
 Volume 1 No. 1 January – March 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

Enabling Easier Programming of
Machine Learning Algorithms on
Robots with oneAPI Toolkits
Denisa Constantinescu, Angeles Navarro, Rafael Asenjo
Computer Architecture Dpt., University of Málaga

Juan-Antonio Fernández-Madrigal, Ana Cruz-Martín
System Engineering and Automation Dpt., University
of Málaga

Abstract—This work shows that it is feasible to solve large-scale decision-making problems for
robot navigation in real-time onboard low-power heterogeneous CPU+iGPU platforms. We can
achieve both performance and productivity by carefully selecting the scheduling strategy and
programming model. In particular, we remark that the oneAPI programming model creates new
opportunities to improve productivity, performance, and efficiency in low-power systems. Our
experimental results show that the implementations based on the oneAPI programming model
are up to 5× easier to program than those based on OpenCL while incurring only 3 to 8%
overhead for low-power systems.

¢ WHEN you think of oneAPI use cases that

leverage the performance of heterogeneous computing,
you might first envision powerful workstations and
multi-megawatt supercomputers loaded with big CPUs,
GPUs, and FPGAs training complex neural networks.
However, our team is working on the opposite end of
the spectre. This work explores solving problems in
systems that use compute-intensive reinforcement
learning (RL) algorithms optimized for battery-
powered heterogeneous computing devices.

We have focused for many years on productively
exploiting heterogeneous chips leveraging Intel®
Threading Building Blocks (TBB) as the orchestrating
framework and developing heterogeneous scheduling
strategies [7], [8]. So, the announcement of oneAPI was
immediately received in our group as an enticing
opportunity to raise the level of abstraction in our
implementations of heterogeneous schedulers. We see
oneAPI as a solid endorsement to SYCL and modern
C++ as the basis for the 'homogeneous programming of
heterogeneous platforms' idea.

Heterogeneous computing with multiple types of
processors can benefit large-scale and supercomputers
to embedded systems. However, with smaller systems
(as mobile robots), compute-intensive, automated
decision-making algorithms need to be efficient, and
schedulers need to be aware of energy consumption as
they assign tasks to different processor architectures to
optimize throughput. These aspects require new
approaches to optimizing solutions for low-power
systems, which we explore in this work.

Many automated planning and decision-making
algorithms rely on Markov Decision Processes (MDPs)
[1] and Partially Observable MDPs (POMDPs) [2].
MDPs and POMDPs describe how an intelligent agent
with a defined goal learns to make better decisions by
doing, even without knowing the map of its
environment. POMDP and MDP agents can cope with
uncertainty, such as not knowing what lies ahead or
whether their actions will be beneficial. The literature
shows that solving real-world problems for this kind of
agent is not considered for low-power platforms [3] and
computing an optimal solution for medium to large-

vipendya
Line

Constantinescu, D et al: Enabling Easier Programming…

FEEDFORWARD VOLUME 1, NUMBER 1 JANUARY – MARCH 2022

sized problems is intractable [4]. But the medium-large
scale problems include most of the practical
applications in autonomous robots, deep-space
navigation, search and rescue, inspection and repair,
toxic-waste cleanup, and much more.

Consequently, we focus our efforts on optimizing
decision-making and planning algorithms for mobile
robots (illustrated as the red boxes in Figure 1). This
niche would highly benefit from a solution for runtime
and energy-efficient implementation.

Figure 1. Decision making under uncertainty to
plan for the navigation of a mobile robot modelled
as a POMDP agent.

The primary source of uncertainty in a POMDP is
modeled by maintaining an information state called
belief, ! ∈ #, representing a probability distribution
over the state space $. In practice, a particle filter (the
yellow block in Figure 1) is used to implement a
recursive Bayesian filter to estimate the underlying
state %! of a dynamical system like this: !! = !(%!) ∝
*(+!|%!)∫ *(%!|%!"#, /!"#)!(%!"#)0%!"# [5]. Here, +! is
a sensor measurement and /! is the action or control
command; *(+!|%!) models the observations (from
sensors) while *(%!|%!"#, /!"#) describes the system's
dynamics (e.g., state transition due to actuators).

