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Abstract—This work shows that it is feasible to solve large-scale decision-making problems for 
robot navigation in real-time onboard low-power heterogeneous CPU+iGPU platforms. We can 
achieve both performance and productivity by carefully selecting the scheduling strategy and 
programming model. In particular, we remark that the oneAPI programming model creates new 
opportunities to improve productivity, performance, and efficiency in low-power systems. Our 
experimental results show that the implementations based on the oneAPI programming model 
are up to 5× easier to program than those based on OpenCL while incurring only 3 to 8% 
overhead for low-power systems. 

 
¢ WHEN you think of oneAPI use cases that 

leverage the performance of heterogeneous computing, 
you might first envision powerful workstations and 
multi-megawatt supercomputers loaded with big CPUs, 
GPUs, and FPGAs training complex neural networks. 
However, our team is working on the opposite end of 
the spectre. This work explores solving problems in 
systems that use compute-intensive reinforcement 
learning (RL) algorithms optimized for battery-
powered heterogeneous computing devices.  

We have focused for many years on productively 
exploiting heterogeneous chips leveraging Intel® 
Threading Building Blocks (TBB) as the orchestrating 
framework and developing heterogeneous scheduling 
strategies [7], [8]. So, the announcement of oneAPI was 
immediately received in our group as an enticing 
opportunity to raise the level of abstraction in our 
implementations of heterogeneous schedulers. We see 
oneAPI as a solid endorsement to SYCL and modern 
C++ as the basis for the 'homogeneous programming of 
heterogeneous platforms' idea. 

Heterogeneous computing with multiple types of 
processors can benefit large-scale and supercomputers 
to embedded systems. However, with smaller systems 
(as mobile robots), compute-intensive, automated 
decision-making algorithms need to be efficient, and 
schedulers need to be aware of energy consumption as 
they assign tasks to different processor architectures to 
optimize throughput. These aspects require new 
approaches to optimizing solutions for low-power 
systems, which we explore in this work. 

Many automated planning and decision-making 
algorithms rely on Markov Decision Processes (MDPs) 
[1] and Partially Observable MDPs (POMDPs) [2]. 
MDPs and POMDPs describe how an intelligent agent 
with a defined goal learns to make better decisions by 
doing, even without knowing the map of its 
environment. POMDP and MDP agents can cope with 
uncertainty, such as not knowing what lies ahead or 
whether their actions will be beneficial. The literature 
shows that solving real-world problems for this kind of 
agent is not considered for low-power platforms [3] and 
computing an optimal solution for medium to large-
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sized problems is intractable [4]. But the medium-large 
scale problems include most of the practical 
applications in autonomous robots, deep-space 
navigation, search and rescue, inspection and repair, 
toxic-waste cleanup, and much more. 

Consequently, we focus our efforts on optimizing 
decision-making and planning algorithms for mobile 
robots (illustrated as the red boxes in Figure 1). This 
niche would highly benefit from a solution for runtime 
and energy-efficient implementation. 

 
Figure 1. Decision making under uncertainty to 
plan for the navigation of a mobile robot modelled 
as a POMDP agent. 

The primary source of uncertainty in a POMDP is 
modeled by maintaining an information state called 
belief, ! ∈ #, representing a probability distribution 
over the state space $. In practice, a particle filter (the 
yellow block in Figure 1) is used to implement a 
recursive Bayesian filter to estimate the underlying 
state %! of a dynamical system like this: !! = !(%!) ∝
*(+!|%!)∫ *(%!|%!"#, /!"#)!(%!"#)0%!"# [5]. Here, +! is 
a sensor measurement and /! is the action or control 
command; *(+!|%!) models the observations (from 
sensors) while *(%!|%!"#, /!"#) describes the system's 
dynamics (e.g., state transition due to actuators). 

At any time 1, an MDP agent is in one of the possible 
states, %!, which is known, while a POMDP agent only 
knows its belief state estimate !!. Given either the 
current state or the belief state, the agent must decide 
for and execute the action /!, given a finite set of 
possible actions. The chosen action is known as the 
policy. Taking action /! results in an immediate reward 
2! = 2(%!, /!) ∈ ℝ, and in a transition to state %!$# with 
probability *(%!$#|%!, /!). After each transition, the 
agent observes +!, and the process repeats until the 
agent reaches its goal. 

We aim to enable easy and feasible ways to 
implement decision making on low-power mobile 
platforms and focus on online planning under 
uncertainty for practical applications, such as 
autonomous driving and service robotics, that must run 
on SoC mobile platforms. These applications often 
have real-time execution constraints and run on battery-
powered platforms.  

The main challenge is to keep the runtime and 
energy performance in check while allowing the users 

(programmers) to code solvers for decision-making 
problems. Our proposed solution uses low-power 
aware heterogeneous computing strategies, sparse data 
structures to fit real-world size decision-making 
problems on SoCs (System on Chip) with scarce 
memory and computing resources, and oneAPI with 
DPC++ programming [6]. 

