

The Flagship Publication of

Santa Clara Valley Chapter

 Volume 1, Issue 1 From the heart of the Silicon Valley Jan – Mar 2022

Volume 1 No. 1 January – March 2022

Dear Readers, From the Editor’s Desk

Welcome to the inaugural issue of Feedforward, the flagship publication of

the IEEE Computer Society, Santa Clara Valley chapter.

Ours is the largest chapter in the Silicon Valley Section of IEEE with over 4,000

subscribers in our mailing list, 1,400+ paid members, and a strong following of over

12,400 on Twitter alone. We are uniquely positioned by the virtue of our location and

available expertise. Silicon Valley is a trendsetter. It is not an exaggeration to say that

Silicon Valley is at the heart of the innovation that is driving the world economy and the

civilization in general. The chapter can

play a vital role in all of this. I started Feedforward with this vision in mind and hope to

evolve it into a full-fledged professional trade journal that will be indexed in significant

databases.

Along the lines of the vision, I also proposed to start an annual International

Conference on Applied Data Science (ICADS) to focus on quick summaries of leading

research and experience in the area from all over the world. I am fortunate to be

supported by the ExCom that you voted for in all these endeavours. Details about

ICADS and other upcoming events can be found inside this issue. True to its

international vision, this issue of Feedforward presents articles written by authors from

varied geographical regions on cutting-edge topics. Articles for future issues are

welcome on all topics related to the IEEE Computer Society charter and if possible,

relate to the Silicon Valley. Please submit your articles on our website here:

https://r6.ieee.org/scv- cs/?p=2036.

We organized and cosponsored several events this year already and more are in the

pipeline. The list of the upcoming events curated during the month of March is posted

on our website at https://r6.ieee.org/scv-cs/?page_id=2030.

Please subscribe to the chapter mailing list and follow the chapter social media pages

and groups to get timely updates and take advantage of the events. Since most events

are online, we often get professionals from as far as Thailand attend our events.

Networking is still one of the primary reasons we all join professional societies. Keeping

this objective in mind, the chapter open-house is planned to be in- person in addition to a

live broadcast over YouTube and Zoom. Most of the past events of our chapter are

available on IEEE.tv https://ieeetv.ieee.org/search?search_q=scv-cs and on YouTube,

where they are live broadcasted: https://www.youtube.com/playlist?list=PLLsxQYv4DdJlYcGPwqUJsnHmfqMtB3eSJ

We are looking for more volunteers to help in various roles. You can help as a reviewer of

the articles, papers, be a guest editor for special issues, help organize conferences and

events, help with the publicity for our events, and more. Please consider being part of

the success story by signing up here: https://r6.ieee.org/scv- cs/?p=2039. With the onset

of the Spring season, let’s Feedforward the chapter to a bright new future. Hope you are

all with me in my efforts. Happy reading and happiness always!

With every best wish, Monday, March 28, 2022

Vishnu S. Pendyala San Jose, California, USA

Editor & Chapter Chair

Vishnu S. Pendyala, PhD

Vice Chair

John Delaney

Secretary

Sujata Tibrewala

Treasurer

Sachin Desai

Webmaster

Paul Wesling

Website & Media
• https://r6.ieee.org/scv-cs/

• https://www.linkedin.com/company/7

8437763/

• https://www.linkedin.com/groups/260

6895/

• https://www.facebook.com/IEEECom

puterSocSCVchapter

• https://twitter.com/IEEEComputerSoc

Mailing List
http://listserv.ieee.org/cgi-

bin/wa?SUBED1=cs-chap-scv&A=1

Please note:

Feedforward is published

quarterly by the Santa Clara
Valley (SCV) of the IEEE

Computer Society (CS), a non-

profit organization. Views and

opinions expressed in

Feedforward are those of
individual authors, contributors

and advertisers and they may

differ from policies and official

statements of IEEE CS SCV

Chapter. These should not be
construed as legal or professional

advice. The IEEE CS SCV

Chapter, the publisher, the editor

and the contributors are not

responsible for any decisions
taken by readers on the basis of

these views and opinions.

Although every care is being

taken to ensure genuineness of

the writings in this publication,
Feedforward does not attest to

the originality of the respective

authors’ content.

All articles in this magazine are

published under a Creative

Commons Attribution 4.0
License. For more information,

see

1

https://twitter.com/vishnupendyala
http://www.facebook.com/vishnu.pendyala
http://www.youtube.com/channel/UCgjt70UQEYnrF87xdYuJs-Q
http://myreadingsinlife.blogspot.com/
http://scholar.google.com/scholar?q=vishnu%2Bpendyala
http://www.linkedin.com/in/pendyala
https://www.reddit.com/user/vspendyala/
https://www.pinterest.com/vishnu_s_pendyala/
https://r6.ieee.org/scv-cs/?p=2036
https://r6.ieee.org/scv-cs/?p=2036
https://r6.ieee.org/scv-cs/?page_id=2030
https://ieeetv.ieee.org/search?search_q=scv-cs
https://www.youtube.com/playlist?list=PLLsxQYv4DdJlYcGPwqUJsnHmfqMtB3eSJ
https://r6.ieee.org/scv-
https://r6.ieee.org/scv-cs/?p=2039
http://www.linkedin.com/in/pendyala
https://r6.ieee.org/scv-cs/
https://www.linkedin.com/company/78437763/
https://www.linkedin.com/company/78437763/
https://www.linkedin.com/groups/2606895/
https://www.linkedin.com/groups/2606895/
https://www.facebook.com/IEEEComputerSocSCVchapter
https://www.facebook.com/IEEEComputerSocSCVchapter
https://twitter.com/IEEEComputerSoc
http://listserv.ieee.org/cgi-bin/wa?SUBED1=cs-chap-scv&A=1
http://listserv.ieee.org/cgi-bin/wa?SUBED1=cs-chap-scv&A=1

Volume 1 No. 1 January – March 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

Enabling Easier Programming of
Machine Learning Algorithms on
Robots with oneAPI Toolkits
Denisa Constantinescu, Angeles Navarro, Rafael Asenjo
Computer Architecture Dpt., University of Málaga

Juan-Antonio Fernández-Madrigal, Ana Cruz-Martín
System Engineering and Automation Dpt., University
of Málaga

Abstract—This work shows that it is feasible to solve large-scale decision-making problems for
robot navigation in real-time onboard low-power heterogeneous CPU+iGPU platforms. We can
achieve both performance and productivity by carefully selecting the scheduling strategy and
programming model. In particular, we remark that the oneAPI programming model creates new
opportunities to improve productivity, performance, and efficiency in low-power systems. Our
experimental results show that the implementations based on the oneAPI programming model
are up to 5× easier to program than those based on OpenCL while incurring only 3 to 8%
overhead for low-power systems.