At any time 1, an MDP agent is in one of the possible
states, %!, which is known, while a POMDP agent only
knows its belief state estimate !!. Given either the
current state or the belief state, the agent must decide
for and execute the action /!, given a finite set of
possible actions. The chosen action is known as the
policy. Taking action /! results in an immediate reward
2! = 2(%!, /!) ∈ ℝ, and in a transition to state %!$# with
probability *(%!$#|%!, /!). After each transition, the
agent observes +!, and the process repeats until the
agent reaches its goal.

We aim to enable easy and feasible ways to
implement decision making on low-power mobile
platforms and focus on online planning under
uncertainty for practical applications, such as
autonomous driving and service robotics, that must run
on SoC mobile platforms. These applications often
have real-time execution constraints and run on battery-
powered platforms.

The main challenge is to keep the runtime and
energy performance in check while allowing the users

(programmers) to code solvers for decision-making
problems. Our proposed solution uses low-power
aware heterogeneous computing strategies, sparse data
structures to fit real-world size decision-making
problems on SoCs (System on Chip) with scarce
memory and computing resources, and oneAPI with
DPC++ programming [6].

DEVELOPING THE SOLUTION—NAVIGATING
NEW SPACES FOR MDP AGENTS

Our team has created new methods, memory-
efficient data structures, and low-power aware
heterogeneous computing schedulers [3], [7] to enable
an intelligent agent to act autonomously in
environments where the effects of its actions are not
deterministic (Figure 2). For example, a rover taking
samples from the surface of Mars may not know if a
sample is worth taking or if the direction of travel will
lead to worthy specimens. Or, a drone looking for
survivors trapped after a natural disaster may not know
if it is following a path that will eventually lead to a
person.

Figure 2. Robots must learn to navigate in
uncertain environments, such as those above,
using RL methods. We illustrate the configuration
of different navigation scenarios in V-REP
simulator (the black object is the robot) and how
we use the simulated experience to plan
navigation policies in new scenarios.

We start our journey with the Value Iteration (VI)
algorithm, commonly used in MDPs and a core kernel
in many RL methods, optimizing its data structures for
memory use and access. Then, we explore ways to
improve the performance of this planning and decision-
making algorithm. In the flow diagram from Figure 2,
the VI algorithm is represented by the red block
(planning algorithm).

State estimation
(particle filter)

Action selection
(online planner)

bt

at

ot

in
pu

t
ou

tp
ut

Robot simulation
experience

Log file

Model

Planning
algorithm

Navigation policy

Benchmark
parameters

Reward

Constantinescu, D et al: Enabling Easier Programming…

FEEDFORWARD VOLUME 1, NUMBER 1 JANUARY – MARCH 2022

Figure 3. Planning flow with a VI algorithm.

We explore different parallel implementation
strategies on low-power SoCs to improve the VI
runtime and energy use. We have initially implemented
multicore parallelism, using OpenMP and TBB [8], and
then included GPU accelerators programmed with
OpenCL. Finally, we have added heterogeneous
scheduling to balance and optimize the computing
resource utilization to minimize runtime and energy
consumption on the most resource-consuming kernel of
VI (Evaluate policy, in red), as shown in Figure 3.
We approach the heterogeneous scheduler code
development using three different programming
models: OpenCL (OCL), oneAPI with SYCL-style
buffers (BUFF) written in DPC++, and oneAPI with
unified shared memory (USM) written in DPC++.

EXPERIMENTAL SETUP
For the implementation, testing, and evaluation, we

use Intel® DevCloud and two local mobile CPU+iGPU
SoCs:
• Kaby Lake - A 1.6 GHz Intel® quad-core CPU i5-

8250U, featuring a UHD 620 integrated GPU
@300 MHz, 8GB of DDR4 and a TDP of 10 to 15
Watts. OS: Ubuntu 18.04.