 
DEVELOPING THE SOLUTION—NAVIGATING 
NEW SPACES FOR MDP AGENTS 

Our team has created new methods, memory-
efficient data structures, and low-power aware 
heterogeneous computing schedulers [3], [7] to enable 
an intelligent agent to act autonomously in 
environments where the effects of its actions are not 
deterministic (Figure 2). For example, a rover taking 
samples from the surface of Mars may not know if a 
sample is worth taking or if the direction of travel will 
lead to worthy specimens. Or, a drone looking for 
survivors trapped after a natural disaster may not know 
if it is following a path that will eventually lead to a 
person. 

 
Figure 2. Robots must learn to navigate in 
uncertain environments, such as those above, 
using RL methods. We illustrate the configuration 
of different navigation scenarios in V-REP 
simulator (the black object is the robot) and how 
we use the simulated experience to plan 
navigation policies in new scenarios. 

We start our journey with the Value Iteration (VI) 
algorithm, commonly used in MDPs and a core kernel 
in many RL methods, optimizing its data structures for 
memory use and access. Then, we explore ways to 
improve the performance of this planning and decision-
making algorithm. In the flow diagram from Figure 2, 
the VI algorithm is represented by the red block 
(planning algorithm). 

State estimation
(particle filter)

Action selection
(online planner)

bt

at

ot

in
pu

t
ou

tp
ut

Robot simulation
experience

Log file

Model

Planning 
algorithm

Navigation policy

Benchmark 
parameters

Reward



Constantinescu, D et al: Enabling Easier Programming… 

FEEDFORWARD VOLUME 1, NUMBER 1  JANUARY – MARCH 2022 
 

 
Figure 3. Planning flow with a VI algorithm. 

We explore different parallel implementation 
strategies on low-power SoCs to improve the VI 
runtime and energy use. We have initially implemented 
multicore parallelism, using OpenMP and TBB [8], and 
then included GPU accelerators programmed with 
OpenCL. Finally, we have added heterogeneous 
scheduling to balance and optimize the computing 
resource utilization to minimize runtime and energy 
consumption on the most resource-consuming kernel of 
VI (Evaluate policy, in red), as shown in Figure 3. 
We approach the heterogeneous scheduler code 
development using three different programming 
models: OpenCL (OCL), oneAPI with SYCL-style 
buffers (BUFF) written in DPC++, and oneAPI with 
unified shared memory (USM) written in DPC++. 

EXPERIMENTAL SETUP 
For the implementation, testing, and evaluation, we 

use Intel® DevCloud and two local mobile CPU+iGPU 
SoCs: 
• Kaby Lake - A 1.6 GHz Intel® quad-core CPU i5-

8250U, featuring a UHD 620 integrated GPU 
@300 MHz, 8GB of DDR4 and a TDP of 10 to 15 
Watts. OS: Ubuntu 18.04. 

• Tiger Lake - A 2.8 GHz Intel® quad-core CPU i7-
1165G7, featuring an Iris Xe integrated GPU @1.3 
GHz, 16GB of LPDDR4x and a TDP of 12 to 28 
Watts. OS: Ubuntu 20.04. 

Our parallel implementations use OpenCL, TBB, 
the oneAPI programming model, the Intel® oneAPI 
Base Toolkit, and Intel® oneDPL. We have installed 
the oneAPI DPC++ 2021.1 Compiler and the 
corresponding Intel® NEO Graphics Drivers on each 
platform. We measure energy use with PCM library 
[9]. 

We have chosen Intel low-to-medium-power 
processors as testbeds in our experiments because they 
are energy-efficient and powerful enough to run at least 
some AI benchmarks onboard a mobile robot. Besides, 
the quality and ease of use of the Intel profiling, 
debugging, and supporting tools now included in the 
Intel® oneAPI toolkits—Intel® VTune™ Profiler, 
Intel® Advisor and its Flow Graph Analyzer feature, 
Intel® Inspector—add to the "productivity" factor that 
we consider key to democratizing parallel and 
heterogeneous programming. 

 

EVALUATING THREE PROGRAMMING MODELS 
The oneAPI programming model creates new 

opportunities to improve performance and efficiency in 
low-power systems. We implement three 
heterogeneous schedulers for orchestrating CPU+GPU 
execution and evaluate them for low-power use cases. 

We use the Cyclomatic complexity (CC) and 
Programming Effort (PE) metrics to measure how easy 
(or difficult) it is to program a code [10] and show the 
results in Figure 4. Higher values for CC and PE mean 
it is more complicated for a programmer to code the 
algorithm. 

 
Figure 4. CC and PE results across multiple 
implementations of heterogeneous schedulers 
using OpenCL (OCL) and oneAPI (BUFF, USM).  

We have found that because DPC++ code is more 
compact and efficient to program than OpenCL, it is as 
much as five times easier to program than OpenCL. 
With a careful scheduling strategy, it only adds three to 
eight per cent overhead. 

Figure 5 shows results with MDP problems using 
three heterogeneous schedulers for CPU+GPU 
execution: HO uses a static partitioning strategy, HD a 
dynamic partitioning strategy, and HL an adaptive 
strategy. Each scheduler has an OpenCL (OCL) and 
oneAPI (ONE) version. TBB and OCL are CPU-only 
and GPU-only implementations, respectively, and the 
rest are CPU+GPU optimizations.  

