications often need close to real-time 
performance while balancing power use. In this work, 
we have presented some solutions for decision making 
in robotics using SoCs in low-power systems. We 
conclude that implementations based on oneAPI are 
more readable, shorter, and easier to debug. We think 
that a process or method that is compact, easy to 
understand and reproduce is far more valuable than a 
method that works slightly better at the cost of added 
complexity. In the short term, we hope this work will 
benefit developers who care about runtime 
performance and energy efficiency, as our ultimate 
goal is to make it feasible to develop intelligent agents 
and autonomous decision-making applications on 
mobile robots. 

FUTURE DIRECTIONS 
To date, we have covered the MDP category of 
decision-making problems and are working on 
POMDPs. Once we achieve this milestone, we will 
implement benchmarks on an AgileX Scout mobile 
robot. The resulting software will be made public on 
bitbucket.  
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Automatic Accident Detection Using 
Convolutional Neural Network and 

Internet of Things 
Sathvika Kotha 
CISCO, CX Group, Bengaluru, India. 
sathvikakotha910@gmail.com.

Abstract² Accidents are a major cause of concern anywhere in the world. According to the road 
 and highways ministry's report on Road Accidents in India, 2018, accidents are one of 

India¶s leading causes of mortality, accounting for around 64.4 percent of all deaths, and this 
number is steadily rising [1]. Identifying these accidents with the help of technology requires 
substantial research. This article mainly focuses on finding the best technology that is required for 
detecting traffic accidents. With the help of a 360 degrees surveillance camera, images such as 
automobile wrecks, blood, or a person laying on the road with no movement can be detected. This 
article discusses the technology and algorithm used to recognize and process images, as well as the 
technology that is utilized to alert hospitals for rapid assistance and to notify the victim ¶s 
dependents or emergency contacts. 

1. INTRODUCTION 2. PROBLEM DESCRIPTION
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Scenario-1: 

Scenario-2:

Scenario-3:

3. PROPOSED SOLUTION

Figure 1. Block Diagram 

Figure 2. Flow chart of the proposed solution 

4. INTERNET OF THINGS (IoT)

4.1 Raspberry Pi 
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Figure 3. Raspberry Pi 

4.2 GPS Module 

Figure 4. GPS Module 

4.3 GSM Module 

Figure 5. GSM Module 

5. DEEP LEARNING
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5.1 Artificial Neural network (ANN) 

Figure 6. Artificial Neural Network 

5.2 convolutional Neural Network 
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Figure 7. Convolutional Neural Network 

5.3 Recurrent Neural Network 

6. ACTIVATION FUNCTION

 that converts

6.1 Linear Activation Function 

Figure 8. Linear Activation Function 

6.2 Non-Linear Activation Function 

6.2.1 Sigmoid Activation Function 

ሻݔሺ׎ ൌ
ͳ

ͳ ൅ ݁ି௫

Figure 9. Sigmoid Activation Function 

6.2.3 Rectified Linear Unit Activation Function 
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݂ ݔ ݔ

Figure 10. ReLU Activation Function 

6.2.3 Softmax Activation Function 
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7. OPTIMIZER

ݏݏ݋ܮ ൌ ሺ̰ݕെݕሻଶ

7.1 Gradient Descent Optimizer 

7.2 Stochastic Gradient Descent Optimizer 

7.3 Adaptive Gradient Descent Optimizer 

8. IMPLEMENTATION METHODS

8.1 Using the CNN Model 
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Table 1. Loss and Accuracy of Train and 
Validation Data

Epoch Loss Accuracy Val Loss Val 
Accuracy 

epoch 
1/5 

5.4577 0.5436 1.6529 0.4694 

epoch 
2/5 

0.6433 0.6523 0.9371 0.5000 

epoch 
3/5 

0.5999 0.6802 0.9210 0.4796 

Epoch 
4/5 

0.5447 0.7143 0.7910 0.5510 

Epoch 
5/5 

0.4574 0.7901 0.8555 0.5102 

Figure 11. Train and Validation Accuracy

Figure 12. Train and Validation Loss 

8.2 Implementation of CNN using VGG16 model 
and softmax function 

Table 2. Loss and Accuracy of Train and 
Validation Data

Epoch 5/5 0.3346 0.8496 0.3051 0.8571 
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Table 3. Model Summary 

Figure 13. Accuracy of train and validation 
data 

Figure 14. Train and Validation loss 

9. LIBRARIES IMPORTED

9.1 Tensorflow 

9.2 Matplotlib 

9.3 Keras 

9.4 Pandas 

9.5 NumPy 

10. DATASET USED
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Table 4. Dataset  

11. ALGORITHM

CONCLUSION 

REFERENCES 
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A Lean Approach to Embedded 
Deep Learning
A. Gokhberg
FRAGATA COMPUTER SYSTEMS AG 

Abstract—This article describes Arhat, a software framework providing innovative 
implementation for deployment of deep learning workflows. Unlike the conventional deep 
learning frameworks Arhat translates neural network descriptions directly into lean standalone 
executable code. Using Arhat, it is possible to generate executable code for each specific 
combination of a model and a target platform. This approach yields a very compact code and 
can greatly simplify the deployment process. Arhat supports a wide range of neural network 
operations and multiple target platforms including Intel CPUs and GPUs (via oneDNN) and 
NVIDIA GPUs (via CUDA/cuDNN or TensorRT inference library). Arhat is integrated with Intel 
deep learning software ecosystem including OpenVINO Toolkit and oneAPI Deep Neural 
Network Library (oneDNN). We have evaluated Arhat on Intel Tiger Lake i7-1185G7E and NVIDIA 
Jetson Xavier systems in the embedded object detection problem domain. 

