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Abstract—This article describes Arhat, a software framework providing innovative 
implementation for deployment of deep learning workflows. Unlike the conventional deep 
learning frameworks Arhat translates neural network descriptions directly into lean standalone 
executable code. Using Arhat, it is possible to generate executable code for each specific 
combination of a model and a target platform. This approach yields a very compact code and 
can greatly simplify the deployment process. Arhat supports a wide range of neural network 
operations and multiple target platforms including Intel CPUs and GPUs (via oneDNN) and 
NVIDIA GPUs (via CUDA/cuDNN or TensorRT inference library). Arhat is integrated with Intel 
deep learning software ecosystem including OpenVINO Toolkit and oneAPI Deep Neural 
Network Library (oneDNN). We have evaluated Arhat on Intel Tiger Lake i7-1185G7E and NVIDIA 
Jetson Xavier systems in the embedded object detection problem domain. 

 

¢ THE INTRODUCTION Efficient deployment of 
modern deep learning solutions represents substantial 
challenges caused by high fragmentation of 
corresponding hardware and software ecosystems. 
This fragmentation makes deployment of each deep 
learning model a substantial engineering project and 
often requires using cumbersome software stacks. 

 Currently, the deep learning ecosystems represent 
heterogeneous collections of various software and 
hardware components, which include: (1) training 
software frameworks that produce trained models, (2) 
software frameworks designed specifically for 
inference, (3) exchange formats for neural networks, 
(4) computing hardware platforms from different 
vendors, and (5) platform-specific low level 
programming tools and libraries. These components 
are evolving at a very rapid pace. Compatibility and 
interoperability of individual components is frequently 

limited. There is a clear need for a streamlined 
approach for navigating in this complex world. 

To address these challenges we have developed 
Arhat, a cross-platform framework for efficient 
deployment of deep learning inference workflows in 
the cloud and on the edge. Unlike the conventional 
deep learning frameworks Arhat translates neural 
network descriptions directly into lean standalone 
executable code.  

In developing Arhat, we pursued two principal 
objectives: (1) providing a unified platform-agnostic 
approach towards deep learning deployment and (2) 
facilitating performance evaluation of various 
platforms on a common basis. 

In this article we discuss design and architecture of 
Arhat and demonstrate its use for deployment of 
object detection models for embedded applications. 
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Reference architecture 
Conceptual Arhat architecture is shown on Figure 

1.  
The central component is Arhat engine that 

receives model descriptions from various sources and 
steers backends generating the platform-specific code.  

There are two principal ways for obtaining model 
descriptions. (1) Arhat provides the front-end API for 
programmatic description of models. (2) Pre-trained 
models can be imported from the external frameworks 
via bridge components supporting various exchange 
formats. 

The interchangeable backends generate code for 
various target platforms. Backends for Intel, NVIDIA, 
and AMD hardware are currently available. 

This architecture is extensible and provides regular 
means for adding support for new model layer types, 
exchange formats, and target platforms. 

 

 
Figure 1. Arhat reference architecture.  

 
Arhat core is implemented in pure Go 

programming language. Consequently, unlike most 
conventional platforms that use Python, Arhat uses Go 
also as a language for the frontend API. This API 
specifies models by combining tensor operators 
selected from an extensible and steadily growing 
operator catalog. The API defines two levels of model 
specification. The higher level is common for all 
platforms and workflows. The lower level is platform- 
and workflow-specific. The Arhat engine performs 
automated conversion from the higher to the lower 
level. 

Support for Intel platforms via oneDNN 
Intel oneAPI Deep Neural Network Library 

(oneDNN) [1] is a cross-platform library 
implementing basic deep learning operations 
optimized for various Intel CPU and GPU platforms. 

Arhat supports Intel hardware via oneDNN 
backend. The architecture of this backend is shown on 
Figure 2. 

 

 
Figure 2. Arhat oneDNN backend.  

 
The backend translates model specification into 

C++ code consisting of one host module and multiple 
kernel modules. This code runs on the top of a thin 
Arhat runtime that directly interacts with oneDNN. 
This approach results in a very slim deployable 
software stack that can run on any Intel hardware 
supporting oneDNN. 

 

Interoperability with Intel OpenVINO 
Intel OpenVINO toolkit [2] allows developers to 

deploy pre-trained models on various Intel hardware 
platforms. It includes the Model Optimizer tool that 
converts pre-trained models from various popular 
formats to the uniform Intermediate Representation. 

We leverage OpenVINO Model Optimizer for 
supporting various model representation formats in 
Arhat. For this purpose, we have designed the 
OpenVINO IR bridge that can import models 
produced by the OpenVINO Model Optimizer. This 
immediately enables Arhat to handle all model 
formats supported by OpenVINO. The respective 
workflow is shown on Figure 3. 

This development, on the one hand, integrates 
Arhat into Intel deep learning ecosystem and, on the 
other hand, makes OpenVINO capable of the native 
inference on platforms of different vendors. With 
Arhat, the end-users can view OpenVINO as a 
vendor-neutral solution. This might be beneficial for 
adoption of OpenVINO as an inference platform of 
choice. 
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Figure 3. Arhat interoperability with OpenVINO.  

