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(] Dear Readers, From the Editor’s Desk

4L [ Welcome to the inaugural issue of Feedforward, the flagship publication of
the IEEE Computer Society, Santa Clara Valley chapter.

Ours is the largest chapter in the Silicon Valley Section of IEEE with over 4,000
subscribers in our mailing list, 1,400+ paid members, and a strong following of over
12,400 on Twitter alone. We are uniquely positioned by the virtue of our location and
available expertise. Silicon Valley is a trendsetter. It is not an exaggeration to say that
Silicon Valley is at the heart of the innovation that is driving the world economy and the
civilization in general. The chapter can

play a vital role in all of this. | started Feedforward with this vision in mind and hope to
evolve it into a full-fledged professional trade journal that will be indexed in significant
databases.

Along the lines of the vision, | also proposed to start an annual International
Conference on Applied Data Science (ICADS) to focus on quick summaries of leading
research and experience in the area from all over the world. | am fortunate to be
supported by the ExCom that you voted for in all these endeavours. Details about
ICADS and other upcoming events can be found inside this issue. True to its
international vision, this issue of Feedforward presents articles written by authors from
varied geographical regions on cutting-edge topics. Articles for future issues are
welcome on all topics related to the IEEE Computer Society charter and if possible,
relate to the Silicon Valley. Please submit your articles on our website here:
https://r6.ieee.org/scv- cs/?p=2036.

We organized and cosponsored several events this year already and more are in the
pipeline. The list of the upcoming events curated during the month of March is posted
on our website at https://r6.ieee.org/scv-cs/?page id=2030.

Please subscribe to the chapter mailing list and follow the chapter social media pages
and groups to get timely updates and take advantage of the events. Since most events
are online, we often get professionals from as far as Thailand attend our events.

Networking is still one of the primary reasons we all join professional societies. Keeping
this objective in mind, the chapter open-house is planned to be in- person in addition to a
live broadcast over YouTube and Zoom. Most of the past events of our chapter are
available on IEEE.tv https://ieeetv.ieee.org/search?search_g=scv-cs and on YouTube,
where they are live broadcasted: https:/www.youtube.com/playlist?list=PLLsxQYv4DdJlY cGPwaUIsnHmfgMtB3eSJ

We are looking for more volunteers to help in various roles. You can help as a reviewer of
the articles, papers, be a guest editor for special issues, help organize conferences and
events, help with the publicity for our events, and more. Please consider being part of
the success story by signing up here: https://r6.ieee.org/scv- cs/?p=2039. With the onset
of the Spring season, let's Feedforward the chapter to a bright new future. Hope you are
all with me in my efforts. Happy reading and happiness always!

With every best wish,
Vishnu S. Pendyala

8! | > [BEdin[sl0)]

Monday, March 28, 2022
San Jose, California, USA
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Enabling Easier Programming of
Machine Learning Algorithms on

Robots with oneAPI Toolkits

Denisa Constantinescu, Angeles Navarro, Rafael Asenjo

Computer Architecture Dpt., University of Méalaga

Juan-Antonio Fernindez-Madrigal, Ana Cruz-Martin
System Engineering and Automation Dpt., University

of Malaga

Abstract—This work shows that it is feasible to solve large-scale decision-making problems for
robot navigation in real-time onboard low-power heterogeneous CPU+iGPU platforms. We can
achieve both performance and productivity by carefully selecting the scheduling strategy and
programming model. In particular, we remark that the oneAPl programming model creates new
opportunities to improve productivity, performance, and efficiency in low-power systems. Our
experimental results show that the implementations based on the oneAPI programming model
are up to 5x easier to program than those based on OpenCL while incurring only 3 to 8%

overhead for low-power systems.

B WHEN you think of oneAPI use cases that
leverage the performance of heterogeneous computing,
you might first envision powerful workstations and
multi-megawatt supercomputers loaded with big CPUs,
GPUs, and FPGAs training complex neural networks.
However, our team is working on the opposite end of
the spectre. This work explores solving problems in
systems that use compute-intensive reinforcement
learning (RL) algorithms optimized for battery-
powered heterogeneous computing devices.

We have focused for many years on productively
exploiting heterogeneous chips leveraging Intel®
Threading Building Blocks (TBB) as the orchestrating
framework and developing heterogeneous scheduling
strategies [7], [8]. So, the announcement of oneAPI was
immediately received in our group as an enticing
opportunity to raise the level of abstraction in our
implementations of heterogeneous schedulers. We see
oneAPI as a solid endorsement to SYCL and modern
C++ as the basis for the 'homogeneous programming of
heterogeneous platforms' idea.

Heterogeneous computing with multiple types of
processors can benefit large-scale and supercomputers
to embedded systems. However, with smaller systems
(as mobile robots), compute-intensive, automated
decision-making algorithms need to be efficient, and
schedulers need to be aware of energy consumption as
they assign tasks to different processor architectures to
optimize throughput. These aspects require new
approaches to optimizing solutions for low-power
systems, which we explore in this work.

Many automated planning and decision-making
algorithms rely on Markov Decision Processes (MDPs)
[1] and Partially Observable MDPs (POMDPs) [2].
MDPs and POMDPs describe how an intelligent agent
with a defined goal learns to make better decisions by
doing, even without knowing the map of its
environment. POMDP and MDP agents can cope with
uncertainty, such as not knowing what lies ahead or
whether their actions will be beneficial. The literature
shows that solving real-world problems for this kind of
agent is not considered for low-power platforms [3] and
computing an optimal solution for medium to large-

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/
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sized problems is intractable [4]. But the medium-large
scale problems include most of the practical
applications in autonomous robots, deep-space
navigation, search and rescue, inspection and repair,
toxic-waste cleanup, and much more.

Consequently, we focus our efforts on optimizing
decision-making and planning algorithms for mobile
robots (illustrated as the red boxes in Figure 1). This
niche would highly benefit from a solution for runtime
and energy-efficient implementation.

Action selection
(online planner)

b,

Figure 1. Decision making under uncertainty to
plan for the navigation of a mobile robot modelled
as a POMDP agent.