¢ WHEN you think of oneAPI use cases that
leverage the performance of heterogeneous computing,
you might first envision powerful workstations and
multi-megawatt supercomputers loaded with big CPUs,
GPUs, and FPGAs training complex neural networks.
However, our team is working on the opposite end of
the spectre. This work explores solving problems in
systems that use compute-intensive reinforcement
learning (RL) algorithms optimized for battery-
powered heterogeneous computing devices.

We have focused for many years on productively
exploiting heterogeneous chips leveraging Intel®
Threading Building Blocks (TBB) as the orchestrating
framework and developing heterogeneous scheduling
strategies [7], [8]. So, the announcement of oneAPI was
immediately received in our group as an enticing
opportunity to raise the level of abstraction in our
implementations of heterogeneous schedulers. We see
oneAPI as a solid endorsement to SYCL and modern
C++ as the basis for the 'homogeneous programming of
heterogeneous platforms' idea.

Heterogeneous computing with multiple types of
processors can benefit large-scale and supercomputers
to embedded systems. However, with smaller systems
(as mobile robots), compute-intensive, automated
decision-making algorithms need to be efficient, and
schedulers need to be aware of energy consumption as
they assign tasks to different processor architectures to
optimize throughput. These aspects require new
approaches to optimizing solutions for low-power
systems, which we explore in this work.

Many automated planning and decision-making
algorithms rely on Markov Decision Processes (MDPs)
[1] and Partially Observable MDPs (POMDPs) [2].
MDPs and POMDPs describe how an intelligent agent
with a defined goal learns to make better decisions by
doing, even without knowing the map of its
environment. POMDP and MDP agents can cope with
uncertainty, such as not knowing what lies ahead or
whether their actions will be beneficial. The literature
shows that solving real-world problems for this kind of
agent is not considered for low-power platforms [3] and
computing an optimal solution for medium to large-

2

vipendya
Line

Constantinescu, D et al: Enabling Easier Programming…

FEEDFORWARD VOLUME 1, NUMBER 1 JANUARY – MARCH 2022

sized problems is intractable [4]. But the medium-large
scale problems include most of the practical
applications in autonomous robots, deep-space
navigation, search and rescue, inspection and repair,
toxic-waste cleanup, and much more.

Consequently, we focus our efforts on optimizing
decision-making and planning algorithms for mobile
robots (illustrated as the red boxes in Figure 1). This
niche would highly benefit from a solution for runtime
and energy-efficient implementation.

Figure 1. Decision making under uncertainty to
plan for the navigation of a mobile robot modelled
as a POMDP agent.

The primary source of uncertainty in a POMDP is
modeled by maintaining an information state called
belief, ! ∈ #, representing a probability distribution
over the state space $. In practice, a particle filter (the
yellow block in Figure 1) is used to implement a
recursive Bayesian filter to estimate the underlying
state %! of a dynamical system like this: !! = !(%!) ∝
*(+!|%!)∫ *(%!|%!"#, /!"#)!(%!"#)0%!"# [5]. Here, +! is
a sensor measurement and /! is the action or control
command; *(+!|%!) models the observations (from
sensors) while *(%!|%!"#, /!"#) describes the system's
dynamics (e.g., state transition due to actuators).

At any time 1, an MDP agent is in one of the possible
states, %!, which is known, while a POMDP agent only
knows its belief state estimate !!. Given either the
current state or the belief state, the agent must decide
for and execute the action /!, given a finite set of
possible actions. The chosen action is known as the
policy. Taking action /! results in an immediate reward
2! = 2(%!, /!) ∈ ℝ, and in a transition to state %!$# with
probability *(%!$#|%!, /!). After each transition, the
agent observes +!, and the process repeats until the
agent reaches its goal.

We aim to enable easy and feasible ways to
implement decision making on low-power mobile
platforms and focus on online planning under
uncertainty for practical applications, such as
autonomous driving and service robotics, that must run
on SoC mobile platforms. These applications often
have real-time execution constraints and run on battery-
powered platforms.

The main challenge is to keep the runtime and
energy performance in check while allowing the users

(programmers) to code solvers for decision-making
problems. Our proposed solution uses low-power
aware heterogeneous computing strategies, sparse data
structures to fit real-world size decision-making
problems on SoCs (System on Chip) with scarce
memory and computing resources, and oneAPI with
DPC++ programming [6].

DEVELOPING THE SOLUTION—NAVIGATING
NEW SPACES FOR MDP AGENTS

Our team has created new methods, memory-
efficient data structures, and low-power aware
heterogeneous computing schedulers [3], [7] to enable
an intelligent agent to act autonomously in
environments where the effects of its actions are not
deterministic (Figure 2). For example, a rover taking
samples from the surface of Mars may not know if a
sample is worth taking or if the direction of travel will
lead to worthy specimens. Or, a drone looking for
survivors trapped after a natural disaster may not know
if it is following a path that will eventually lead to a
person.

Figure 2. Robots must learn to navigate in
uncertain environments, such as those above,
using RL methods. We illustrate the configuration
of different navigation scenarios in V-REP
simulator (the black object is the robot) and how
we use the simulated experience to plan
navigation policies in new scenarios.

We start our journey with the Value Iteration (VI)
algorithm, commonly used in MDPs and a core kernel
in many RL methods, optimizing its data structures for
memory use and access. Then, we explore ways to
improve the performance of this planning and decision-
making algorithm. In the flow diagram from Figure 2,
the VI algorithm is represented by the red block
(planning algorithm).