 

Case study: object detection 
We have validated the approach using as a case 

study object detection on embedded platforms. For 
this study we have selected 8 representative pre-
trained models of 3 different families (SSD, Faster R-
CNN, and YOLO) from Intel Open Model Zoo [3]. 
We used Arhat to generate code for Intel and NVIDIA 
and evaluated it on the respective embedded 
platforms. 

We started with performance comparison of Arhat 
code powered by oneDNN against the open-source 
version of OpenVINO. 

As a platform we used Tiger Lake i7-1185G7E, a 
system combining four CPU cores with integrated 
GPU. To obtain stable results and emulate embedded 
environment we have disabled turbo boost. We have 
measured average processing time for one image. 
Separate test runs have been made for the CPU cores 
and the GPU. As a baseline, we also included metrics 
for the ResNet50 image classification network. 

Results for the CPU and the GPU are summarized 
in Tables 1 and 2. The numbers represent time, in 
milliseconds, required to process one input image. 

 
 

 
 

Table 1. Performance evaluation on Tiger Lake, 
multi-core CPU  

Model Arhat OpenVINO 
resnet50-v1-7 23.5 23.0 
ssd_mobilenet_v1_fpn_coco 397 401 
ssd_mobilenet_v2 14.7 14.9 
ssd_resnet50_v1_fpn_coco 563 568 
faster_rcnn_inception_v2_coco 244 236 
faster_rcnn_resnet50_coco 722 719 
yolo_v2_tf 188 190 
yolo_v3_tf 205 201 
yolo_v4_tf 409 427 

 

Table 2. Performance evaluation on Tiger Lake, 
integrated GPU  

Model Arhat OpenVINO 
resnet50-v1-7 10.1 11.3 
ssd_mobilenet_v1_fpn_coco 144 125 
ssd_mobilenet_v2 9.0 10.7 
ssd_resnet50_v1_fpn_coco 195 183 
faster_rcnn_inception_v2_coco 117 82.8 
faster_rcnn_resnet50_coco 252 259 
yolo_v2_tf 64.4 60.8 
yolo_v3_tf 72.3 68.2 
yolo_v4_tf 140 135 

 
These tables demonstrate that Arhat with oneDNN 

backend provides inference performance compared to 
OpenVINO on both multi-code CPU and integrated 
GPU of Tiger Lake i7-1185G7E. 
 

Interoperability with TensorRT 
To run OpenVINO models on NVIDIA GPUs 

Arhat provides two alternative backends. These 
backends use CUDA Deep Neural Network library 
(cuDNN) [4] and TensorRT inference library [5] 
respectively.  

The architecture of TensorRT backend is shown on 
Figure 4. 

 
 

 
Figure 4. Arhat interoperability with TensorRT.  

 
There are several OpenVINO proprietary layer 

types that are not directly supported by TensorRT. We 
have implemented them in CUDA as custom 
TensorRT plugins. These layer types include 
DetectionOutput, PriorBoxClustered, Proposal, 
RegionYolo and RoiPooling.  

 

Evaluation on Jetson Xavier NX 
As the next step, we included the NVIDIA 

platform in evaluation. We have chosen Jetson Xavier 
NX. This system has six ARM CPU cores and a GPU. 
It has various configurable power modes with 10W 
and 15W TDP envelopes and 2, 4, or 6 cores enabled. 
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The best performance is demonstrated with 15W and 
2 cores, therefore we used this mode for comparison. 

Results are summarized in Table 3.  
 

Table 3. Performance evaluation on Jetson 
Xavier NX with Arhat cuDNN and TensorRT 
backends  

Model cuDNN TensorRT 
resnet50-v1-7 26.7 14.2 
ssd_mobilenet_v1_fpn_coco 212 187 
ssd_mobilenet_v2 23.4 12.3 
ssd_resnet50_v1_fpn_coco 305 248 
faster_rcnn_inception_v2_coco 195 159 
faster_rcnn_resnet50_coco 413 366 
yolo_v2_tf 114 83.3 
yolo_v3_tf 139 94.8 
yolo_v4_tf 250 191 

 
This tables demonstrates that TensorRT inference 

library provides superior inference performance 
compared to cuDNN on Jetson Xavier NX. 

Arhat backend for TensorRT enables native 
deployment of OpenVINO models on NVIDIA GPUs 
and opens a way for achieving the best OpenVINO 
performance on the hardware of the other vendors. 

Conclusion 
This study demonstrates that Arhat can efficiently 

interoperate with various key components of Intel and 
NVIDIA deep learning ecosystems. Furthermore, 
using Arhat allows to overcome limitations of each 
individual component and achieve results that are 
difficult or not possible to achieve otherwise. Arhat 
extends capabilities of Intel deep learning software by 
providing a way for the native deployment of 
OpenVINO models on the wider range of platforms. 

 
Arhat can be also used for the streamlined on-

demand benchmarking of models on various 
platforms. Using Arhat for performance evaluation 
eliminates overhead that might be caused by external 
deep learning frameworks because code generated by 
Arhat directly interacts with the optimized platform-
specific deep learning libraries. 
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