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Neural Networks

"Where is my cat?" "Где моя кошка?"

A NEURAL NETWORK POPULAR APPLICATIONS

"Thumbs up!!!11 :)" fake account!



A machine learning framework 
that provides a seamless path 
from research to production.

PyTorch



PyTorch
def foo(x, t): 
  y = x.mm(x) 
  print(y) # still works! 
  return y + t 

x = torch.Tensor([[1,2],[3,5]]) 
y = torch.Tensor([[3,7],[1,2]]) 
foo(x, y) 

Add

MatMul

x

y

DEFINE-BY-RUN



ML at scale
• Facebook has billions of active users. 
• Many services at Facebook use AI. 
• NNs require lots of compute power.  
• CPUs and GPUs are not efficient.



• CPUs and GPUs work hard to extract parallelism.

• Matrix operations are very regular and expose lots of 
parallelism. Easy to accelerate.

• No need to waste power/area on useless features. 

CPUs and GPUs are inefficient



• Have many arithmetic execution units.

• Use dedicated local memories.

• Reduce the arithmetic bit-widths.

• Use a specialized programming model.

Accelerators are efficient because they are specialized

*Computer Architecture: A Quantitative Approach. [Hennessy, Patterson]. Chapter 7.



Facebook is building ML hardware acceleration 
ecosystem with partners using the Glow compiler.



Glow Compiler Design

Glow Core
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Quantizer

ONNX

PyTorch
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High-level 
optimizer

Low-level 
optimizer

Accelerator 
backend

Target 
IRIRGraph

Performs high-level graph 
optimizations.  Focus on 

linear-algebra kind of 
optimizations.

Performs low-level IR 
optimizations. Focus on 

buffer and memory reuse 
optimizations.

Performs target-specific 
lowering and optimizations for 

specific accelerator.

Compilation pipeline
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• Static-shaped data-flow graph. 
• Enables high-level domain-specific 

optimizations.
• Example: Change the matrix layout, merge 

batchnorm into conv, eliminate numeric re-scale.

High-Level Graph
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• Linear instruction-based address-only representation.
• Operands are typed pointers to buffers.
• Memory optimizations:

Instruction scheduling,
Buffer sharing,
shortening buffer lifetime.

Low-Level Instructions

declare {
  %input = WeightVar float<10 x 5000> mutable
  %rnn_initial_state = WeightVar float<10 x 20> mutable
  %rnn_Whh = WeightVar float<20 x 20> mutable
 %result = WeightVar float<100 x 500> mutable

}
program {
  %X_0 = allocactivation  { Ty: float<10 x 500>}
  %X_01 = extracttensor @out %X_0, @in %input { Offsets: [0, 0]}
  %mergeLHS11 = allocactivation  { Ty: float<100 x 500>}
  %mergeLHS111 = splat @out %mergeLHS11 { Value: 0.000000e+00}
  %mergeLHS112 = inserttensor @inout %mergeLHS11, @in %X_0 { Offsets: [0, 0], Count: 1, Axis: 0}
  %bigMatMul1_res = allocactivation  { Ty: float<100 x 20>}
  %bigMatMul1 = matmul @out %bigMatMul1_res, @in %mergeLHS11, @in %rnn_Wxh
  %dealloc10 = deallocactivation @out %mergeLHS11
  %mergedBA = batchedadd @out %bigMatMul1_res, @in %bigMatMul1_res, @in %rnn_Bxh
  %rnn_add_0_res = allocactivation  { Ty: float<10 x 20>}
  %fc_dot = matmul @out %rnn_add_0_res, @in %rnn_initial_state, @in %rnn_Whh
  %fc_add_bias = batchedadd @out %rnn_add_0_res, @in %rnn_add_0_res, @in %rnn_Bhh
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• ML frameworks support hundreds of op kinds, 
implemented in C and CUDA.

• Writing hundreds of ops for accelerators isn’t scalable.
• Glow lowers complex high-level nodes into primitive 

nodes.

Graph Lowering

BEFORE AFTER
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• Graph Nodes are classes with many methods: ctor, 
hash, set/get, compare, clone, print, etc. 

• Instead of writing the methods in C++ we auto-
generate them.