The primary source of uncertainty in a POMDP is
modeled by maintaining an information state called
belief, b € B, representing a probability distribution
over the state space S. In practice, a particle filter (the
yellow block in Figure 1) is used to implement a
recursive Bayesian filter to estimate the underlying
state s, of a dynamical system like this: b, = b(s;) «
P(0t|5t)f p(s¢lSe—1, @r—1)b(s¢—1)ds,_q [5]. Here, o, is
a sensor measurement and a, is the action or control
command; p(o;|s,) models the observations (from
sensors) while p(s;|s;_1,a;_1) describes the system's
dynamics (e.g., state transition due to actuators).

At any time t, an MDP agent is in one of the possible
states, s,, which is known, while a POMDP agent only
knows its belief state estimate b,. Given either the
current state or the belief state, the agent must decide
for and execute the action a,, given a finite set of
possible actions. The chosen action is known as the
policy. Taking action a, results in an immediate reward
1. = r(s, a.) € R, and in a transition to state s, with
probability p(siq|S: a;). After each transition, the
agent observes o, and the process repeats until the
agent reaches its goal.

We aim to enable easy and feasible ways to
implement decision making on low-power mobile
platforms and focus on online planning under
uncertainty for practical applications, such as
autonomous driving and service robotics, that must run
on SoC mobile platforms. These applications often
have real-time execution constraints and run on battery-
powered platforms.

The main challenge is to keep the runtime and
energy performance in check while allowing the users

FEEDFORWARD VOLUME 1, NUMBER 1

(programmers) to code solvers for decision-making
problems. Our proposed solution uses low-power
aware heterogeneous computing strategies, sparse data
structures to fit real-world size decision-making
problems on SoCs (System on Chip) with scarce
memory and computing resources, and oneAPI with
DPC++ programming [6].

DEVELOPING THE SOLUTION—NAVIGATING
NEW SPACES FOR MDP AGENTS

Our team has created new methods, memory-
efficient data structures, and low-power aware
heterogeneous computing schedulers [3], [7] to enable
an intelligent agent to act autonomously in
environments where the effects of its actions are not
deterministic (Figure 2). For example, a rover taking
samples from the surface of Mars may not know if a
sample is worth taking or if the direction of travel will
lead to worthy specimens. Or, a drone looking for
survivors trapped after a natural disaster may not know
if it is following a path that will eventually lead to a
person.

Robot simulatio|
experience

Log file
Benchmark
parameters
m

Planning
algorithm

hl Navigation polid

|nput

I'\h“'v

Figure 2. Robots must learn to navigate in
uncertain environments, such as those above,
using RL methods. We illustrate the configuration
of different navigation scenarios in V-REP
simulator (the black object is the robot) and how
we use the simulated experience to plan
navigation policies in new scenarios.

We start our journey with the Value Iteration (VI)
algorithm, commonly used in MDPs and a core kernel
in many RL methods, optimizing its data structures for
memory use and access. Then, we explore ways to
improve the performance of this planning and decision-
making algorithm. In the flow diagram from Figure 2,
the VI algorithm is represented by the red block
(planning algorithm).
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Constantinescu, D et al: Enabling Easier Programming...

Value Iteration Algorithm

Optimal policy
parallel_for parallel_reduce yes f
e pei) lcheck convergence Ready?
& update Ve
no |

Figure 3. Planning flow with a VI algorithm.

heter_parallel_for

Evaluate policy

We explore different parallel implementation

strategies on low-power SoCs to improve the VI
runtime and energy use. We have initially implemented
multicore parallelism, using OpenMP and TBB [8], and
then included GPU accelerators programmed with
OpenCL. Finally, we have added heterogeneous
scheduling to balance and optimize the computing
resource utilization to minimize runtime and energy
consumption on the most resource-consuming kernel of
VI (Evaluate policy, in red), as shown in Figure 3.
We approach the heterogeneous scheduler code
development using three different programming
models: OpenCL (OCL), oneAPI with SYCL-style
buffers (BUFF) written in DPC++, and oneAPI with
unified shared memory (USM) written in DPC++.

EXPERIMENTAL SETUP

For the implementation, testing, and evaluation, we
use Intel® DevCloud and two local mobile CPU+iGPU
SoCs:

e Kaby Lake - A 1.6 GHz Intel® quad-core CPU i5-
8250U, featuring a UHD 620 integrated GPU
@300 MHz, 8GB of DDR4 and a TDP of 10 to 15
Watts. OS: Ubuntu 18.04.

e  Tiger Lake - A 2.8 GHz Intel® quad-core CPU i7-
1165G7, featuring an Iris Xe integrated GPU @1.3
GHz, 16GB of LPDDR4x and a TDP of 12 to 28
Watts. OS: Ubuntu 20.04.

Our parallel implementations use OpenCL, TBB,
the oneAPI programming model, the Intel® oneAPI
Base Toolkit, and Intel® oneDPL. We have installed
the oneAPI DPC++ 2021.1 Compiler and the
corresponding Intel® NEO Graphics Drivers on each
platform. We measure energy use with PCM library
[9].

We
processors as testbeds in our experiments because they
are energy-efficient and powerful enough to run at least
some Al benchmarks onboard a mobile robot. Besides,
the quality and ease of use of the Intel profiling,
debugging, and supporting tools now included in the
Intel® oneAPI toolkits—Intel® VTune™ Profiler,
Intel® Advisor and its Flow Graph Analyzer feature,
Intel® Inspector—add to the "productivity" factor that
we consider key to democratizing parallel and
heterogeneous programming.

have chosen Intel low-to-medium-power
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EVALUATING THREE PROGRAMMING MODELS
The oneAPI programming model creates new
opportunities to improve performance and efficiency in
low-power  systems. We  implement three
heterogeneous schedulers for orchestrating CPU+GPU
execution and evaluate them for low-power use cases.
We use the Cyclomatic complexity (CC) and
Programming Effort (PE) metrics to measure how easy
(or difficult) it is to program a code [10] and show the
results in Figure 4. Higher values for CC and PE mean
it is more complicated for a programmer to code the

algorithm.
60 Cyclomatic Complexity (CC) 3.E+06
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50 2E+06
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Figure 4. CC and PE results across multiple
implementations of heterogeneous schedulers
using OpenCL (OCL) and oneAPI (BUFF, USM).

