
Graph Lowering Compiler for
Hardware AcceleratorsGlow

Nadav Rotem
FACEBOOK

PyTorch

 2

Neural Networks

"Where is my cat?" "Где моя кошка?"

A NEURAL NETWORK POPULAR APPLICATIONS

"Thumbs up!!!11 :)" fake account!

A machine learning framework
that provides a seamless path
from research to production.

PyTorch

PyTorch
def foo(x, t):
 y = x.mm(x)
 print(y) # still works!
 return y + t

x = torch.Tensor([[1,2],[3,5]])
y = torch.Tensor([[3,7],[1,2]])
foo(x, y)

Add

MatMul

x

y

DEFINE-BY-RUN

ML at scale
• Facebook has billions of active users.
• Many services at Facebook use AI.
• NNs require lots of compute power.
• CPUs and GPUs are not efficient.

• CPUs and GPUs work hard to extract parallelism.

• Matrix operations are very regular and expose lots of
parallelism. Easy to accelerate.

• No need to waste power/area on useless features.

CPUs and GPUs are inefficient

• Have many arithmetic execution units.

• Use dedicated local memories.

• Reduce the arithmetic bit-widths.

• Use a specialized programming model.

Accelerators are efficient because they are specialized

*Computer Architecture: A Quantitative Approach. [Hennessy, Patterson]. Chapter 7.

Facebook is building ML hardware acceleration
ecosystem with partners using the Glow compiler.

Glow Compiler Design

Glow Core
Optimizer

Quantizer

ONNX

PyTorch

C++ API
CodeGen

Backend A

Backend B

Backend C

CPU Backend

TARGET-SPECIFIC
CODE GENERATOR

PGO ...

COMPILER
INPUTS

High-level
optimizer

Low-level
optimizer

Accelerator
backend

Target
IRIRGraph

Performs high-level graph
optimizations. Focus on

linear-algebra kind of
optimizations.

Performs low-level IR
optimizations. Focus on

buffer and memory reuse
optimizations.

Performs target-specific
lowering and optimizations for

specific accelerator.

Compilation pipeline

 11

• Static-shaped data-flow graph.
• Enables high-level domain-specific

optimizations.
• Example: Change the matrix layout, merge

batchnorm into conv, eliminate numeric re-scale.

High-Level Graph

 12

• Linear instruction-based address-only representation.
• Operands are typed pointers to buffers.
• Memory optimizations:

Instruction scheduling,
Buffer sharing,
shortening buffer lifetime.

Low-Level Instructions

declare {
 %input = WeightVar float<10 x 5000> mutable
 %rnn_initial_state = WeightVar float<10 x 20> mutable
 %rnn_Whh = WeightVar float<20 x 20> mutable
 %result = WeightVar float<100 x 500> mutable

}
program {
 %X_0 = allocactivation { Ty: float<10 x 500>}
 %X_01 = extracttensor @out %X_0, @in %input { Offsets: [0, 0]}
 %mergeLHS11 = allocactivation { Ty: float<100 x 500>}
 %mergeLHS111 = splat @out %mergeLHS11 { Value: 0.000000e+00}
 %mergeLHS112 = inserttensor @inout %mergeLHS11, @in %X_0 { Offsets: [0, 0], Count: 1, Axis: 0}
 %bigMatMul1_res = allocactivation { Ty: float<100 x 20>}
 %bigMatMul1 = matmul @out %bigMatMul1_res, @in %mergeLHS11, @in %rnn_Wxh
 %dealloc10 = deallocactivation @out %mergeLHS11
 %mergedBA = batchedadd @out %bigMatMul1_res, @in %bigMatMul1_res, @in %rnn_Bxh
 %rnn_add_0_res = allocactivation { Ty: float<10 x 20>}
 %fc_dot = matmul @out %rnn_add_0_res, @in %rnn_initial_state, @in %rnn_Whh
 %fc_add_bias = batchedadd @out %rnn_add_0_res, @in %rnn_add_0_res, @in %rnn_Bhh

 13

• ML frameworks support hundreds of op kinds,
implemented in C and CUDA.

• Writing hundreds of ops for accelerators isn’t scalable.
• Glow lowers complex high-level nodes into primitive

nodes.

Graph Lowering

BEFORE AFTER

 14

• Graph Nodes are classes with many methods: ctor,
hash, set/get, compare, clone, print, etc.

• Instead of writing the methods in C++ we auto-
generate them.

Automatic Node Generation

CONVOLUTION NODE DEFINITION

 15

• Neural networks are resilient and can work with
reduced bit-width (i8, fp16 instead of fp32).

• Quantization is the process of converting the network to
integer arithmetic.

• Represent a range of real numbers using integers.

Quantization

-1.4 +2.3

256 integers span this range

real = (integer - offset) * scale

 16

• Glow uses profile-guided quantization to estimate the
range of each edge in the graph.

• Compiler optimizations eliminate numeric scale-
conversion between nodes.