Automatic Node Generation

CONVOLUTION NODE DEFINITION
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• Neural networks are resilient and can work with 
reduced bit-width (i8, fp16 instead of fp32).

• Quantization is the process of converting the network to 
integer arithmetic.

• Represent a range of real numbers using integers.

Quantization

-1.4 +2.3

256 integers span this range

real = (integer - offset) * scale
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• Glow uses profile-guided quantization to estimate the 
range of each edge in the graph.

• Compiler optimizations eliminate numeric scale-
conversion between nodes.

Profile Guided Quantization

range: -0.5 .. 1.1

range: -1.3 .. 1.4



• Significantly better performance vs an interpreter 
• Eliminates the dispatching overhead 
• Performs target-specific optimizations 
 

• Just-in-time information allows for better compiler decisions & optimizations 
• Vendor libraries already JIT (CUDA, dnnMKL, libxssm), but one operator at a time 
• JITting the whole graph gives the compiler even more opportunities 
 

• Ability to specialize based on the concrete NN model 
• Most shapes, types and sometimes addresses of memory buffers are constants at the time of JIT 

compilation 
• JIT can produce a tailor-made optimized code for the specific values/shapes of some/all parameters 
• Easy for a JIT, but not possible to achieve using any general-purpose libraries!

Why JIT?



Glow JIT implementation
• CPU backend/JIT is LLVM-based 

• Leverages the LLVM's optimizer, code generator and ORC JIT APIs 

• Glow low-level IR is translated into LLVM IR and then LLVM backend produces optimized 
executable code 

• A set of specialized optimized math kernels is needed for good performance 
• Generating such kernels manually by creating the LLVM IR is very time-consuming and 

error-prone 
• Instead, Glow uses a library of math kernels ("libjit") written in C and pre-compiled into 

LLVM  bitcode 
• Easy to extend, saves a lot of time and effort



LLVM Module

LLVM Optimizer 
(DCE, constant 
prop, inlining, 

vectorization, etc)

LLVM 
CodeGen

Glow low-level 
IR

Glow math 
kernels C 

library 
"libjit"

LLVM bitcode 
for libjit

 Stacking of kernels Function 
specialization 

GLOW'S CUSTOM LLVM PASSES

COMPILE 
GLOW

COMPILE 
CLANG

IMPORT

CPU/JIT design



Function specialization
• Specializes library kernels for constant parameters 
• Tensor shapes and many other parameters are compile-time constants 
• Produces a cloned LLVM IR function where the values of constant parameters are substituted 
• Specialization leads to much better performance

UNSPECIALIZED CODE SPECIALIZED CODE

SPECIALIZE FOR N == 256

✓ Runtime checks are eliminated 
✓ Control flow is simplified 
✓ Smaller code 
✓ Faster execution

int argmax(float *arr, int n) {

  float maxVal = arr[0];

  int maxPos = 1;

  for (int i = 1; i < n; ++i) {

     if (arr[i] < maxVal) {

        maxVal = arr[i];

        maxPos = i;

     }

  }

  return maxPos;

}

EXAMPLE OF AN OPERATION



 Stacking of kernels
• Many tensor operations are element-wise, e.g. add, max, mul 

• There are often chains of such operations like sub(z, mul( x, y)) 
• Sequential execution of these operations traverses the whole tensor every time and trashes 

the cache

for (unsigned i = 0; i < n; ++i) { 
   dest1[i] = lhs1[i] * rhs[i]; 
} 

for (unsigned i = 0; i < n; ++i) { 
   dest2[i] = lhs2[i] - dest1[i]; 
}

for (unsigned i = 0; i < n; ++i) { 
   float tmp1 = lhs1[i] * rhs[i]; 
   dest1[i] = tmp; 
   dest2[i] = lhs2[i] - tmp1; 
 } 

MULTIPLE KERNELS DOING TENSOR TRAVERSALS SINGLE KERNEL DOING TENSOR TRAVERSAL

KERNEL STACKING

• Instead, Glow generates LLVM IR for a stacked kernel where all those operations are 
performed on each element of a tensor during a single tensor traversal