We have found that because DPC++ code is more
compact and efficient to program than OpenCL, it is as
much as five times easier to program than OpenCL.
With a careful scheduling strategy, it only adds three to
eight per cent overhead.

Figure 5 shows results with MDP problems using
three heterogeneous schedulers for CPU+GPU
execution: HO uses a static partitioning strategy, HD a
dynamic partitioning strategy, and HL an adaptive
strategy. Each scheduler has an OpenCL (OCL) and
oneAPI (ONE) version. TBB and OCL are CPU-only
and GPU-only implementations, respectively, and the
rest are CPU+GPU optimizations.

To configure the best CPU+iGPU workload
partition for HO-OCL, we apply brute force offline
exploration and tune HO with problem-specific know-
how and optimizations. As a result, HO-OCL has no
overhead, and the performance improvement is highest,
but more painful and time-consuming to get it right.
However,  applications  using the  oneAPI
Implementation of HL are extremely easy to code in
comparison. We pay for productivity with some
performance loss compared to HO-OCL due to the
abstraction overhead. HD scheduler uses a strategy in
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between HO and HL in terms of efficiency and ease of
programming.
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Figure 5. Speedup and energy improvement
results across multiple implementations of
heterogeneous schedulers using OpenCL (OCL)
and oneAPI (ONE) on the Kaby Lake platform.

From the three scheduling strategies evaluated,
static scheduling (HO) performs best in performance
and energy efficiency, but it requires exhaustive offline
searching. Adaptive scheduling provides good results
with no previous training (HL), when using the USM
approach to code the kernels and scheduler for large
problem sizes.

ENHANCING ONLINE PLANNING FOR POMDP

Next, we apply these lessons learned from
optimizing MDP planning with VI [12] to more
complex decision-making procedures for POMDP
agents.

We enhance a state-of-the-art POMDP online
planner, DESPOT-a [11], by adding an efficient
experience memory based on Bloom filters to it. This
data structure is used to recall policies from experience
with similarity search. In our preliminary evaluation,
we compare the planning time of the baseline planner
(baseline p), DESPOT-a, and our proposal (recall_p).

Figure 6 summarizes our preliminary results for
two known benchmarks in the literature of robot
navigation with POMDPs, Tag and RockSample [2].
The recall p (yellow lines) is sequential and brings
little to no improvement in the planning time compared
to baseline p (blue lines). Both use the maximum time
available to search for the navigation action (one
second) and obtain indistinguishably "good" policies in
most experiments.

Then we compare the results to other versions of the
recall p that implement the similarity search method
with oneDPL. The recall p cpu implementation

FEEDFORWARD VOLUME 1, NUMBER 1

offloads the kernel to the multicore (green lines) and
reacall_p gpu to the integrated GPU (red lines). For the
multicore implementation with oneDPL, we see a 2.5
to 5 X reduction in the planning time, enabling real-
time performance for the evaluated benchmarks.
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Figure 6. POMDP planning time evaluation for
baseline_p, recallp, recall_p_cpu, and
recall_p_gpu on Tiger Lake platform. On the X-
axis, we use as a timescale the planning
timestep. Y-axis shows the planning time.

By carefully setting the experience memory
parameters, recall p may converge in fewer time steps
and produce a superior policy. For example, we have
the Tag benchmark evaluation in Figure 6, where the
robot tags its target in 16 moves (time steps or actions)
when using our experience memory data structure. In
comparison, baseline p requires 21 moves, given the
same scenario and initial conditions.

SUMMARY OF RESULTS

During the first development phase, we have
evaluated three different programming models,
including oneAPI using the DPC++ programming
language for planning sequences of actions for mobile
robot navigation. When the scheduling strategy is
carefully selected, we have found DPC++ to be five
times easier to program while incurring only three to
eight per cent of overhead.

In the second part, we take the lessons learned from
optimizing Value Iteration for low-power execution
and apply them to POMDPs—a more complex
autonomous decision-making framework that accounts
for all sources of uncertainty in the agent interaction
with the environment. We propose a new method for
online planning under uncertainty for POMDPs,
Recall-Planner, that outperforms the state-of-the-art
online planners for a set of benchmarks.

A novelty of our solution is that it allows us to plan
for large problems on low-power SoCs, and we actively
seek to achieve energy efficiency and not just make
code run fast. Also, we have created a set of robot
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navigation benchmarks for testing decision-making for
basic navigation to a goal. The source code is available
on bitbucket [13].

CONCLUSION

Memory and power are scarce for low-power
embedded systems and mobile robotics computing.
Despite this, applications often need close to real-time
performance while balancing power use. In this work,
we have presented some solutions for decision making
in robotics using SoCs in low-power systems. We
conclude that implementations based on oneAPI are
more readable, shorter, and easier to debug. We think
that a process or method that is compact, easy to
understand and reproduce is far more valuable than a
method that works slightly better at the cost of added
complexity. In the short term, we hope this work will
benefit developers who care about runtime
performance and energy efficiency, as our ultimate
goal is to make it feasible to develop intelligent agents
and autonomous decision-making applications on
mobile robots.

FUTURE DIRECTIONS

To date, we have covered the MDP category of
decision-making problems and are working on
POMDPs. Once we achieve this milestone, we will
implement benchmarks on an AgileX Scout mobile
robot. The resulting software will be made public on
bitbucket.
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Abstract— Accidents are a major cause of concern anywhere in the world. According to the road
transport and highways ministry's report on Road Accidents in India, 2018, accidents are one of
India’s leading causes of mortality, accounting for around 64.4 percent of all deaths, and this
number is steadily rising [1]. Identifying these accidents with the help of technology requires
substantial research. This article mainly focuses on finding the best technology that is required for
detecting traffic accidents. With the help of a 360 degrees surveillance camera, images such as
automobile wrecks, blood, or a person laying on the road with no movement can be detected. This
article discusses the technology and algorithm used to recognize and process images, as well as the
technology that is utilized to alert hospitals for rapid assistance and to notify the victim’s
dependents or emergency contacts.