State estimation
(particle filter)

Action selection
(online planner)

bt

at

ot

in
pu

t
ou

tp
ut

Robot simulation
experience

Log file

Model

Planning
algorithm

Navigation policy

Benchmark
parameters

Reward

3

Constantinescu, D et al: Enabling Easier Programming…

FEEDFORWARD VOLUME 1, NUMBER 1 JANUARY – MARCH 2022

Figure 3. Planning flow with a VI algorithm.

We explore different parallel implementation
strategies on low-power SoCs to improve the VI
runtime and energy use. We have initially implemented
multicore parallelism, using OpenMP and TBB [8], and
then included GPU accelerators programmed with
OpenCL. Finally, we have added heterogeneous
scheduling to balance and optimize the computing
resource utilization to minimize runtime and energy
consumption on the most resource-consuming kernel of
VI (Evaluate policy, in red), as shown in Figure 3.
We approach the heterogeneous scheduler code
development using three different programming
models: OpenCL (OCL), oneAPI with SYCL-style
buffers (BUFF) written in DPC++, and oneAPI with
unified shared memory (USM) written in DPC++.

EXPERIMENTAL SETUP
For the implementation, testing, and evaluation, we

use Intel® DevCloud and two local mobile CPU+iGPU
SoCs:
• Kaby Lake - A 1.6 GHz Intel® quad-core CPU i5-

8250U, featuring a UHD 620 integrated GPU
@300 MHz, 8GB of DDR4 and a TDP of 10 to 15
Watts. OS: Ubuntu 18.04.

• Tiger Lake - A 2.8 GHz Intel® quad-core CPU i7-
1165G7, featuring an Iris Xe integrated GPU @1.3
GHz, 16GB of LPDDR4x and a TDP of 12 to 28
Watts. OS: Ubuntu 20.04.

Our parallel implementations use OpenCL, TBB,
the oneAPI programming model, the Intel® oneAPI
Base Toolkit, and Intel® oneDPL. We have installed
the oneAPI DPC++ 2021.1 Compiler and the
corresponding Intel® NEO Graphics Drivers on each
platform. We measure energy use with PCM library
[9].

We have chosen Intel low-to-medium-power
processors as testbeds in our experiments because they
are energy-efficient and powerful enough to run at least
some AI benchmarks onboard a mobile robot. Besides,
the quality and ease of use of the Intel profiling,
debugging, and supporting tools now included in the
Intel® oneAPI toolkits—Intel® VTune™ Profiler,
Intel® Advisor and its Flow Graph Analyzer feature,
Intel® Inspector—add to the "productivity" factor that
we consider key to democratizing parallel and
heterogeneous programming.

EVALUATING THREE PROGRAMMING MODELS
The oneAPI programming model creates new

opportunities to improve performance and efficiency in
low-power systems. We implement three
heterogeneous schedulers for orchestrating CPU+GPU
execution and evaluate them for low-power use cases.

We use the Cyclomatic complexity (CC) and
Programming Effort (PE) metrics to measure how easy
(or difficult) it is to program a code [10] and show the
results in Figure 4. Higher values for CC and PE mean
it is more complicated for a programmer to code the
algorithm.

Figure 4. CC and PE results across multiple
implementations of heterogeneous schedulers
using OpenCL (OCL) and oneAPI (BUFF, USM).

We have found that because DPC++ code is more
compact and efficient to program than OpenCL, it is as
much as five times easier to program than OpenCL.
With a careful scheduling strategy, it only adds three to
eight per cent overhead.

Figure 5 shows results with MDP problems using
three heterogeneous schedulers for CPU+GPU
execution: HO uses a static partitioning strategy, HD a
dynamic partitioning strategy, and HL an adaptive
strategy. Each scheduler has an OpenCL (OCL) and
oneAPI (ONE) version. TBB and OCL are CPU-only
and GPU-only implementations, respectively, and the
rest are CPU+GPU optimizations.

To configure the best CPU+iGPU workload
partition for HO-OCL, we apply brute force offline
exploration and tune HO with problem-specific know-
how and optimizations. As a result, HO-OCL has no
overhead, and the performance improvement is highest,
but more painful and time-consuming to get it right.
However, applications using the oneAPI
Implementation of HL are extremely easy to code in
comparison. We pay for productivity with some
performance loss compared to HO-OCL due to the
abstraction overhead. HD scheduler uses a strategy in

Value Iteration Algorithm

Evaluate policy Improve policy
Check convergence

& update Ready?

no

yesheter_parallel_for parallel_for parallel_reduce
Optimal policy

0.E+00

5.E+05

1.E+06

2.E+06

2.E+06

3.E+06

0

10

20

30

40

50

60

VI-B
od

y-O
CL

VI-B
od

y-U
SM

VI-B
od

y-B
UFF

Sc
he

du
ler

-O
CL

Sc
he

du
ler

-U
SM

Tot
al-

OCL

Tot
al-

USM

Tot
al-

BU
FF

P
E

C
C

Cyclomatic Complexity (CC)
Programming Effort (PE)

4

Constantinescu, D et al: Enabling Easier Programming…

FEEDFORWARD VOLUME 1, NUMBER 1 JANUARY – MARCH 2022

between HO and HL in terms of efficiency and ease of
programming.

Figure 5. Speedup and energy improvement
results across multiple implementations of
heterogeneous schedulers using OpenCL (OCL)
and oneAPI (ONE) on the Kaby Lake platform.

From the three scheduling strategies evaluated,
static scheduling (HO) performs best in performance
and energy efficiency, but it requires exhaustive offline
searching. Adaptive scheduling provides good results
with no previous training (HL), when using the USM
approach to code the kernels and scheduler for large
problem sizes.

ENHANCING ONLINE PLANNING FOR POMDP
Next, we apply these lessons learned from

optimizing MDP planning with VI [12] to more
complex decision-making procedures for POMDP
agents.

We enhance a state-of-the-art POMDP online
planner, DESPOT-4 [11], by adding an efficient
experience memory based on Bloom filters to it. This
data structure is used to recall policies from experience
with similarity search. In our preliminary evaluation,
we compare the planning time of the baseline planner
(baseline_p), DESPOT-4, and our proposal (recall_p).