¢ THE INTRODUCTION Efficient deployment of 
modern deep learning solutions represents substantial 
challenges caused by high fragmentation of 
corresponding hardware and software ecosystems. 
This fragmentation makes deployment of each deep 
learning model a substantial engineering project and 
often requires using cumbersome software stacks. 

 Currently, the deep learning ecosystems represent 
heterogeneous collections of various software and 
hardware components, which include: (1) training 
software frameworks that produce trained models, (2) 
software frameworks designed specifically for 
inference, (3) exchange formats for neural networks, 
(4) computing hardware platforms from different
vendors, and (5) platform-specific low level
programming tools and libraries. These components
are evolving at a very rapid pace. Compatibility and
interoperability of individual components is frequently

limited. There is a clear need for a streamlined 
approach for navigating in this complex world. 

To address these challenges we have developed 
Arhat, a cross-platform framework for efficient 
deployment of deep learning inference workflows in 
the cloud and on the edge. Unlike the conventional 
deep learning frameworks Arhat translates neural 
network descriptions directly into lean standalone 
executable code.  

In developing Arhat, we pursued two principal 
objectives: (1) providing a unified platform-agnostic 
approach towards deep learning deployment and (2) 
facilitating performance evaluation of various 
platforms on a common basis. 

In this article we discuss design and architecture of 
Arhat and demonstrate its use for deployment of 
object detection models for embedded applications. 
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Reference architecture 
Conceptual Arhat architecture is shown on Figure 

1. 
The central component is Arhat engine that 

receives model descriptions from various sources and 
steers backends generating the platform-specific code.  

There are two principal ways for obtaining model 
descriptions. (1) Arhat provides the front-end API for 
programmatic description of models. (2) Pre-trained 
models can be imported from the external frameworks 
via bridge components supporting various exchange 
formats. 

The interchangeable backends generate code for 
various target platforms. Backends for Intel, NVIDIA, 
and AMD hardware are currently available. 

This architecture is extensible and provides regular 
means for adding support for new model layer types, 
exchange formats, and target platforms. 

 
Figure 1. Arhat reference architecture. 

Arhat core is implemented in pure Go 
programming language. Consequently, unlike most 
conventional platforms that use Python, Arhat uses Go 
also as a language for the frontend API. This API 
specifies models by combining tensor operators 
selected from an extensible and steadily growing 
operator catalog. The API defines two levels of model 
specification. The higher level is common for all 
platforms and workflows. The lower level is platform- 
and workflow-specific. The Arhat engine performs 
automated conversion from the higher to the lower 
level. 

Support for Intel platforms via oneDNN 
Intel oneAPI Deep Neural Network Library 

(oneDNN) [1] is a cross-platform library 
implementing basic deep learning operations 
optimized for various Intel CPU and GPU platforms. 

Arhat supports Intel hardware via oneDNN 
backend. The architecture of this backend is shown on 
Figure 2. 

Figure 2. Arhat oneDNN backend. 

The backend translates model specification into 
C++ code consisting of one host module and multiple 
kernel modules. This code runs on the top of a thin 
Arhat runtime that directly interacts with oneDNN. 
This approach results in a very slim deployable 
software stack that can run on any Intel hardware 
supporting oneDNN. 

Interoperability with Intel OpenVINO 
Intel OpenVINO toolkit [2] allows developers to 

deploy pre-trained models on various Intel hardware 
platforms. It includes the Model Optimizer tool that 
converts pre-trained models from various popular 
formats to the uniform Intermediate Representation. 

We leverage OpenVINO Model Optimizer for 
supporting various model representation formats in 
Arhat. For this purpose, we have designed the 
OpenVINO IR bridge that can import models 
produced by the OpenVINO Model Optimizer. This 
immediately enables Arhat to handle all model 
formats supported by OpenVINO. The respective 
workflow is shown on Figure 3. 

This development, on the one hand, integrates 
Arhat into Intel deep learning ecosystem and, on the 
other hand, makes OpenVINO capable of the native 
inference on platforms of different vendors. With 
Arhat, the end-users can view OpenVINO as a 
vendor-neutral solution. This might be beneficial for 
adoption of OpenVINO as an inference platform of 
choice. 
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Figure 3. Arhat interoperability with OpenVINO. 