1. INTRODUCTION 2. PROBLEM DESCRIPTION

An accident is an unexpected event that We know that Millions of people die every year

typically happens suddenly and might result in
injury, loss, and harm. Accidents usually involve
human beings and lead to chronic disability or
injury to a significant percentage of people in the
world every year. Accidents may occur in
various places, like at home, while traveling, in
the workplace, in the hospital, or on the sports
field. Many accidents lead to property damage or
destruction. Many accidents can be avoided or
prevented by taking proper safety precautions
and being attentive to one’s movements and
surroundings. Ambulances and Hospitals play a
significant role at the time of accidents. A
victim's life is determined by how quickly we
bring him or her to the hospital. We can save the
victim's life if we get him or her to the hospital
promptly; else, saving the victim's life can be
extremely difficult.

in automobile accidents. According to the World
Health Organization. (WHO), 1.35 million people
die each year in car accidents around the world
[2]. Victims of accidents may have a chance to
live if they are transported to the hospital in an
appropriate timeframe, but the greater part of
them die because they are not sent to a medical
center in a quick time. According to a BBC news
article, after an accident in India, no one comes
forward to help because people are afraid of
being wrongly accused and of becoming stuck as
a witness in a court case in India, where legal
proceedings are famously lengthy [3]. Accidents
might also happen in isolated or rural regions
where no one will be around to contact an
ambulance for assistance.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/
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Scenario-1: Kanhaiya Lal begs out for aid, but
automobiles swerve right past him. His young
son and his wife and infant daughter's sprawled
bodies lie next to the damaged motorcycle on
which they had all been riding seconds before.
Many Indians were disturbed by the extensively
publicized CCTYV film of this scenario, which
showed the pain of a family of hit-and-run
victims in northern India and the seeming
indifference of passers-by. The family was finally
rescued by some bikers and police, but it was
too late for Lal's wife and daughter. Their killings
triggered a national discussion about bystander
involvement [3].

Scenario-2: The surveillance video clip shows a
crowd of witnesses encircling Vinay, a 20-year-
old boy, and doing nothing when he was hurled
from his motorcycle in east Delhi by a fast
automobile, and the clip [3].

Scenario-3: A man was driving to a construction
site when he was hit by a car; as it was a distant
location, no one was able to assist him because
hardly anyone passes through that area.

3. PROPOSED SOLUTION

The street poles are equipped with 360-degree
cameras. As mentioned in the block diagram in
Figure 1, the surveillance camera and GSM/GPS
module are connected to Raspberry Pi. When an
accident occurs, a camera mounted on a street
pole obtains a picture of the victim, which is
then analyzed using image processing and CNN.
It then delivers the images and notifications to
the control room after it has completed its
analysis. With the help of an application, the
control room authorizes it and sends requests to
the nearest hospitals. Once one hospital has
accepted the request, the requests for the
remaining hospitals are automatically
terminated. The ambulance is dispatched to the
site by the hospital that accepted the request.
Following the victim's admission to the hospital,
a call will be made to inform the victim's
dependents about the victim's status and
provide hospital information as can be seen in
Figure 2. This method can be employed not only
in the event of an accident but also in the event
of anidentifiable individual lying on the road due
to health issues.

FEEDFORWARD VOLUME 1, NUMBER 1

Surveillance
Camera
Raspberry
Pi
GSMNUGPS
Module
Figure 1. Block Diagram
START
\ 4
o Capeure the
phetures
ey 0> E¥D
1ES
Sﬂdpk:umm Centrel rosm admin coafirms
coutrol rose " it and patify the baspital via
g
Y
Aute dechine notificacion will be . 133
sent o hospieals whe didn't accept L
the request. accepred?
.
Notify victim's = Sends ambulasce
emerpency coatacts, to the lecation.

Figure 2. Flow chart of the proposed solution

4. INTERNET OF THINGS (loT)

The Internet of Things (IoT) refers to the
network of physical objects that are equipped
with sensors, computing power, software, and
other technologies to connect and exchange
data with other devices and systems over the
Internet or other communication networks.

4.1 Raspberry Pi

The Raspberry Pi Foundation, a UK nonprofit
that aspires to educate people in computing and
make computing education more accessible, has
created a series of single-board computers
known as the Raspberry Pi (see Figure 3). The
Raspberry Pi was first published in 2012, and
since then, various revisions and modifications
have been developed. People across the world
use Raspberry Pi to code, build hardware
projects, home automation, edge computing,
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and industrial applications. The cost of
Raspberry Pi is low and runs on Linux operating
system. It has a set of general-purpose
input/output ports for connecting electronic
modules or components and working on the
Internet of Things (IoT).Initially Pi had a single-
core processor 700MHz with 256MB of RAM,
whereas the latest model has a quad-core 1.5GHz
with 4GB of RAM.

Figure 3. Raspberry Pi
4.2 GPS Module

The tiny processors and antennas that the
GPS modules are made of, receive data directly
from satellites via specific radio frequencies. It
will then get timestamps from all visible
satellites, as well as other information. Arduino
and Raspberry Pi support GPS modules (see
Figure 4).

Figure 4. GPS Module
4.3 GSM Module

A GSM modem is also known as a GSM module.
It is a physical device that uses GSM mobile
phone technology to connect to a remote

FEEDFORWARD VOLUME 1, NUMBER 1

network. In the eyes of the mobile phone
network, the GSM module is identical to a typical
mobile phone. This module has a SIM to identify
itselfto the network. GSM modems provide TTL-
level serial interfaces to their hosts. Embedded
systems are the most common application for
them. This module helps us in sending messages
as well as provides the internet as it has a SIM
(see Figure 5). If we connect this module to
Raspberry Pi, we can write a python code and
send messages or mail to the intended user.

Figure 5. GSM Module
5. DEEP LEARNING

Deep learning has had a significant impact on
various domains of technology in recent years.
One of the most talked-about technologies in the
industry is computer vision. With the use of
computer vision, computers can understand
images and movies on their own. For example,
computer vision is used in the automotive
industry (autonomous vehicles), public security
(facial recognition), transportation (violations
detection), and traffic flow analysis. Image
processing is the core of computer vision.