Figure 6 summarizes our preliminary results for
two known benchmarks in the literature of robot
navigation with POMDPs, Tag and RockSample [2].
The recall_p (yellow lines) is sequential and brings
little to no improvement in the planning time compared
to baseline_p (blue lines). Both use the maximum time
available to search for the navigation action (one
second) and obtain indistinguishably "good" policies in
most experiments.

Then we compare the results to other versions of the
recall_p that implement the similarity search method
with oneDPL. The recall_p_cpu implementation

offloads the kernel to the multicore (green lines) and
reacall_p_gpu to the integrated GPU (red lines). For the
multicore implementation with oneDPL, we see a 2.5
to 5 × reduction in the planning time, enabling real-
time performance for the evaluated benchmarks.

Figure 6. POMDP planning time evaluation for
baseline_p, recall_p, recall_p_cpu, and
recall_p_gpu on Tiger Lake platform. On the X-
axis, we use as a timescale the planning
timestep. Y-axis shows the planning time.

By carefully setting the experience memory
parameters, recall_p may converge in fewer time steps
and produce a superior policy. For example, we have
the Tag benchmark evaluation in Figure 6, where the
robot tags its target in 16 moves (time steps or actions)
when using our experience memory data structure. In
comparison, baseline_p requires 21 moves, given the
same scenario and initial conditions.

SUMMARY OF RESULTS
During the first development phase, we have

evaluated three different programming models,
including oneAPI using the DPC++ programming
language for planning sequences of actions for mobile
robot navigation. When the scheduling strategy is
carefully selected, we have found DPC++ to be five
times easier to program while incurring only three to
eight per cent of overhead.

In the second part, we take the lessons learned from
optimizing Value Iteration for low-power execution
and apply them to POMDPs—a more complex
autonomous decision-making framework that accounts
for all sources of uncertainty in the agent interaction
with the environment. We propose a new method for
online planning under uncertainty for POMDPs,
Recall-Planner, that outperforms the state-of-the-art
online planners for a set of benchmarks.

A novelty of our solution is that it allows us to plan
for large problems on low-power SoCs, and we actively
seek to achieve energy efficiency and not just make
code run fast. Also, we have created a set of robot

1.00

2.00

3.00

4.00

5.00

6.00

TBB
OCL

HO-O
CL

HD-O
CL

HL-O
CL

HO-O
NE

HD-O
NE

HL-O
NE

E
ne

rg
y

Im
pr

ov
em

en
t

SE
Q

 /
IM

P
LE

M
E

N
T

A
T

IO
N MDP8 MDP9 MDP10 MDP11

1.00

2.00

3.00

4.00

5.00

6.00

TBB
OCL

HO-O
CL

HD-O
CL

HL-O
CL

HO-O
NE

HD-O
NE

HL-O
NE

Sp
ee

du
p

SE
Q

 /
IM

P
LM

E
N

T
A

T
IO

N MDP8 MDP9 MDP10 MDP11

0
0.2
0.4
0.6
0.8

1
1.2
1.4

1 2 3 4 5 6 7

Ex
ec

ut
io

n
ti

m
e

(s
ec

on
ds

)

Time step

RockSample(7,8)

baseline_p recall_p recall_p_cpu recall_p_gpu

0
0.2
0.4
0.6
0.8

1
1.2
1.4

1 2 3 4 5 6 7 8 9 101112131415161718192021

Ex
ec

ut
io

n
ti

m
e

(s
ec

on
ds

)

Time step

Tag

5

Constantinescu, D et al: Enabling Easier Programming…

FEEDFORWARD VOLUME 1, NUMBER 1 JANUARY – MARCH 2022

navigation benchmarks for testing decision-making for
basic navigation to a goal. The source code is available
on bitbucket [13].

CONCLUSION
Memory and power are scarce for low-power
embedded systems and mobile robotics computing.
Despite this, applications often need close to real-time
performance while balancing power use. In this work,
we have presented some solutions for decision making
in robotics using SoCs in low-power systems. We
conclude that implementations based on oneAPI are
more readable, shorter, and easier to debug. We think
that a process or method that is compact, easy to
understand and reproduce is far more valuable than a
method that works slightly better at the cost of added
complexity. In the short term, we hope this work will
benefit developers who care about runtime
performance and energy efficiency, as our ultimate
goal is to make it feasible to develop intelligent agents
and autonomous decision-making applications on
mobile robots.

FUTURE DIRECTIONS
To date, we have covered the MDP category of
decision-making problems and are working on
POMDPs. Once we achieve this milestone, we will
implement benchmarks on an AgileX Scout mobile
robot. The resulting software will be made public on
bitbucket.

ACKNOWLEDGMENT
This work was supported in part by grants from TIN2016-
80920-R, PID2019-105396RB-I00, UMA18-FEDERJA-
108, UMA18-FEDERJA-113, and Intel.

¢ REFERENCES
1. Bellman R., "A Markovian Decision Process", Journal of

Mathematics and Mechanics. vol. 6, no. 5, pp. 679–684,
1957. (journal)

2. Pineau J., Gordon G., Thrun S., "Point-based value
iteration: An anytime algorithm for POMDPs", IJCAI,
pp. 1025–1032, Aug. 2003. (conference proceedings)

3. Constantinescu D.-A., Navarro A. et al., "Performance
evaluation of decision making under uncertainty for low
power heterogeneous platforms." J. Parallel Distrib.
Comput., vol. 137, pp. 119-133, 2020,
doi:10.1016/j.jpdc.2019.11.009. (journal)

4. Nicholas R., Gordon G., Thrun S., "Finding approximate
POMDP solutions through belief compression." J. Artif.
Intell., vol. 23, pp. 1-40, 2005. (journal)

5. Schön T. B. "Estimation of nonlinear dynamic systems:
Theory and applications", 2006. (Thesis or dissertation)

6. Reinders J., et al. "Data parallel C++: mastering DPC++
for programming of heterogeneous systems using C++
and SYCL", Springer Nature, 2021. (book)