AOT and debugging support
• Ahead-of-time (AOT) compilation 

• Save the LLVM generated machine 
code for a NN model as a self-
contained object file 

• Interesting e.g. for deployments on 
mobile and memory-constrained 
devices

• Debugging support 
• Glow emits LLVM debug information 

for NN models 
• Debugging is done in terms of Glow IR 

instead of machine code

AN EXAMPLE OF A DEBUGGING SESSION USING LLDB



Memory management for HW accelerators
• Accelerators have many processing elements (PEs) 
• Usually no caches, no out-of-order execution 
• Accelerators have multiple memory banks with different properties in terms of size and 

access speed: DRAM, SRAM, scratchpads, etc 
• Memory in all memory banks needs to be managed explicitly 
• Data transfers between some memory banks is possible only by means of explicit DMA 

commands 
• Instructions may have requirements on the memory banks to be used for their operands and 

on the memory layout of their operands



Static memory allocation 
• Memory can’t be ‘malloc’-ed on the HW accelerator 
• Glow compiler has to manage and allocate the on-device memory 

statically 
• Allocation is performed for each memory bank 

• Live buffers are allocated and freed.  
• Scheduler and IR optimizer reduce memory pressure and shorten 

buffers lifetime.



Memory management strategy
• Ensure that buffer operands are loaded into the required memory banks, usually into fast 

scratchpads 
• Try to keep data in fast memory banks as long as possible 
• Evict data from fast memory banks only if it cannot be avoided 

• Often involves explicit DMA transfers 
• Minimize the cost of evictions, i.e. slow data transfers between memory banks

• The analogy is: buffers ==  virtual registers, fast memory banks == physical registers, eviction from fast 
memory banks == register spilling 

• But there are differences: 
• Buffers have different varying sizes 
• Evicting buffers from fast memory banks is expensive,  often involves DMA data transfers 

• Cost of eviction is proportional to the amount of data to be transferred!

Sounds familiar??? Yes, it is rather similar to register allocation!!!



How to achieve the best performance?

• Keep the processing elements always busy  
• Hide latency of memory accesses 

• Use pre-fetching 
• Intermix data-fetching and computation 

• Partition data to fit into accelerator's memory 
banks and process it in parallel 
• e.g. scatter/gather approach 

• Reduce the amount of data transfers 
• Between accelerator RAM and fast memory 

banks 
• Between the host and accelerator RAM 

• Use a good scheduling algorithm

Set DMA mode to stride [0x0, 0x0, 0x400, 0x400, 0x0, 0x0] 
Start DMA request for block #1 into SRAM address 0xA000 
Start DMA request for block #2 into SRAM address 0x0B800 
Start DMA request for block #3 into SRAM address 0xFF0000 
Configure the state of activation unit to 'RELU' 
Wait for #1 and #2 
Start Matrix Multiplication on #1 and #2 to SRAM 0xD0000 
Wait for #3 
Start Matrix Multiplication on #1 and #3 to SRAM 0xD0400 
Start DMA request for block #4 into address SRAM 0xFF0000 
Wait for #4 
Start Matrix Multiplication on #1 and #4 to SRAM 0xA0400 
Configure the state of activation unit to lookup table from 
address SRAM 0xB0400 

EXAMPLE: POSSIBLE CODE TO PERFORM CONVOLUTION



Glow

• Glow is a machine learning compiler for accelerators. 
• We are working with hardware partners on opening ML acceleration. 
• We rely on LLVM in many parts of the compiler. 
• Lot's of hard problems to solve.  Facebook is hiring.  ;)



https://arxiv.org/abs/1805.00907

arXiv publication 
Glow: Graph Lowering Compiler Techniques for Neural Networks

@Scale 2018 Keynote 
Glow: A community-driven approach to AI
https://atscaleconference.com/videos/scale-2018-keynote-glow-a-community-driven-approach-to-ai/

Participate on GitHub 
Glow: Compiler for Neural Network Hardware Accelerators
https://github.com/pytorch/glow

https://arxiv.org/abs/1805.00907
https://atscaleconference.com/videos/scale-2018-keynote-glow-a-community-driven-approach-to-ai/
https://github.com/pytorch/glow
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