Image processingis the process of converting an
image to a digital format and then executing
specific operations on it to extract relevant
information or an improved image. When
applying predefined signal processing methods,
the image processing system treats every image
as a 2D signal.

Image processing broadly follows three steps:

1. Import the image with the help of image
capturing software.
2. Evaluate and manipulate the image.
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3. Report the result based on image
analysis.

Deep learning is also a technique that mimics the
human brain. In the 1950s and 1960s,
researchers and scientists came up with a
question: Can we make a machine learn and
understand the data onits own like how ahuman
learns and understands the data? This led to the
invention of neural networks. The first simplest
type of neural network is “perceptron”. As it is
not able to learn the data properly, In the 1980s,
Jeoffrey Hinton invented the concept of Back
Propagation. Many companies and people
developed different efficient applications with
the help of backpropagation and neural network
architectures.

There are different types of neural network
architectures:

1. Artificial Neural Network (ANN).
2. Convolutional Neural Network (CNN).
3. Recurrent Neural Network (RNN).

5.1 Artificial Neural network (ANN)

In Figure 6, the input is fed into the first
layer which yields output to the neurons in
the next layer and goes on which provides
the result. The output is the result that is
predicted either in 0 (non-accident) or
1(Accident). The neuron in each layer
computes a function called the activation
function. The activation function
determines whether to activate the neurons
to pass the signal to the neurons in the next
layer.

The link between neurons of consecutive
layers has a weight parameter associated
with it. This weight impacts the output of
each layer and the final layer output.
Initially, the weights are assigned randomly
and updated at each layer iteratively to yield
the final output correctly. The main building
blocks of neural networks such as a layer,
neuron, weight parameters, activation
function, and the optimizer will enable the
neural network to select the suitable weight
and produce the correct outcome.

FEEDFORWARD VOLUME 1, NUMBER 1

| .
&

PR

&

i N XK N X

Hudden Layer

Figure 6. Artificial Neural Network
5.2 convolutional Neural Network

The convolutional neural network is a type
of deep neural network. This kind of neural
network is used when the input is in the form of
an image. For instance, object detection, face
classification, object classification, object
recognition, and so on. Let’s understand how we
as humans understand and identify the image.
The human brain is divided into four parts in
which the cerebral cortex which is also known
as the visual cortex is responsible for seeing the
images and identifying them. CNN has multiple
layers where each layer is responsible for
performing each function. For instance, layer 1is
responsible for finding the edges of an image.
Layer 2 is responsible to find if the object in the
image is moving. Layer 3 is responsible to find if
there are any other objects in the image and so
on. In CNN these layers are known as filters. In
image processing, black and white and gray-
scale images are treated as 2D input, and color
images are treated as 3D input, convolution
operations are applied to those images to
extract features using the backpropagation
method.

In Figure 7, theinput is given to the hidden layer.
In each hidden layer, we perform convolution
and activation functions on the image and send
it to the next hidden layer, and so on. Once the
convolution part is completed then the output is
flattened which is the output of convolution
layers gets converted into a feature vector for
connecting it to the final layer.
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Figure 7. Convolutional Neural Network
5.3 RecurrentNeural Network

RNN is another type of neural network in
which the output from the previous step is used
as input in the next step. In general, all the inputs
and outputs in standard neural networks are
independent of one another. However, in some
circumstances, such as when predicting the next
word of a phrase, the prior word is necessary.
Sentences are sequences of words, the previous
words must be remembered. RNN was created
for this purpose. It uses a hidden layer to
remember certain information about a
sequence, which is the most essential element of
RNN.

6. ACTIVATION FUNCTION

The activation function is used in the process
of converting the input signal to the output
signal. It can decide whether to activate the
specific neuron or not. The neural network could
not learn complex network mappings without
activation function as it is the one that converts
the model to non-linear. The linear model has
only limited capability and can’t understand
complicated images, speech, and so on. The
activation functions are of two types: Linear
activation function and Non-Linear activation
function.

6.1 Linear Activation Function

This function resembles a linear line which
doesn’t work for complex parameters that are
fed into neural networks (see Figure 8).

Linear Function

10

g8 7 6 5 -4 -3-2-1 0 1 2 3 4 5 6 7 8

FEEDFORWARD VOLUME 1, NUMBER 1

Figure 8. Linear Activation Function
6.2 Non-Linear Activation Function

Non-Linear activation functions are suitable
for learning and generating complex network
mappings.

6.2.1 Sigmoid Activation Function

The sigmoid function is used in the logistic
regression model of machine learning, and it
ranges between (0,1). It is also used in neural
networks, and it ranges between (0,1) Sigmoid
functions possess low convergence and
vanishing gradient problems.

The sigmoid function is given by,

p(x) = 1Tox

Figure 9 shows the graph of the sigmoid
function.

100 7.5 50 2.5 0.0 25 a0 1.5 100

Figure 9. Sigmoid Activation Function
6.2.3 Rectified Linear Unit Activation Function

The most widely used activation function is
Rectified Linear unit (ReLU). This function
enables the mode to train with high
performance. ReLU function provides better
performance than the sigmoid function as it
overcomes vanishing gradient problems (see
Figure 10). This function does not activate all the
neurons at the same time. The neurons get
activated only if the output is greater than 0.
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The ReLU function is given by,

f(x) =max (0, x)

Figure 10. ReLU Activation Function
6.2.3 Softmax Activation Function

The Softmax function is used on the
output layers of neural network models.
This function predicts the probability
distribution.

The softmax function is given by,

7. OPTIMIZER

The loss function is a function that helps in
measuring if the model is working properly and
providing accurate output. This function
computes the difference between the value
predicted by the model and the actual value. It is
also known as the cost function or error
function.

A common loss function is given by,

Loss = (y"—y)?
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In every epoch, we try to reduce the loss
value. To reduce the loss value, we use
optimizers.