• Tiger Lake - A 2.8 GHz Intel® quad-core CPU i7-
1165G7, featuring an Iris Xe integrated GPU @1.3
GHz, 16GB of LPDDR4x and a TDP of 12 to 28
Watts. OS: Ubuntu 20.04.

Our parallel implementations use OpenCL, TBB,
the oneAPI programming model, the Intel® oneAPI
Base Toolkit, and Intel® oneDPL. We have installed
the oneAPI DPC++ 2021.1 Compiler and the
corresponding Intel® NEO Graphics Drivers on each
platform. We measure energy use with PCM library
[9].

We have chosen Intel low-to-medium-power
processors as testbeds in our experiments because they
are energy-efficient and powerful enough to run at least
some AI benchmarks onboard a mobile robot. Besides,
the quality and ease of use of the Intel profiling,
debugging, and supporting tools now included in the
Intel® oneAPI toolkits—Intel® VTune™ Profiler,
Intel® Advisor and its Flow Graph Analyzer feature,
Intel® Inspector—add to the "productivity" factor that
we consider key to democratizing parallel and
heterogeneous programming.

EVALUATING THREE PROGRAMMING MODELS
The oneAPI programming model creates new

opportunities to improve performance and efficiency in
low-power systems. We implement three
heterogeneous schedulers for orchestrating CPU+GPU
execution and evaluate them for low-power use cases.

We use the Cyclomatic complexity (CC) and
Programming Effort (PE) metrics to measure how easy
(or difficult) it is to program a code [10] and show the
results in Figure 4. Higher values for CC and PE mean
it is more complicated for a programmer to code the
algorithm.

Figure 4. CC and PE results across multiple
implementations of heterogeneous schedulers
using OpenCL (OCL) and oneAPI (BUFF, USM).

We have found that because DPC++ code is more
compact and efficient to program than OpenCL, it is as
much as five times easier to program than OpenCL.
With a careful scheduling strategy, it only adds three to
eight per cent overhead.

Figure 5 shows results with MDP problems using
three heterogeneous schedulers for CPU+GPU
execution: HO uses a static partitioning strategy, HD a
dynamic partitioning strategy, and HL an adaptive
strategy. Each scheduler has an OpenCL (OCL) and
oneAPI (ONE) version. TBB and OCL are CPU-only
and GPU-only implementations, respectively, and the
rest are CPU+GPU optimizations.

To configure the best CPU+iGPU workload
partition for HO-OCL, we apply brute force offline
exploration and tune HO with problem-specific know-
how and optimizations. As a result, HO-OCL has no
overhead, and the performance improvement is highest,
but more painful and time-consuming to get it right.
However, applications using the oneAPI
Implementation of HL are extremely easy to code in
comparison. We pay for productivity with some
performance loss compared to HO-OCL due to the
abstraction overhead. HD scheduler uses a strategy in

Value Iteration Algorithm

Evaluate policy Improve policy
Check convergence

& update Ready?

no

yesheter_parallel_for parallel_for parallel_reduce
Optimal policy

0.E+00

5.E+05

1.E+06

2.E+06

2.E+06

3.E+06

0

10

20

30

40

50

60

VI-B
od

y-O
CL

VI-B
od

y-U
SM

VI-B
od

y-B
UFF

Sc
he

du
ler

-O
CL

Sc
he

du
ler

-U
SM

Tot
al-

OCL

Tot
al-

USM

Tot
al-

BU
FF

P
E

C
C

Cyclomatic Complexity (CC)
Programming Effort (PE)

Constantinescu, D et al: Enabling Easier Programming…

FEEDFORWARD VOLUME 1, NUMBER 1 JANUARY – MARCH 2022

between HO and HL in terms of efficiency and ease of
programming.

Figure 5. Speedup and energy improvement
results across multiple implementations of
heterogeneous schedulers using OpenCL (OCL)
and oneAPI (ONE) on the Kaby Lake platform.