7. Corbera F., Rodríguez A., Asenjo R., et al., "Reducing
overheads of dynamic scheduling on heterogeneous
chips", arXiv preprint arXiv:1501.03336, 2015. (PrePrint)

8. Voss M., Asenjo R., Reinders, J., "Pro TBB: C++ parallel
programming with threading building blocks", New
York: Apress., 2019. (book)

9. Processor Counter Monitor – PCM (Github). [Online].
Available: https://github.com/opcm/pcm (URL)

10. Dios A. J., Asenjo R., Navarro A., Corbera F., Zapata E.
L, "High-level template for the task-based parallel
wavefront pattern", 18th International Conference on
High Performance Computing, IEEE, pp. 1-10, 2011.
(conference proceedings)

11. Garg N.P., Hsu D., Lee W.S., "DESPOT-α: Online
POMDP planning with large state and observation
spaces", Robot.: Sci. Syst., 2019. (conference
proceedings)

12. Constantinescu D.-A., Navarro A., Corbera F., et al.,
"Efficiency and productivity for decision making on low-
power heterogeneous CPU+GPU SoCs." J.
Supercomput., vol. 77, no. 1, pp. 44-65, 2021,
doi:10.1007/s11227-020-03257-3. (journal)

13.Sourcecode (Bitbucket). [Online]. Available:
https://bitbucket.org/corbera/vi-mdp/src/oneAPI/ (URL)

Authors Biographies

Denisa Constantinescu is a PhD candidate in
Mechatronics at the University of Malaga and an
oneAPI Innovator. She has been PI of two research
projects and has collaborated on five other projects.
Ms. Constaninescu has co-authored 2 book
chapters, and 2 journal papers and 12 conference
communications. She received the "2021 SCIE-
ZONTA Award in Informatics" from The Spanish
Computing Scientific Society (SCIE) and the "Intel
Innovator Award" for the project "Efficiency and
Productivity for Decision-making on Mobile SoCs" in
2020. Her research interests include heterogeneous
programming models, optimization, decision
making, and mobile robotics. Contact her at
dencon@uma.es.

Rafael Asenjo is Professor of Computer Architecture
at the University of Malaga. He obtained a PhD in
Telecommunication Engineering in 1997. His
research interests include programming models,
parallel programming, heterogeneous computing,
parallelization of irregular codes and energy
consumption. He has participated in 19 research
projects and two research contracts, published in 33
international journals indexed in the JCR, 11
contributions to IEEE and ACM "Core A"
conferences, 4 Keynotes, 9 book chapters and 40
international conferences. He served as General
Chair for ACM PPoPP'16 and as an
Organization Committee member and a Program
Committee member for several HPC related
conferences (PPoPP, SC, PACT, IPDPS, HPCA,
EuroPar, and SBAC-PAD). Along with Michael Voss
and James Reinders, he co-authored the latest book
on Threading Building Blocks (Pro TBB). He is a
oneAPI Innovator, SYCL Advisory Panel member
and ACM member. Contact him at asenjo@uma.es.

Angeles Navarro is full professor at the Department
of Computer Architecture of the University of
Malaga, Spain, since 2019. She received a PhD in
Computer Science from the University of Malaga in
2000. She has been PI of several regional projects
and has collaborated with national and European
projects. Dr. Navarro has co-authored more than 90
papers, and 2 patents. She has served as a program
committee member for several IEEE/ACM High-
Performance Computing related conferences, as
PPoPP, SC, ICS, PACT, IPDPS, ICPP, ISPA. She is
the co-leader of the Parallel Programming Models
and Compilers group at the University of Malaga.

6

Constantinescu, D et al: Enabling Easier Programming…

FEEDFORWARD VOLUME 1, NUMBER 1 JANUARY – MARCH 2022

Her research interests are in programming models
for heterogeneous systems, analytical modelling,
compiler, and runtime optimizations. Contact her at
angeles@ac.uma.es.

Juan-Antonio Fernández-Madrigal is full professor at
the System Engineering and Automation Dpt. of the
University of Málaga. He received a PhD in
Computer Science in 2000. He has worked on local,
regional, national and UE robotics research projects
since 1996, has 40 journal publications, 3
monographies, more than 70

 conference communications and 6 patents. He has
an H-index of 31 according to Google Scholar and
has supervised a number of PhD theses on mobile
robotics and cognitive robotics. His interests include
mobile robotics, decision making, bayesian
inference and cognitive robotics. Contact him at
jafernandez@uma.es.

Ana Cruz-Martín is an associate professsor with the
System Engineering and Automation Dpt. of the
University of Málaga. She received the PhD in
Computer Science in 2004. She has worked on local,
regional, national and UE robotics research
projects, which have led to several journal and
conferences publications. Her research lines mainly
involve educational robotics and machine learning
techniques applied to mobile robotics. Contact her
at acm@uma.es

Upcoming Event: Chapter
Open House

7

Volume 1 No. 1 January ʹ March 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

Automatic Accident Detection Using
Convolutional Neural Network and

Internet of Things
Sathvika Kotha
CISCO, CX Group, Bengaluru, India.
sathvikakotha910@gmail.com.

Abstract² Accidents are a major cause of concern anywhere in the world. According to the road
 and highways ministry's report on Road Accidents in India, 2018, accidents are one of

India¶s leading causes of mortality, accounting for around 64.4 percent of all deaths, and this
number is steadily rising [1]. Identifying these accidents with the help of technology requires
substantial research. This article mainly focuses on finding the best technology that is required for
detecting traffic accidents. With the help of a 360 degrees surveillance camera, images such as
automobile wrecks, blood, or a person laying on the road with no movement can be detected. This
article discusses the technology and algorithm used to recognize and process images, as well as the
technology that is utilized to alert hospitals for rapid assistance and to notify the victim ¶s
dependents or emergency contacts.