7.1 Gradient Descent Optimizer

Gradient Descent will update all the
weights in such a way to make the value of
y” similar to y. The learning rate is small so
it takes much time to reach the global
minima but if we take a higher learning rate
value then the value will jump from one side
to the other side and will never reach the
global minima point. Here, we give all n data
points once at a time as input to the neural
network.

7.2 Stochastic Gradient Descent Optimizer

Stochastic gradient descent is similar to
gradient descent but here we give only one
record as an input to the neural network. If we
give K number of records as an input, then it is
known as mini-batch stochastic gradient
descent. Gradient descent follows a straight
path to reach the global minima, but SGD goes in
a zig-zag way which takes more time to reach the
global minima. There might be a chance of noisy
data getting added while reaching the minimum
point. SGD with momentum concept is used to
alter the noisy data. An exponential moving
average helps in removing noisy data.

7.3 Adaptive GradientDescent Optimizer

ADAM is the mostly used optimizer in a neural
network. The learning rate differs for each
hidden layer and neuron. This optimization
technique is more efficient and requires less
memory.

8. IMPLEMENTATION METHODS
8.1 Using the CNN Model

A basic CNN model is used for implementation
with specific batch size, image height, and width.
Firstly, the data is divided into three: training,
validation, and test dataset. Secondly, the
images in the data set are preprocessed and then
used these data to train the model. Finally, check
the accuracy of the train data and validation
data.

Table I shows us the amount of loss and
accuracy of train data as well as validation data’s
loss and accuracy in each number of epochs. 5
epochs, ADAM as an optimizer, sparse
categorical entropy as aloss function, and ReL.U
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as an activation function are used at the time of
implementation.

Table 1. Loss and Accuracy of Train and
Validation Data

Epoch Loss Accuracy Val Loss | Val
Accuracy

epoch | 5.4577 | 0.5436 1.6529 | 0.4694

1/5

epoch | 0.6433 | 0.6523 0.9371 | 0.5000

2/5

epoch 0.5999 0.6802 0.9210 | 0.479%6

3/5

Epoch 0.5447 0.7143 0.7910 | 0.5510

4/5

Epoch 0.4574 | 0.7901 0.8555 0.5102

5/5

Figure 11 shows the accuracy of train data and
validation data for a specific number of epochs
and Figure 12shows us the loss of train data and
validation data for a specific number of epochs.

080
train accuracy

075 test accuracy .‘/,-"

00 05 10 15 20 25 30 35 40
Epochs

Figure 11. Trainand Validation Accuracy
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Figure 12. Trainand ValidationLoss

From Table 1, we can see that the accuracy rate
of validation data is 51% but for better accuracy,
we have totrain our model more properly so let’s
see the second implementation method which
CNN is using the VGG16 model.

8.2 Implementation of CNN using VGG16 model
and softmax function

In this method for the output layer, the
softmax activation function is used and trained
the model is with the training data set.

Table 2 shows the amount of loss and accuracy
of train data as well as validation data’s loss and
accuracy in each number of epochs.

Table 2. Loss and Accuracy of Train and
Validation Data

Epoch Loss Accuracy | Val Val

Loss Accuracy

Epoch1/ | 0.9948 | 0.5588 0.6791 0.6837
5

Epoch2/ | 0.5580 | 0.7143 0.3739 0.8061
5

Epoch3/ | 0.4254 | 0.8028 0.3343 0.8367
5

Epoch4/ | 0.4148 | 0.8129 0.2926 0.8776
5

Epoch 5/5 | 0.3346 | 0.8496 0.3051 0.8571

Table 3 describes the detailed VGG16 model
summary using CNN. For hidden layers, ReLU
and Max pooling was performed and SoftMax on
the dense layer to get a better output.
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Table 3. Model Summary

: Layer(type) Output Shape : Param#
mput | (Input Layer) (None, 224, 224, 3) 0
|_blockl_convl (Conv2D) (None, 224,224, 64) | 1792
| blockl_conv2 (Conv2D) (None, 224, 224, 64) | 36928
blockl pool (MaxPooling2D) | (None, 112,112,64) | 0
| Block2_convl (Conv2D) (None, 112, 112, 64) | 73856
| Block2_conv2 (Conv2D) (None, 112,112, 64) | 147584
Block2 pool (MaxPooling2D) | (None, 56, 56, 128) 0
| block3 convl (Conv2D) (None, 56, 56, 256) | 295168
| block3_conv2 (Conv2D) (None, 56, 56, 256) | 590080
block3 conv3 (Conv2D) (None, 56, 56, 256) 590080
| block3 pool (MaxPooling2D) | (None, 28, 28.256) | 0
| block4_convl (Conv2D) (None, 28, 28, 512) | 1180160
block4 conv2 (Conv2D) (None, 28, 28, 512) 2359808
| blockd_conv3 (Conv2D) (None. 28, 28_512) | 2359808
| block4_pool (MaxPooling2D) | (None, 14,14.512) |1 0
blockS_convl (Conv2D) (None, 14, 14, 512) 2359808
block$ conv2 (Conv2D) (None, 14, 14, 512) 2359808
| blockS conv3 (Conv2D) (None. 14. 14, 512) | 2359808
blockS pool (MaxPooling2D) | (None, 7, 7, 512) 0
flatten_1 (Flatten) (None, 25088) 0
|_dense 1 (Dense) (None. 2) 1 50178
Total params: 14,764,866
Trainable params: 50,178
Non-trunable params: 14,714,
688

Figure 13 shows the accuracy of train data and
validation data for a specific number of epochs.
model accuracy
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Figure 13. Accuracy of train and validation
data

Figure 14 shows us the loss of train data and
validation data for a specific number of epochs.
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Figure 14. Trainand Validationloss
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9. LIBRARIES IMPORTED
9.1 Tensorflow

Tensorflow is an open-source platform for
Machine Learning, Deep Learning, and Artificial
Intelligence. It is designed in python
programming language, so people feel easy to
understand. It is a software library developed by
google brain so the machine learning and deep
learning concepts can be implemented easily

[4].
9.2 Matplotlib

Matplotlib is an open-source library and was
created by John D. Hunter. Matplotlib is a
python visualization toolkit with a low-level
graph plotting library [5]. Matplotlib is largely
written in python for platform compatibility,
with a few segments written in C, Objective-C,
and JavaScript.