From the three scheduling strategies evaluated,
static scheduling (HO) performs best in performance
and energy efficiency, but it requires exhaustive offline
searching. Adaptive scheduling provides good results
with no previous training (HL), when using the USM
approach to code the kernels and scheduler for large
problem sizes.

ENHANCING ONLINE PLANNING FOR POMDP

Next, we apply these lessons learned from
optimizing MDP planning with VI [12] to more
complex decision-making procedures for POMDP
agents.

We enhance a state-of-the-art POMDP online
planner, DESPOT-4 [11], by adding an efficient
experience memory based on Bloom filters to it. This
data structure is used to recall policies from experience
with similarity search. In our preliminary evaluation,
we compare the planning time of the baseline planner
(baseline_p), DESPOT-4, and our proposal (recall_p).

Figure 6 summarizes our preliminary results for
two known benchmarks in the literature of robot
navigation with POMDPs, Tag and RockSample [2].
The recall_p (yellow lines) is sequential and brings
little to no improvement in the planning time compared
to baseline_p (blue lines). Both use the maximum time
available to search for the navigation action (one
second) and obtain indistinguishably "good" policies in
most experiments.

Then we compare the results to other versions of the
recall_p that implement the similarity search method
with oneDPL. The recall_p_cpu implementation

offloads the kernel to the multicore (green lines) and
reacall_p_gpu to the integrated GPU (red lines). For the
multicore implementation with oneDPL, we see a 2.5
to 5 × reduction in the planning time, enabling real-
time performance for the evaluated benchmarks.

Figure 6. POMDP planning time evaluation for
baseline_p, recall_p, recall_p_cpu, and
recall_p_gpu on Tiger Lake platform. On the X-
axis, we use as a timescale the planning
timestep. Y-axis shows the planning time.

By carefully setting the experience memory
parameters, recall_p may converge in fewer time steps
and produce a superior policy. For example, we have
the Tag benchmark evaluation in Figure 6, where the
robot tags its target in 16 moves (time steps or actions)
when using our experience memory data structure. In
comparison, baseline_p requires 21 moves, given the
same scenario and initial conditions.

SUMMARY OF RESULTS

During the first development phase, we have
evaluated three different programming models,
including oneAPI using the DPC++ programming
language for planning sequences of actions for mobile
robot navigation. When the scheduling strategy is
carefully selected, we have found DPC++ to be five
times easier to program while incurring only three to
eight per cent of overhead.

In the second part, we take the lessons learned from
optimizing Value Iteration for low-power execution
and apply them to POMDPs—a more complex
autonomous decision-making framework that accounts
for all sources of uncertainty in the agent interaction
with the environment. We propose a new method for
online planning under uncertainty for POMDPs,
Recall-Planner, that outperforms the state-of-the-art
online planners for a set of benchmarks.

A novelty of our solution is that it allows us to plan
for large problems on low-power SoCs, and we actively
seek to achieve energy efficiency and not just make
code run fast. Also, we have created a set of robot

1.00

2.00

3.00

4.00

5.00

6.00

TBB
OCL

HO-O
CL

HD-O
CL

HL-O
CL

HO-O
NE

HD-O
NE

HL-O
NE

E
ne

rg
y

Im
pr

ov
em

en
t

SE
Q

 /
IM

P
LE

M
E

N
T

A
T

IO
N MDP8 MDP9 MDP10 MDP11

1.00

2.00

3.00

4.00

5.00

6.00

TBB
OCL

HO-O
CL

HD-O
CL

HL-O
CL

HO-O
NE

HD-O
NE

HL-O
NE

Sp
ee

du
p

SE
Q

 /
IM

P
LM

E
N

T
A

T
IO

N MDP8 MDP9 MDP10 MDP11

0
0.2
0.4
0.6
0.8

1
1.2
1.4

1 2 3 4 5 6 7

Ex
ec

ut
io

n
ti

m
e

(s
ec

on
ds

)