1. INTRODUCTION 2. PROBLEM DESCRIPTION

8

vipendya
Line

Kotha, S: Automatic Accident Detection Using Convolutional Neural Network and Internet of Things

FEEDFORWARD VOLUME 1, NUMBER 1 JANUARY ± MARCH 2022

Scenario-1:

Scenario-2:

Scenario-3:

3. PROPOSED SOLUTION

Figure 1. Block Diagram

Figure 2. Flow chart of the proposed solution

4. INTERNET OF THINGS (IoT)

4.1 Raspberry Pi

9

Kotha, S: Automatic Accident Detection Using Convolutional Neural Network and Internet of Things

FEEDFORWARD VOLUME 1, NUMBER 1 JANUARY ± MARCH 2022

Figure 3. Raspberry Pi

4.2 GPS Module

Figure 4. GPS Module

4.3 GSM Module

Figure 5. GSM Module

5. DEEP LEARNING

10

Kotha, S: Automatic Accident Detection Using Convolutional Neural Network and Internet of Things

FEEDFORWARD VOLUME 1, NUMBER 1 JANUARY ± MARCH 2022

5.1 Artificial Neural network (ANN)

Figure 6. Artificial Neural Network

5.2 convolutional Neural Network

11

Kotha, S: Automatic Accident Detection Using Convolutional Neural Network and Internet of Things

FEEDFORWARD VOLUME 1, NUMBER 1 JANUARY ± MARCH 2022

Figure 7. Convolutional Neural Network

5.3 Recurrent Neural Network

6. ACTIVATION FUNCTION

 that converts

6.1 Linear Activation Function

Figure 8. Linear Activation Function

6.2 Non-Linear Activation Function

6.2.1 Sigmoid Activation Function

ሻݔሺ׎ ൌ
ͳ

ͳ ൅ ݁ି௫

Figure 9. Sigmoid Activation Function

6.2.3 Rectified Linear Unit Activation Function

12

Kotha, S: Automatic Accident Detection Using Convolutional Neural Network and Internet of Things

FEEDFORWARD VOLUME 1, NUMBER 1 JANUARY ± MARCH 2022

݂ ݔ ݔ

Figure 10. ReLU Activation Function

6.2.3 Softmax Activation Function

ܵሺݕሻ݅ ൌ �
����ሺ݅ݕሻ

σ ����ሺ݆ݕሻ
݊
݆ൌͳ

7. OPTIMIZER

ݏݏ݋ܮ ൌ ሺ̰ݕെݕሻଶ

7.1 Gradient Descent Optimizer

7.2 Stochastic Gradient Descent Optimizer

7.3 Adaptive Gradient Descent Optimizer

8. IMPLEMENTATION METHODS

8.1 Using the CNN Model

13

Kotha, S: Automatic Accident Detection Using Convolutional Neural Network and Internet of Things

FEEDFORWARD VOLUME 1, NUMBER 1 JANUARY ± MARCH 2022

Table 1. Loss and Accuracy of Train and
Validation Data

Epoch Loss Accuracy Val Loss Val
Accuracy

epoch
1/5

5.4577 0.5436 1.6529 0.4694

epoch
2/5

0.6433 0.6523 0.9371 0.5000

epoch
3/5

0.5999 0.6802 0.9210 0.4796

Epoch
4/5

0.5447 0.7143 0.7910 0.5510

Epoch
5/5

0.4574 0.7901 0.8555 0.5102

Figure 11. Train and Validation Accuracy

Figure 12. Train and Validation Loss

8.2 Implementation of CNN using VGG16 model
and softmax function

Table 2. Loss and Accuracy of Train and
Validation Data

Epoch 5/5 0.3346 0.8496 0.3051 0.8571

14

Kotha, S: Automatic Accident Detection Using Convolutional Neural Network and Internet of Things

FEEDFORWARD VOLUME 1, NUMBER 1 JANUARY ± MARCH 2022

Table 3. Model Summary

Figure 13. Accuracy of train and validation
data

Figure 14. Train and Validation loss

9. LIBRARIES IMPORTED

9.1 Tensorflow

9.2 Matplotlib

9.3 Keras

9.4 Pandas

9.5 NumPy

10. DATASET USED

15

Kotha, S: Automatic Accident Detection Using Convolutional Neural Network and Internet of Things

FEEDFORWARD VOLUME 1, NUMBER 1 JANUARY ± MARCH 2022

Table 4. Dataset

11. ALGORITHM

CONCLUSION

REFERENCES

AUTHOR BIOGRAPHY

16

https://www.who.int/news-room/fact-heets/detail/road-traffic-injuries
https://www.who.int/news-room/fact-heets/detail/road-traffic-injuries
https://www.bbc.com/news/magazine-36446652
https://www.bbc.com/news/magazine-36446652
https://www.tensorflow.org/
https://matplotlib.org/
https://keras.io/
https://www.kaggle.com/code/vanvalkenberg/cnn-for-accident-detection-83-val-accuracy/data
https://www.kaggle.com/code/vanvalkenberg/cnn-for-accident-detection-83-val-accuracy/data
https://www.kaggle.com/code/vanvalkenberg/cnn-for-accident-detection-83-val-accuracy/data

Volume 1 No. 1 January – March 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

A Lean Approach to Embedded
Deep Learning
A. Gokhberg
FRAGATA COMPUTER SYSTEMS AG

Abstract—This article describes Arhat, a software framework providing innovative
implementation for deployment of deep learning workflows. Unlike the conventional deep
learning frameworks Arhat translates neural network descriptions directly into lean standalone
executable code. Using Arhat, it is possible to generate executable code for each specific
combination of a model and a target platform. This approach yields a very compact code and
can greatly simplify the deployment process. Arhat supports a wide range of neural network
operations and multiple target platforms including Intel CPUs and GPUs (via oneDNN) and
NVIDIA GPUs (via CUDA/cuDNN or TensorRT inference library). Arhat is integrated with Intel
deep learning software ecosystem including OpenVINO Toolkit and oneAPI Deep Neural
Network Library (oneDNN). We have evaluated Arhat on Intel Tiger Lake i7-1185G7E and NVIDIA
Jetson Xavier systems in the embedded object detection problem domain.

¢ THE INTRODUCTION Efficient deployment of
modern deep learning solutions represents substantial
challenges caused by high fragmentation of
corresponding hardware and software ecosystems.
This fragmentation makes deployment of each deep
learning model a substantial engineering project and
often requires using cumbersome software stacks.

