
 Volume 1 No. 1 January – March 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

A Lean Approach to Embedded
Deep Learning
A. Gokhberg
FRAGATA COMPUTER SYSTEMS AG

Abstract—This article describes Arhat, a software framework providing innovative
implementation for deployment of deep learning workflows. Unlike the conventional deep
learning frameworks Arhat translates neural network descriptions directly into lean standalone
executable code. Using Arhat, it is possible to generate executable code for each specific
combination of a model and a target platform. This approach yields a very compact code and
can greatly simplify the deployment process. Arhat supports a wide range of neural network
operations and multiple target platforms including Intel CPUs and GPUs (via oneDNN) and
NVIDIA GPUs (via CUDA/cuDNN or TensorRT inference library). Arhat is integrated with Intel
deep learning software ecosystem including OpenVINO Toolkit and oneAPI Deep Neural
Network Library (oneDNN). We have evaluated Arhat on Intel Tiger Lake i7-1185G7E and NVIDIA
Jetson Xavier systems in the embedded object detection problem domain.

¢ THE INTRODUCTION Efficient deployment of
modern deep learning solutions represents substantial
challenges caused by high fragmentation of
corresponding hardware and software ecosystems.
This fragmentation makes deployment of each deep
learning model a substantial engineering project and
often requires using cumbersome software stacks.

 Currently, the deep learning ecosystems represent
heterogeneous collections of various software and
hardware components, which include: (1) training
software frameworks that produce trained models, (2)
software frameworks designed specifically for
inference, (3) exchange formats for neural networks,
(4) computing hardware platforms from different
vendors, and (5) platform-specific low level
programming tools and libraries. These components
are evolving at a very rapid pace. Compatibility and
interoperability of individual components is frequently

limited. There is a clear need for a streamlined
approach for navigating in this complex world.

To address these challenges we have developed
Arhat, a cross-platform framework for efficient
deployment of deep learning inference workflows in
the cloud and on the edge. Unlike the conventional
deep learning frameworks Arhat translates neural
network descriptions directly into lean standalone
executable code.

In developing Arhat, we pursued two principal
objectives: (1) providing a unified platform-agnostic
approach towards deep learning deployment and (2)
facilitating performance evaluation of various
platforms on a common basis.

In this article we discuss design and architecture of
Arhat and demonstrate its use for deployment of
object detection models for embedded applications.

vipendya
Line

Gokhberg, A.: A Lean Approach to Embedded Deep Learning

FEEDFORWARD VOLUME 1, NUMBER 1 JANUARY – MARCH 2022

Reference architecture
Conceptual Arhat architecture is shown on Figure

1.
The central component is Arhat engine that

receives model descriptions from various sources and
steers backends generating the platform-specific code.

There are two principal ways for obtaining model
descriptions. (1) Arhat provides the front-end API for
programmatic description of models. (2) Pre-trained
models can be imported from the external frameworks
via bridge components supporting various exchange
formats.

The interchangeable backends generate code for
various target platforms. Backends for Intel, NVIDIA,
and AMD hardware are currently available.

This architecture is extensible and provides regular
means for adding support for new model layer types,
exchange formats, and target platforms.

Figure 1. Arhat reference architecture.

Arhat core is implemented in pure Go

programming language. Consequently, unlike most
conventional platforms that use Python, Arhat uses Go
also as a language for the frontend API. This API
specifies models by combining tensor operators
selected from an extensible and steadily growing
operator catalog. The API defines two levels of model
specification. The higher level is common for all
platforms and workflows. The lower level is platform-
and workflow-specific. The Arhat engine performs
automated conversion from the higher to the lower
level.

Support for Intel platforms via oneDNN
Intel oneAPI Deep Neural Network Library

(oneDNN) [1] is a cross-platform library
implementing basic deep learning operations
optimized for various Intel CPU and GPU platforms.

Arhat supports Intel hardware via oneDNN
backend. The architecture of this backend is shown on
Figure 2.

Figure 2. Arhat oneDNN backend.

The backend translates model specification into

C++ code consisting of one host module and multiple
kernel modules. This code runs on the top of a thin
Arhat runtime that directly interacts with oneDNN.
This approach results in a very slim deployable
software stack that can run on any Intel hardware
supporting oneDNN.

Interoperability with Intel OpenVINO
Intel OpenVINO toolkit [2] allows developers to

deploy pre-trained models on various Intel hardware
platforms. It includes the Model Optimizer tool that
converts pre-trained models from various popular
formats to the uniform Intermediate Representation.

We leverage OpenVINO Model Optimizer for
supporting various model representation formats in
Arhat. For this purpose, we have designed the
OpenVINO IR bridge that can import models
produced by the OpenVINO Model Optimizer. This
immediately enables Arhat to handle all model
formats supported by OpenVINO. The respective
workflow is shown on Figure 3.

This development, on the one hand, integrates
Arhat into Intel deep learning ecosystem and, on the
other hand, makes OpenVINO capable of the native
inference on platforms of different vendors. With
Arhat, the end-users can view OpenVINO as a
vendor-neutral solution. This might be beneficial for
adoption of OpenVINO as an inference platform of
choice.

Gokhberg, A.: A Lean Approach to Embedded Deep Learning

FEEDFORWARD VOLUME 1, NUMBER 1 JANUARY – MARCH 2022

Figure 3. Arhat interoperability with OpenVINO.

Case study: object detection
We have validated the approach using as a case

study object detection on embedded platforms. For
this study we have selected 8 representative pre-
trained models of 3 different families (SSD, Faster R-
CNN, and YOLO) from Intel Open Model Zoo [3].
We used Arhat to generate code for Intel and NVIDIA
and evaluated it on the respective embedded
platforms.