Time step

RockSample(7,8)

baseline_p recall_p recall_p_cpu recall_p_gpu

0
0.2
0.4
0.6
0.8

1
1.2
1.4

1 2 3 4 5 6 7 8 9 101112131415161718192021

Ex
ec

ut
io

n
ti

m
e

(s
ec

on
ds

)

Time step

Tag

Constantinescu, D et al: Enabling Easier Programming…

FEEDFORWARD VOLUME 1, NUMBER 1 JANUARY – MARCH 2022

navigation benchmarks for testing decision-making for
basic navigation to a goal. The source code is available
on bitbucket [13].

CONCLUSION
Memory and power are scarce for low-power
embedded systems and mobile robotics computing.
Despite this, applications often need close to real-time
performance while balancing power use. In this work,
we have presented some solutions for decision making
in robotics using SoCs in low-power systems. We
conclude that implementations based on oneAPI are
more readable, shorter, and easier to debug. We think
that a process or method that is compact, easy to
understand and reproduce is far more valuable than a
method that works slightly better at the cost of added
complexity. In the short term, we hope this work will
benefit developers who care about runtime
performance and energy efficiency, as our ultimate
goal is to make it feasible to develop intelligent agents
and autonomous decision-making applications on
mobile robots.

FUTURE DIRECTIONS
To date, we have covered the MDP category of
decision-making problems and are working on
POMDPs. Once we achieve this milestone, we will
implement benchmarks on an AgileX Scout mobile
robot. The resulting software will be made public on
bitbucket.

ACKNOWLEDGMENT
This work was supported in part by grants from TIN2016-
80920-R, PID2019-105396RB-I00, UMA18-FEDERJA-
108, UMA18-FEDERJA-113, and Intel.

¢ REFERENCES
1. Bellman R., "A Markovian Decision Process", Journal of

Mathematics and Mechanics. vol. 6, no. 5, pp. 679–684,
1957. (journal)

2. Pineau J., Gordon G., Thrun S., "Point-based value
iteration: An anytime algorithm for POMDPs", IJCAI,
pp. 1025–1032, Aug. 2003. (conference proceedings)

3. Constantinescu D.-A., Navarro A. et al., "Performance
evaluation of decision making under uncertainty for low
power heterogeneous platforms." J. Parallel Distrib.
Comput., vol. 137, pp. 119-133, 2020,
doi:10.1016/j.jpdc.2019.11.009. (journal)

4. Nicholas R., Gordon G., Thrun S., "Finding approximate
POMDP solutions through belief compression." J. Artif.
Intell., vol. 23, pp. 1-40, 2005. (journal)

5. Schön T. B. "Estimation of nonlinear dynamic systems:
Theory and applications", 2006. (Thesis or dissertation)

6. Reinders J., et al. "Data parallel C++: mastering DPC++
for programming of heterogeneous systems using C++
and SYCL", Springer Nature, 2021. (book)

7. Corbera F., Rodríguez A., Asenjo R., et al., "Reducing
overheads of dynamic scheduling on heterogeneous
chips", arXiv preprint arXiv:1501.03336, 2015. (PrePrint)

8. Voss M., Asenjo R., Reinders, J., "Pro TBB: C++ parallel
programming with threading building blocks", New
York: Apress., 2019. (book)

9. Processor Counter Monitor – PCM (Github). [Online].
Available: https://github.com/opcm/pcm (URL)

10. Dios A. J., Asenjo R., Navarro A., Corbera F., Zapata E.
L, "High-level template for the task-based parallel
wavefront pattern", 18th International Conference on
High Performance Computing, IEEE, pp. 1-10, 2011.
(conference proceedings)

11. Garg N.P., Hsu D., Lee W.S., "DESPOT-α: Online
POMDP planning with large state and observation
spaces", Robot.: Sci. Syst., 2019. (conference
proceedings)