To configure the best CPU+iGPU workload 
partition for HO-OCL, we apply brute force offline 
exploration and tune HO with problem-specific know-
how and optimizations. As a result, HO-OCL has no 
overhead, and the performance improvement is highest, 
but more painful and time-consuming to get it right. 
However, applications using the oneAPI 
Implementation of HL are extremely easy to code in 
comparison. We pay for productivity with some 
performance loss compared to HO-OCL due to the 
abstraction overhead. HD scheduler uses a strategy in 
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between HO and HL in terms of efficiency and ease of 
programming. 

 
Figure 5. Speedup and energy improvement 
results across multiple implementations of 
heterogeneous schedulers using OpenCL (OCL) 
and oneAPI (ONE) on the Kaby Lake platform.  

From the three scheduling strategies evaluated, 
static scheduling (HO) performs best in performance 
and energy efficiency, but it requires exhaustive offline 
searching. Adaptive scheduling provides good results 
with no previous training (HL), when using the USM 
approach to code the kernels and scheduler for large 
problem sizes. 

 
ENHANCING ONLINE PLANNING FOR POMDP  

Next, we apply these lessons learned from 
optimizing MDP planning with VI [12] to more 
complex decision-making procedures for POMDP 
agents. 

We enhance a state-of-the-art POMDP online 
planner, DESPOT-4 [11], by adding an efficient 
experience memory based on Bloom filters to it. This 
data structure is used to recall policies from experience 
with similarity search. In our preliminary evaluation, 
we compare the planning time of the baseline planner 
(baseline_p), DESPOT-4, and our proposal (recall_p). 

Figure 6 summarizes our preliminary results for 
two known benchmarks in the literature of robot 
navigation with POMDPs, Tag and RockSample [2]. 
The recall_p (yellow lines) is sequential and brings 
little to no improvement in the planning time compared 
to baseline_p (blue lines). Both use the maximum time 
available to search for the navigation action (one 
second) and obtain indistinguishably "good" policies in 
most experiments. 

Then we compare the results to other versions of the 
recall_p that implement the similarity search method 
with oneDPL. The recall_p_cpu implementation 

offloads the kernel to the multicore (green lines) and 
reacall_p_gpu to the integrated GPU (red lines). For the 
multicore implementation with oneDPL, we see a 2.5 
to 5 × reduction in the planning time, enabling real-
time performance for the evaluated benchmarks. 

 
Figure 6. POMDP planning time evaluation for 
baseline_p, recall_p, recall_p_cpu, and 
recall_p_gpu on Tiger Lake platform. On the X-
axis, we use as a timescale the planning 
timestep. Y-axis shows the planning time. 

By carefully setting the experience memory 
parameters, recall_p may converge in fewer time steps 
and produce a superior policy. For example, we have 
the Tag benchmark evaluation in Figure 6, where the 
robot tags its target in 16 moves (time steps or actions) 
when using our experience memory data structure. In 
comparison, baseline_p requires 21 moves, given the 
same scenario and initial conditions.  

 
SUMMARY OF RESULTS 

During the first development phase, we have 
evaluated three different programming models, 
including oneAPI using the DPC++ programming 
language for planning sequences of actions for mobile 
robot navigation. When the scheduling strategy is 
carefully selected, we have found DPC++ to be five 
times easier to program while incurring only three to 
eight per cent of overhead. 

In the second part, we take the lessons learned from 
optimizing Value Iteration for low-power execution 
and apply them to POMDPs—a more complex 
autonomous decision-making framework that accounts 
for all sources of uncertainty in the agent interaction 
with the environment. We propose a new method for 
online planning under uncertainty for POMDPs, 
Recall-Planner, that outperforms the state-of-the-art 
online planners for a set of benchmarks.  

A novelty of our solution is that it allows us to plan 
for large problems on low-power SoCs, and we actively 
seek to achieve energy efficiency and not just make 
code run fast. Also, we have created a set of robot 
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navigation benchmarks for testing decision-making for 
basic navigation to a goal. The source code is available 
on bitbucket [13]. 

 
CONCLUSION 
Memory and power are scarce for low-power 
embedded systems and mobile robotics computing. 
Despite this, applications often need close to real-time 
performance while balancing power use. In this work, 
we have presented some solutions for decision making 
in robotics using SoCs in low-power systems. We 
conclude that implementations based on oneAPI are 
more readable, shorter, and easier to debug. We think 
that a process or method that is compact, easy to 
understand and reproduce is far more valuable than a 
method that works slightly better at the cost of added 
complexity. In the short term, we hope this work will 
benefit developers who care about runtime 
performance and energy efficiency, as our ultimate 
goal is to make it feasible to develop intelligent agents 
and autonomous decision-making applications on 
mobile robots. 

FUTURE DIRECTIONS 
To date, we have covered the MDP category of 
decision-making problems and are working on 
POMDPs. Once we achieve this milestone, we will 
implement benchmarks on an AgileX Scout mobile 
robot. The resulting software will be made public on 
bitbucket.  
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