We started with performance comparison of Arhat
code powered by oneDNN against the open-source
version of OpenVINO.

As a platform we used Tiger Lake i7-1185G7E, a
system combining four CPU cores with integrated
GPU. To obtain stable results and emulate embedded
environment we have disabled turbo boost. We have
measured average processing time for one image.
Separate test runs have been made for the CPU cores
and the GPU. As a baseline, we also included metrics
for the ResNet50 image classification network.

Results for the CPU and the GPU are summarized
in Tables 1 and 2. The numbers represent time, in
milliseconds, required to process one input image.

Table 1. Performance evaluation on Tiger Lake,
multi-core CPU

Model Arhat OpenVINO
resnet50-v1-7 23.5 23.0
ssd_mobilenet_v1_fpn_coco 397 401
ssd_mobilenet_v2 14.7 14.9
ssd_resnet50_v1_fpn_coco 563 568
faster_rcnn_inception_v2_coco 244 236
faster_rcnn_resnet50_coco 722 719
yolo_v2_tf 188 190
yolo_v3_tf 205 201
yolo_v4_tf 409 427

Table 2. Performance evaluation on Tiger Lake,
integrated GPU

Model Arhat OpenVINO
resnet50-v1-7 10.1 11.3
ssd_mobilenet_v1_fpn_coco 144 125
ssd_mobilenet_v2 9.0 10.7
ssd_resnet50_v1_fpn_coco 195 183
faster_rcnn_inception_v2_coco 117 82.8
faster_rcnn_resnet50_coco 252 259
yolo_v2_tf 64.4 60.8
yolo_v3_tf 72.3 68.2
yolo_v4_tf 140 135

These tables demonstrate that Arhat with oneDNN

backend provides inference performance compared to
OpenVINO on both multi-code CPU and integrated
GPU of Tiger Lake i7-1185G7E.

Interoperability with TensorRT
To run OpenVINO models on NVIDIA GPUs

Arhat provides two alternative backends. These
backends use CUDA Deep Neural Network library
(cuDNN) [4] and TensorRT inference library [5]
respectively.

The architecture of TensorRT backend is shown on
Figure 4.

Figure 4. Arhat interoperability with TensorRT.

There are several OpenVINO proprietary layer

types that are not directly supported by TensorRT. We
have implemented them in CUDA as custom
TensorRT plugins. These layer types include
DetectionOutput, PriorBoxClustered, Proposal,
RegionYolo and RoiPooling.

Evaluation on Jetson Xavier NX
As the next step, we included the NVIDIA

platform in evaluation. We have chosen Jetson Xavier
NX. This system has six ARM CPU cores and a GPU.
It has various configurable power modes with 10W
and 15W TDP envelopes and 2, 4, or 6 cores enabled.

Gokhberg, A.: A Lean Approach to Embedded Deep Learning

FEEDFORWARD VOLUME 1, NUMBER 1 JANUARY – MARCH 2022

The best performance is demonstrated with 15W and
2 cores, therefore we used this mode for comparison.

Results are summarized in Table 3.

Table 3. Performance evaluation on Jetson
Xavier NX with Arhat cuDNN and TensorRT
backends

Model cuDNN TensorRT
resnet50-v1-7 26.7 14.2
ssd_mobilenet_v1_fpn_coco 212 187
ssd_mobilenet_v2 23.4 12.3
ssd_resnet50_v1_fpn_coco 305 248
faster_rcnn_inception_v2_coco 195 159
faster_rcnn_resnet50_coco 413 366
yolo_v2_tf 114 83.3
yolo_v3_tf 139 94.8
yolo_v4_tf 250 191

This tables demonstrates that TensorRT inference

library provides superior inference performance
compared to cuDNN on Jetson Xavier NX.

Arhat backend for TensorRT enables native
deployment of OpenVINO models on NVIDIA GPUs
and opens a way for achieving the best OpenVINO
performance on the hardware of the other vendors.

Conclusion
This study demonstrates that Arhat can efficiently

interoperate with various key components of Intel and
NVIDIA deep learning ecosystems. Furthermore,
using Arhat allows to overcome limitations of each
individual component and achieve results that are
difficult or not possible to achieve otherwise. Arhat
extends capabilities of Intel deep learning software by
providing a way for the native deployment of
OpenVINO models on the wider range of platforms.

Arhat can be also used for the streamlined on-

demand benchmarking of models on various
platforms. Using Arhat for performance evaluation
eliminates overhead that might be caused by external
deep learning frameworks because code generated by
Arhat directly interacts with the optimized platform-
specific deep learning libraries.

¢ REFERENCES
1. oneAPI Deep Neural Network Library (oneDNN).

[Online] Available: https://github.com/oneapi-
src/oneDNN (URL.)

2 OpenVINO Toolkit. [Online] Available:
https://github.com/openvinotoolkit/openvino (URL.)

3 Open Model Zoo repository. [Online] Available:
https://github.com/openvinotoolkit/open_model_zoo
(URL.)

4 NVIDIA cuDNN. [Online] Available:
https://developer.nvidia.com/cudnn (URL.)

5 NVIDIA TensorRT. [Online] Available:
https://developer.nvidia.com/tensorrt (URL.)

Alexey Gokhberg is a seasoned software engineer
with more than 25 years of experience in various
industrial and academic branches. His professional
interests include deep learning, high-performance
computing, programming language construction,
and computational geophysics.