9.3 Keras

Keras was developed by Francois Chollet, and
it is a deep learning framework for python. It
supports different backends and platforms. It
provides a python interface for artificial neural
networks [6].

9.4 Pandas

Pandas is a Python package that allows youto
work with large datasets. It offers tools for data
analysis, cleansing, exploration, and
manipulation. It was Wes McKinney who came
up with the name "Pandas" in 2008. The word
refers to both "Panel Data" and "Python Data
Analysis."

9.5 NumPy

NumPy is a Python module for interacting with
arrays. Travis Oliphant invented it in 2005. It
also provides functions for working with
matrices, Fourier transforms, and linear algebra.
It is an open-source project, so is free to use.
Numerical Pythonis referred to as NumPy.

10. DATASET USED

For the implementation, we used an accident-
detection dataset from Kaggle [7]. As is
commonly done, the Dataset is split into three
parts: Training dataset, Validation dataset, and
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Test dataset. Each dataset comprises two
folders they are accident and non-accident (see
Table 4).

Table 4. Dataset

Accident Non-Accident Total
Training
Dataset 369 422 791
Validation 4 5 .
Dataset -
Test Dataset 47 54 101
Total 462 528 990

11. ALGORITHM

1. Import required libraries like pandas, NumPy,
Keras, Tensorflow, and so on.

2. Define batch specifications like batch size,
image height, and width.

3. Load train data set.

4. Load validation data set.

5. Load test data set.

6. Define CNN using the VGG16 model.

7. Train model using train and validation data
set. 8. Check accuracy.

9. Compare the loss and accuracy of train data
and validation data using matplotlib graphs.

CONCLUSION

In this article, we could see that two
implementation methods are followed. CNN
using VGG16 gives better accuracy when
compared to CNN. The loss in the second
implementation method is gradually decreased.
The accuracy of 85% is decent but if we would
like to get more accuracy, then we can take big
data set and work on it. Making model overfit is
also not recommendable.
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A Lean Approach to Embedded
Deep Learning

A. Gokhberg
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Abstract—This article describes Arhat, a software framework providing innovative
implementation for deployment of deep learning workflows. Unlike the conventional deep
learning frameworks Arhat translates neural network descriptions directly into lean standalone
executable code. Using Arhat, it is possible to generate executable code for each specific
combination of a model and a target platform. This approach yields a very compact code and
can greatly simplify the deployment process. Arhat supports a wide range of neural network
operations and multiple target platforms including Intel CPUs and GPUs (via oneDNN) and
NVIDIA GPUs (via CUDA/cuDNN or TensorRT inference library). Arhat is integrated with Intel
deep learning software ecosystem including OpenVINO Toolkit and oneAPl Deep Neural
Network Library (oneDNN). We have evaluated Arhat on Intel Tiger Lake i7-1185G7E and NVIDIA

Jetson Xavier systems in the embedded object detection problem domain.

B THE INTRODUCTION Efficient deployment of
modern deep learning solutions represents substantial
challenges caused by high fragmentation of
corresponding hardware and software ecosystems.
This fragmentation makes deployment of each deep
learning model a substantial engineering project and
often requires using cumbersome software stacks.

Currently, the deep learning ecosystems represent
heterogeneous collections of various software and
hardware components, which include: (1) training
software frameworks that produce trained models, (2)
software frameworks designed specifically for
inference, (3) exchange formats for neural networks,
(4) computing hardware platforms from different
vendors, and (5) platform-specific low level
programming tools and libraries. These components
are evolving at a very rapid pace. Compatibility and
interoperability of individual components is frequently

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see

limited. There is a clear need for a streamlined
approach for navigating in this complex world.

To address these challenges we have developed
Arhat, a cross-platform framework for -efficient
deployment of deep learning inference workflows in
the cloud and on the edge. Unlike the conventional
deep learning frameworks Arhat translates neural
network descriptions directly into lean standalone
executable code.

In developing Arhat, we pursued two principal
objectives: (1) providing a unified platform-agnostic
approach towards deep learning deployment and (2)
facilitating performance evaluation of various
platforms on a common basis.

In this article we discuss design and architecture of
Arhat and demonstrate its use for deployment of
object detection models for embedded applications.

https://creativecommons.org/licenses/by/4.0/
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Reference architecture

Conceptual Arhat architecture is shown on Figure
1.

The central component is Arhat engine that
receives model descriptions from various sources and
steers backends generating the platform-specific code.

There are two principal ways for obtaining model
descriptions. (1) Arhat provides the front-end API for
programmatic description of models. (2) Pre-trained
models can be imported from the external frameworks
via bridge components supporting various exchange
formats.

The interchangeable backends generate code for
various target platforms. Backends for Intel, NVIDIA,
and AMD hardware are currently available.

This architecture is extensible and provides regular
means for adding support for new model layer types,
exchange formats, and target platforms.
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cuDNN
CUDA

Figure 1. Arhat reference architecture.

Arhat core is implemented in pure Go
programming language. Consequently, unlike most
conventional platforms that use Python, Arhat uses Go
also as a language for the frontend API. This API
specifies models by combining tensor operators
selected from an extensible and steadily growing
operator catalog. The API defines two levels of model
specification. The higher level is common for all
platforms and workflows. The lower level is platform-
and workflow-specific. The Arhat engine performs
automated conversion from the higher to the lower
level.

Support for Intel platforms via oneDNN

Intel oneAPI Deep Neural Network Library
(oneDNN) [1] is a cross-platform library
implementing basic deep learning operations
optimized for various Intel CPU and GPU platforms.

FEEDFORWARD VOLUME 1, NUMBER 1

Arhat supports Intel hardware via oneDNN
backend. The architecture of this backend is shown on
Figure 2.

Model specification

host.cpp

—

Arhat SDK

]

I kernel*.cpp

Thin Arhat runtime

<3I<:I

oneDNN

Figure 2. Arhat oneDNN backend.