12. Constantinescu D.-A., Navarro A., Corbera F., et al.,
"Efficiency and productivity for decision making on low-
power heterogeneous CPU+GPU SoCs." J.
Supercomput., vol. 77, no. 1, pp. 44-65, 2021,
doi:10.1007/s11227-020-03257-3. (journal)

13.Sourcecode (Bitbucket). [Online]. Available:
https://bitbucket.org/corbera/vi-mdp/src/oneAPI/ (URL)

Authors Biographies

Denisa Constantinescu is a PhD candidate in
Mechatronics at the University of Malaga and an
oneAPI Innovator. She has been PI of two research
projects and has collaborated on five other projects.
Ms. Constaninescu has co-authored 2 book
chapters, and 2 journal papers and 12 conference
communications. She received the "2021 SCIE-
ZONTA Award in Informatics" from The Spanish
Computing Scientific Society (SCIE) and the "Intel
Innovator Award" for the project "Efficiency and
Productivity for Decision-making on Mobile SoCs" in
2020. Her research interests include heterogeneous
programming models, optimization, decision
making, and mobile robotics. Contact her at
dencon@uma.es.

Rafael Asenjo is Professor of Computer Architecture
at the University of Malaga. He obtained a PhD in
Telecommunication Engineering in 1997. His
research interests include programming models,
parallel programming, heterogeneous computing,
parallelization of irregular codes and energy
consumption. He has participated in 19 research
projects and two research contracts, published in 33
international journals indexed in the JCR, 11
contributions to IEEE and ACM "Core A"
conferences, 4 Keynotes, 9 book chapters and 40
international conferences. He served as General
Chair for ACM PPoPP'16 and as an
Organization Committee member and a Program
Committee member for several HPC related
conferences (PPoPP, SC, PACT, IPDPS, HPCA,
EuroPar, and SBAC-PAD). Along with Michael Voss
and James Reinders, he co-authored the latest book
on Threading Building Blocks (Pro TBB). He is a
oneAPI Innovator, SYCL Advisory Panel member
and ACM member. Contact him at asenjo@uma.es.

Angeles Navarro is full professor at the Department
of Computer Architecture of the University of
Malaga, Spain, since 2019. She received a PhD in
Computer Science from the University of Malaga in
2000. She has been PI of several regional projects
and has collaborated with national and European
projects. Dr. Navarro has co-authored more than 90
papers, and 2 patents. She has served as a program
committee member for several IEEE/ACM High-
Performance Computing related conferences, as
PPoPP, SC, ICS, PACT, IPDPS, ICPP, ISPA. She is
the co-leader of the Parallel Programming Models
and Compilers group at the University of Malaga.

Constantinescu, D et al: Enabling Easier Programming…

FEEDFORWARD VOLUME 1, NUMBER 1 JANUARY – MARCH 2022

Her research interests are in programming models
for heterogeneous systems, analytical modelling,
compiler, and runtime optimizations. Contact her at
angeles@ac.uma.es.

Juan-Antonio Fernández-Madrigal is full professor at
the System Engineering and Automation Dpt. of the
University of Málaga. He received a PhD in
Computer Science in 2000. He has worked on local,
regional, national and UE robotics research projects
since 1996, has 40 journal publications, 3
monographies, more than 70

 conference communications and 6 patents. He has
an H-index of 31 according to Google Scholar and
has supervised a number of PhD theses on mobile
robotics and cognitive robotics. His interests include
mobile robotics, decision making, bayesian
inference and cognitive robotics. Contact him at
jafernandez@uma.es.

Ana Cruz-Martín is an associate professsor with the
System Engineering and Automation Dpt. of the
University of Málaga. She received the PhD in
Computer Science in 2004. She has worked on local,
regional, national and UE robotics research
projects, which have led to several journal and
conferences publications. Her research lines mainly
involve educational robotics and machine learning
techniques applied to mobile robotics. Contact her
at acm@uma.es

Upcoming Event: Chapter
Open House