 Currently, the deep learning ecosystems represent
heterogeneous collections of various software and
hardware components, which include: (1) training
software frameworks that produce trained models, (2)
software frameworks designed specifically for
inference, (3) exchange formats for neural networks,
(4) computing hardware platforms from different
vendors, and (5) platform-specific low level
programming tools and libraries. These components
are evolving at a very rapid pace. Compatibility and
interoperability of individual components is frequently

limited. There is a clear need for a streamlined
approach for navigating in this complex world.

To address these challenges we have developed
Arhat, a cross-platform framework for efficient
deployment of deep learning inference workflows in
the cloud and on the edge. Unlike the conventional
deep learning frameworks Arhat translates neural
network descriptions directly into lean standalone
executable code.

In developing Arhat, we pursued two principal
objectives: (1) providing a unified platform-agnostic
approach towards deep learning deployment and (2)
facilitating performance evaluation of various
platforms on a common basis.

In this article we discuss design and architecture of
Arhat and demonstrate its use for deployment of
object detection models for embedded applications.

17

vipendya
Line

Gokhberg, A.: A Lean Approach to Embedded Deep Learning

FEEDFORWARD VOLUME 1, NUMBER 1 JANUARY – MARCH 2022

Reference architecture
Conceptual Arhat architecture is shown on Figure

1.
The central component is Arhat engine that

receives model descriptions from various sources and
steers backends generating the platform-specific code.

There are two principal ways for obtaining model
descriptions. (1) Arhat provides the front-end API for
programmatic description of models. (2) Pre-trained
models can be imported from the external frameworks
via bridge components supporting various exchange
formats.

The interchangeable backends generate code for
various target platforms. Backends for Intel, NVIDIA,
and AMD hardware are currently available.

This architecture is extensible and provides regular
means for adding support for new model layer types,
exchange formats, and target platforms.

Figure 1. Arhat reference architecture.

Arhat core is implemented in pure Go
programming language. Consequently, unlike most
conventional platforms that use Python, Arhat uses Go
also as a language for the frontend API. This API
specifies models by combining tensor operators
selected from an extensible and steadily growing
operator catalog. The API defines two levels of model
specification. The higher level is common for all
platforms and workflows. The lower level is platform-
and workflow-specific. The Arhat engine performs
automated conversion from the higher to the lower
level.

Support for Intel platforms via oneDNN
Intel oneAPI Deep Neural Network Library

(oneDNN) [1] is a cross-platform library
implementing basic deep learning operations
optimized for various Intel CPU and GPU platforms.

Arhat supports Intel hardware via oneDNN
backend. The architecture of this backend is shown on
Figure 2.

Figure 2. Arhat oneDNN backend.

The backend translates model specification into
C++ code consisting of one host module and multiple
kernel modules. This code runs on the top of a thin
Arhat runtime that directly interacts with oneDNN.
This approach results in a very slim deployable
software stack that can run on any Intel hardware
supporting oneDNN.

Interoperability with Intel OpenVINO
Intel OpenVINO toolkit [2] allows developers to

deploy pre-trained models on various Intel hardware
platforms. It includes the Model Optimizer tool that
converts pre-trained models from various popular
formats to the uniform Intermediate Representation.

We leverage OpenVINO Model Optimizer for
supporting various model representation formats in
Arhat. For this purpose, we have designed the
OpenVINO IR bridge that can import models
produced by the OpenVINO Model Optimizer. This
immediately enables Arhat to handle all model
formats supported by OpenVINO. The respective
workflow is shown on Figure 3.

This development, on the one hand, integrates
Arhat into Intel deep learning ecosystem and, on the
other hand, makes OpenVINO capable of the native
inference on platforms of different vendors. With
Arhat, the end-users can view OpenVINO as a
vendor-neutral solution. This might be beneficial for
adoption of OpenVINO as an inference platform of
choice.

18

Gokhberg, A.: A Lean Approach to Embedded Deep Learning

FEEDFORWARD VOLUME 1, NUMBER 1 JANUARY – MARCH 2022

Figure 3. Arhat interoperability with OpenVINO.

Case study: object detection
We have validated the approach using as a case

study object detection on embedded platforms. For
this study we have selected 8 representative pre-
trained models of 3 different families (SSD, Faster R-
CNN, and YOLO) from Intel Open Model Zoo [3].
We used Arhat to generate code for Intel and NVIDIA
and evaluated it on the respective embedded
platforms.

We started with performance comparison of Arhat
code powered by oneDNN against the open-source
version of OpenVINO.

As a platform we used Tiger Lake i7-1185G7E, a
system combining four CPU cores with integrated
GPU. To obtain stable results and emulate embedded
environment we have disabled turbo boost. We have
measured average processing time for one image.
Separate test runs have been made for the CPU cores
and the GPU. As a baseline, we also included metrics
for the ResNet50 image classification network.

Results for the CPU and the GPU are summarized
in Tables 1 and 2. The numbers represent time, in
milliseconds, required to process one input image.

Table 1. Performance evaluation on Tiger Lake,
multi-core CPU

Model Arhat OpenVINO
resnet50-v1-7 23.5 23.0
ssd_mobilenet_v1_fpn_coco 397 401
ssd_mobilenet_v2 14.7 14.9
ssd_resnet50_v1_fpn_coco 563 568
faster_rcnn_inception_v2_coco 244 236
faster_rcnn_resnet50_coco 722 719
yolo_v2_tf 188 190
yolo_v3_tf 205 201
yolo_v4_tf 409 427

Table 2. Performance evaluation on Tiger Lake,
integrated GPU

Model Arhat OpenVINO
resnet50-v1-7 10.1 11.3
ssd_mobilenet_v1_fpn_coco 144 125
ssd_mobilenet_v2 9.0 10.7
ssd_resnet50_v1_fpn_coco 195 183
faster_rcnn_inception_v2_coco 117 82.8
faster_rcnn_resnet50_coco 252 259
yolo_v2_tf 64.4 60.8
yolo_v3_tf 72.3 68.2
yolo_v4_tf 140 135

These tables demonstrate that Arhat with oneDNN
backend provides inference performance compared to
OpenVINO on both multi-code CPU and integrated
GPU of Tiger Lake i7-1185G7E.