The backend translates model specification into
C++ code consisting of one host module and multiple
kernel modules. This code runs on the top of a thin
Arhat runtime that directly interacts with oneDNN.
This approach results in a very slim deployable
software stack that can run on any Intel hardware
supporting oneDNN.

Interoperability with Intel OpenVINO

Intel OpenVINO toolkit [2] allows developers to
deploy pre-trained models on various Intel hardware
platforms. It includes the Model Optimizer tool that
converts pre-trained models from various popular
formats to the uniform Intermediate Representation.

We leverage OpenVINO Model Optimizer for
supporting various model representation formats in
Arhat. For this purpose, we have designed the
OpenVINO IR bridge that can import models
produced by the OpenVINO Model Optimizer. This
immediately enables Arhat to handle all model
formats supported by OpenVINO. The respective
workflow is shown on Figure 3.

This development, on the one hand, integrates
Arhat into Intel deep learning ecosystem and, on the
other hand, makes OpenVINO capable of the native
inference on platforms of different vendors. With
Arhat, the end-users can view OpenVINO as a
vendor-neutral solution. This might be beneficial for
adoption of OpenVINO as an inference platform of
choice.

JANUARY - MARCH 2022
18



Gokhberg, A.: A Lean Approach to Embedded Deep Learning
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Figure 3. Arhat interoperability with OpenVINO.

Case study: object detection

We have validated the approach using as a case
study object detection on embedded platforms. For
this study we have selected 8 representative pre-
trained models of 3 different families (SSD, Faster R-
CNN, and YOLO) from Intel Open Model Zoo [3].
We used Arhat to generate code for Intel and NVIDIA
and evaluated it on the respective embedded
platforms.

We started with performance comparison of Arhat
code powered by oneDNN against the open-source
version of OpenVINO.

As a platform we used Tiger Lake i7-1185G7E, a
system combining four CPU cores with integrated
GPU. To obtain stable results and emulate embedded
environment we have disabled turbo boost. We have
measured average processing time for one image.
Separate test runs have been made for the CPU cores
and the GPU. As a baseline, we also included metrics
for the ResNet50 image classification network.

Results for the CPU and the GPU are summarized
in Tables 1 and 2. The numbers represent time, in
milliseconds, required to process one input image.

Table 1. Performance evaluation on Tiger Lake,
multi-core CPU

Model Arhat | OpenVINO
resnetb0-v1-7 23.5 23.0
ssd_mobilenet_v1_fpn_coco 397 401
ssd_mobilenet_v2 14.7 14.9
ssd_resnet50_v1_fpn_coco 563 568
faster_rcnn_inception_v2_coco | 244 236
faster_rcnn_resnet50_coco 722 719
yolo_v2_tf 188 190
yolo_v3_tf 205 201
yolo_v4_tf 409 427
FEEDFORWARD VOLUME 1, NUMBER 1

Table 2. Performance evaluation on Tiger Lake,
integrated GPU

Model Arhat | OpenVINO
resnetb0-v1-7 10.1 11.3
ssd_mobilenet_v1_fpn_coco 144 125
ssd_mobilenet_v2 9.0 10.7
ssd_resnet50_v1_fpn_coco 195 183
faster_rcnn_inception_v2_coco | 117 82.8
faster_rcnn_resnet50_coco 252 259
yolo_v2_tf 64.4 60.8
yolo_v3_tf 72.3 68.2
yolo_v4_tf 140 135

These tables demonstrate that Arhat with oneDNN
backend provides inference performance compared to
OpenVINO on both multi-code CPU and integrated
GPU of Tiger Lake i7-1185G7E.

Interoperability with TensorRT

To run OpenVINO models on NVIDIA GPUs
Arhat provides two alternative backends. These
backends use CUDA Deep Neural Network library
(cuDNN) [4] and TensorRT inference library [5]
respectively.

The architecture of TensorRT backend is shown on
Figure 4.

Figure 4. Arhat interoperability with TensorRT.

There are several OpenVINO proprietary layer
types that are not directly supported by TensorRT. We
have implemented them in CUDA as custom
TensorRT plugins. These layer types include
DetectionOutput,  PriorBoxClustered,  Proposal,
RegionYolo and RoiPooling.

Evaluation on Jetson Xavier NX

As the next step, we included the NVIDIA
platform in evaluation. We have chosen Jetson Xavier
NX. This system has six ARM CPU cores and a GPU.
It has various configurable power modes with 10W
and 15W TDP envelopes and 2, 4, or 6 cores enabled.

JANUARY - MARCH 2022
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The best performance is demonstrated with 15W and
2 cores, therefore we used this mode for comparison.
Results are summarized in Table 3.

Table 3. Performance evaluation on Jetson
Xavier NX with Arhat cuDNN and TensorRT
backends

Model cuDNN TensorRT
resnetb0-v1-7 26.7 14.2
ssd_mobilenet_v1_fpn_coco 212 187
ssd_mobilenet_v2 23.4 12.3
ssd_resnet50_v1_fpn_coco 305 248
faster_rcnn_inception_v2_coco | 195 159
faster_rcnn_resnet50_coco 413 366
yolo_v2_tf 114 83.3
yolo_v3_tf 139 94.8
yolo_v4_tf 250 191

This tables demonstrates that TensorRT inference
library provides superior inference performance
compared to cuDNN on Jetson Xavier NX.

Arhat backend for TensorRT enables native
deployment of OpenVINO models on NVIDIA GPUs
and opens a way for achieving the best OpenVINO
performance on the hardware of the other vendors.

Conclusion

This study demonstrates that Arhat can efficiently
interoperate with various key components of Intel and
NVIDIA deep learning ecosystems. Furthermore,
using Arhat allows to overcome limitations of each
individual component and achieve results that are
difficult or not possible to achieve otherwise. Arhat
extends capabilities of Intel deep learning software by
providing a way for the native deployment of
OpenVINO models on the wider range of platforms.

Arhat can be also used for the streamlined on-
demand benchmarking of models on various
platforms. Using Arhat for performance evaluation
eliminates overhead that might be caused by external
deep learning frameworks because code generated by
Arhat directly interacts with the optimized platform-
specific deep learning libraries.
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