Case study: object detection 
We have validated the approach using as a case 

study object detection on embedded platforms. For 
this study we have selected 8 representative pre-
trained models of 3 different families (SSD, Faster R-
CNN, and YOLO) from Intel Open Model Zoo [3]. 
We used Arhat to generate code for Intel and NVIDIA 
and evaluated it on the respective embedded 
platforms. 

We started with performance comparison of Arhat 
code powered by oneDNN against the open-source 
version of OpenVINO. 

As a platform we used Tiger Lake i7-1185G7E, a 
system combining four CPU cores with integrated 
GPU. To obtain stable results and emulate embedded 
environment we have disabled turbo boost. We have 
measured average processing time for one image. 
Separate test runs have been made for the CPU cores 
and the GPU. As a baseline, we also included metrics 
for the ResNet50 image classification network. 

Results for the CPU and the GPU are summarized 
in Tables 1 and 2. The numbers represent time, in 
milliseconds, required to process one input image. 

Table 1. Performance evaluation on Tiger Lake, 
multi-core CPU  

Model Arhat OpenVINO 
resnet50-v1-7 23.5 23.0 
ssd_mobilenet_v1_fpn_coco 397 401 
ssd_mobilenet_v2 14.7 14.9 
ssd_resnet50_v1_fpn_coco 563 568 
faster_rcnn_inception_v2_coco 244 236 
faster_rcnn_resnet50_coco 722 719 
yolo_v2_tf 188 190 
yolo_v3_tf 205 201 
yolo_v4_tf 409 427 

Table 2. Performance evaluation on Tiger Lake, 
integrated GPU  

Model Arhat OpenVINO 
resnet50-v1-7 10.1 11.3 
ssd_mobilenet_v1_fpn_coco 144 125 
ssd_mobilenet_v2 9.0 10.7 
ssd_resnet50_v1_fpn_coco 195 183 
faster_rcnn_inception_v2_coco 117 82.8 
faster_rcnn_resnet50_coco 252 259 
yolo_v2_tf 64.4 60.8 
yolo_v3_tf 72.3 68.2 
yolo_v4_tf 140 135 

These tables demonstrate that Arhat with oneDNN 
backend provides inference performance compared to 
OpenVINO on both multi-code CPU and integrated 
GPU of Tiger Lake i7-1185G7E. 

Interoperability with TensorRT 
To run OpenVINO models on NVIDIA GPUs 

Arhat provides two alternative backends. These 
backends use CUDA Deep Neural Network library 
(cuDNN) [4] and TensorRT inference library [5] 
respectively.  

The architecture of TensorRT backend is shown on 
Figure 4. 

Figure 4. Arhat interoperability with TensorRT. 

There are several OpenVINO proprietary layer 
types that are not directly supported by TensorRT. We 
have implemented them in CUDA as custom 
TensorRT plugins. These layer types include 
DetectionOutput, PriorBoxClustered, Proposal, 
RegionYolo and RoiPooling.  

Evaluation on Jetson Xavier NX 
As the next step, we included the NVIDIA 

platform in evaluation. We have chosen Jetson Xavier 
NX. This system has six ARM CPU cores and a GPU. 
It has various configurable power modes with 10W 
and 15W TDP envelopes and 2, 4, or 6 cores enabled. 
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The best performance is demonstrated with 15W and 
2 cores, therefore we used this mode for comparison. 

Results are summarized in Table 3. 

Table 3. Performance evaluation on Jetson 
Xavier NX with Arhat cuDNN and TensorRT 
backends  

Model cuDNN TensorRT 
resnet50-v1-7 26.7 14.2 
ssd_mobilenet_v1_fpn_coco 212 187 
ssd_mobilenet_v2 23.4 12.3 
ssd_resnet50_v1_fpn_coco 305 248 
faster_rcnn_inception_v2_coco 195 159 
faster_rcnn_resnet50_coco 413 366 
yolo_v2_tf 114 83.3 
yolo_v3_tf 139 94.8 
yolo_v4_tf 250 191 

This tables demonstrates that TensorRT inference 
library provides superior inference performance 
compared to cuDNN on Jetson Xavier NX. 

Arhat backend for TensorRT enables native 
deployment of OpenVINO models on NVIDIA GPUs 
and opens a way for achieving the best OpenVINO 
performance on the hardware of the other vendors. 

Conclusion 
This study demonstrates that Arhat can efficiently 

interoperate with various key components of Intel and 
NVIDIA deep learning ecosystems. Furthermore, 
using Arhat allows to overcome limitations of each 
individual component and achieve results that are 
difficult or not possible to achieve otherwise. Arhat 
extends capabilities of Intel deep learning software by 
providing a way for the native deployment of 
OpenVINO models on the wider range of platforms. 

Arhat can be also used for the streamlined on-
demand benchmarking of models on various 
platforms. Using Arhat for performance evaluation 
eliminates overhead that might be caused by external 
deep learning frameworks because code generated by 
Arhat directly interacts with the optimized platform-
specific deep learning libraries. 
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