Interoperability with TensorRT
To run OpenVINO models on NVIDIA GPUs

Arhat provides two alternative backends. These
backends use CUDA Deep Neural Network library
(cuDNN) [4] and TensorRT inference library [5]
respectively.

The architecture of TensorRT backend is shown on
Figure 4.

Figure 4. Arhat interoperability with TensorRT.

There are several OpenVINO proprietary layer
types that are not directly supported by TensorRT. We
have implemented them in CUDA as custom
TensorRT plugins. These layer types include
DetectionOutput, PriorBoxClustered, Proposal,
RegionYolo and RoiPooling.

Evaluation on Jetson Xavier NX
As the next step, we included the NVIDIA

platform in evaluation. We have chosen Jetson Xavier
NX. This system has six ARM CPU cores and a GPU.
It has various configurable power modes with 10W
and 15W TDP envelopes and 2, 4, or 6 cores enabled.

19

Gokhberg, A.: A Lean Approach to Embedded Deep Learning

FEEDFORWARD VOLUME 1, NUMBER 1 JANUARY – MARCH 2022

The best performance is demonstrated with 15W and
2 cores, therefore we used this mode for comparison.

Results are summarized in Table 3.

Table 3. Performance evaluation on Jetson
Xavier NX with Arhat cuDNN and TensorRT
backends

Model cuDNN TensorRT
resnet50-v1-7 26.7 14.2
ssd_mobilenet_v1_fpn_coco 212 187
ssd_mobilenet_v2 23.4 12.3
ssd_resnet50_v1_fpn_coco 305 248
faster_rcnn_inception_v2_coco 195 159
faster_rcnn_resnet50_coco 413 366
yolo_v2_tf 114 83.3
yolo_v3_tf 139 94.8
yolo_v4_tf 250 191

This tables demonstrates that TensorRT inference
library provides superior inference performance
compared to cuDNN on Jetson Xavier NX.

Arhat backend for TensorRT enables native
deployment of OpenVINO models on NVIDIA GPUs
and opens a way for achieving the best OpenVINO
performance on the hardware of the other vendors.

Conclusion
This study demonstrates that Arhat can efficiently

interoperate with various key components of Intel and
NVIDIA deep learning ecosystems. Furthermore,
using Arhat allows to overcome limitations of each
individual component and achieve results that are
difficult or not possible to achieve otherwise. Arhat
extends capabilities of Intel deep learning software by
providing a way for the native deployment of
OpenVINO models on the wider range of platforms.

Arhat can be also used for the streamlined on-
demand benchmarking of models on various
platforms. Using Arhat for performance evaluation
eliminates overhead that might be caused by external
deep learning frameworks because code generated by
Arhat directly interacts with the optimized platform-
specific deep learning libraries.

¢ REFERENCES
1. oneAPI Deep Neural Network Library (oneDNN).

[Online] Available: https://github.com/oneapi-
src/oneDNN (URL.)

2 OpenVINO Toolkit. [Online] Available:
https://github.com/openvinotoolkit/openvino (URL.)

3 Open Model Zoo repository. [Online] Available:
https://github.com/openvinotoolkit/open_model_zoo
(URL.)

4 NVIDIA cuDNN. [Online] Available:
https://developer.nvidia.com/cudnn (URL.)

5 NVIDIA TensorRT. [Online] Available:
https://developer.nvidia.com/tensorrt (URL.)

Alexey Gokhberg is a seasoned software engineer
with more than 25 years of experience in various
industrial and academic branches. His professional
interests include deep learning, high-performance
computing, programming language construction,
and computational geophysics.

20

Call for Papers and Participation
IEEE Computer Society, Santa Clara Valley chapter is organizing a one-day
International Conference on Applied Data Science (ICADS 2022). The
conference will be held on Tuesday, July 12, 2022 and feature quick
summaries of previously unpublished research, insightful experience
reports, and demos in all areas of Applied Data Science. Short papers (3-5
pages) highlighting the work are invited from scholars all over the world.
Submissions must confirm to the IEEE Conference formatting guidelines.
Download template from https://template-selector.ieee.org/

Papers must be presented during the allotted time, virtually, in order to be
included in the proceedings. Selected presentations will be broadcasted live
on YouTube at mutually convenient times across the time zones. Proceedings
will be published online and authors of select few papers will be invited to
submit an extended version of their paper for inclusion in the future issues of
the chapter’s quarterly publication, Feedforward.

The conference will also include a few invited talks. Please contact
vspendyala (at) hotmail.com with any questions or if you wish to help as a
reviewer or in any other conference role. Authors, reviewers, and volunteers
will receive a certificate of appreciation.

To submit your work, visit https://r6.ieee.org/scv-cs/?p=2034
Sign-up as a reviewer / volunteer: https://r6.ieee.org/scv-cs/?p=2039

Important Dates:

Submission deadline: Tuesday, May 31, 2022
Decision: Tuesday, June 14, 2022
Camera-ready copy due: Tuesday, June 28, 2022
Conference: Tuesday, July 12, 2022

Topics include
Data Mining
Machine Learning
Data Management
Big Data
Data Analytics
Deep Learning
Information Retrieval
Knowledge Graphs
Math for Data Science
Applications and more
Chair
Vishnu S Pendyala, PhD
Vice Chair
John Delaney
Secretary
Sujata Tibrewala
Treasurer
Sachin Desai
Webmaster
Paul Wesling
Connect with us
https://r6.ieee.org/scv-
cs/
@IEEEComputerSochttps://www.linkedin.c
om/groups/2606895/
http://listserv.ieee.org/
cgi-bin/wa?SUBED1=cs-
chap-scv&A=1
http://www.youtube.c
om/user/ieeeCSStaClar
aValley

Santa Clara Valley Chapter

	cover1.0
	editorial1.1
	1-CS-Mag-Feedforward-Denisa-MyFinal
	2-Automatic Accident Detection Magazine
	3-cs_mag_arhatMyFinal
	ICADS