Profile Guided Quantization

range: -0.5 .. 1.1

range: -1.3 .. 1.4

• Significantly better performance vs an interpreter
• Eliminates the dispatching overhead
• Performs target-specific optimizations 
 

• Just-in-time information allows for better compiler decisions & optimizations
• Vendor libraries already JIT (CUDA, dnnMKL, libxssm), but one operator at a time
• JITting the whole graph gives the compiler even more opportunities 
 

• Ability to specialize based on the concrete NN model
• Most shapes, types and sometimes addresses of memory buffers are constants at the time of JIT

compilation
• JIT can produce a tailor-made optimized code for the specific values/shapes of some/all parameters
• Easy for a JIT, but not possible to achieve using any general-purpose libraries!

Why JIT?

Glow JIT implementation
• CPU backend/JIT is LLVM-based 

• Leverages the LLVM's optimizer, code generator and ORC JIT APIs 

• Glow low-level IR is translated into LLVM IR and then LLVM backend produces optimized
executable code 

• A set of specialized optimized math kernels is needed for good performance
• Generating such kernels manually by creating the LLVM IR is very time-consuming and

error-prone
• Instead, Glow uses a library of math kernels ("libjit") written in C and pre-compiled into

LLVM bitcode
• Easy to extend, saves a lot of time and effort

LLVM Module

LLVM Optimizer
(DCE, constant
prop, inlining,

vectorization, etc)

LLVM
CodeGen

Glow low-level
IR

Glow math
kernels C

library
"libjit"

LLVM bitcode
for libjit

 Stacking of kernels Function
specialization

GLOW'S CUSTOM LLVM PASSES

COMPILE
GLOW

COMPILE
CLANG

IMPORT

CPU/JIT design

Function specialization
• Specializes library kernels for constant parameters
• Tensor shapes and many other parameters are compile-time constants
• Produces a cloned LLVM IR function where the values of constant parameters are substituted
• Specialization leads to much better performance

UNSPECIALIZED CODE SPECIALIZED CODE

SPECIALIZE FOR N == 256

✓ Runtime checks are eliminated
✓ Control flow is simplified
✓ Smaller code
✓ Faster execution

int argmax(float *arr, int n) {

 float maxVal = arr[0];

 int maxPos = 1;

 for (int i = 1; i < n; ++i) {

 if (arr[i] < maxVal) {

 maxVal = arr[i];

 maxPos = i;

 }

 }

 return maxPos;

}

EXAMPLE OF AN OPERATION

 Stacking of kernels
• Many tensor operations are element-wise, e.g. add, max, mul

• There are often chains of such operations like sub(z, mul(x, y))
• Sequential execution of these operations traverses the whole tensor every time and trashes

the cache

for (unsigned i = 0; i < n; ++i) {
 dest1[i] = lhs1[i] * rhs[i];
}

for (unsigned i = 0; i < n; ++i) {
 dest2[i] = lhs2[i] - dest1[i];
}

for (unsigned i = 0; i < n; ++i) {
 float tmp1 = lhs1[i] * rhs[i];
 dest1[i] = tmp;
 dest2[i] = lhs2[i] - tmp1;
 }

MULTIPLE KERNELS DOING TENSOR TRAVERSALS SINGLE KERNEL DOING TENSOR TRAVERSAL

KERNEL STACKING

• Instead, Glow generates LLVM IR for a stacked kernel where all those operations are
performed on each element of a tensor during a single tensor traversal

AOT and debugging support
• Ahead-of-time (AOT) compilation

• Save the LLVM generated machine
code for a NN model as a self-
contained object file

• Interesting e.g. for deployments on
mobile and memory-constrained
devices

• Debugging support
• Glow emits LLVM debug information

for NN models
• Debugging is done in terms of Glow IR

instead of machine code

AN EXAMPLE OF A DEBUGGING SESSION USING LLDB

Memory management for HW accelerators
• Accelerators have many processing elements (PEs)
• Usually no caches, no out-of-order execution
• Accelerators have multiple memory banks with different properties in terms of size and

access speed: DRAM, SRAM, scratchpads, etc
• Memory in all memory banks needs to be managed explicitly
• Data transfers between some memory banks is possible only by means of explicit DMA

commands
• Instructions may have requirements on the memory banks to be used for their operands and

on the memory layout of their operands

Static memory allocation
• Memory can’t be ‘malloc’-ed on the HW accelerator
• Glow compiler has to manage and allocate the on-device memory

statically
• Allocation is performed for each memory bank

• Live buffers are allocated and freed.
• Scheduler and IR optimizer reduce memory pressure and shorten

buffers lifetime.

Memory management strategy
• Ensure that buffer operands are loaded into the required memory banks, usually into fast

scratchpads
• Try to keep data in fast memory banks as long as possible
• Evict data from fast memory banks only if it cannot be avoided

• Often involves explicit DMA transfers
• Minimize the cost of evictions, i.e. slow data transfers between memory banks

• The analogy is: buffers == virtual registers, fast memory banks == physical registers, eviction from fast
memory banks == register spilling

• But there are differences:
• Buffers have different varying sizes
• Evicting buffers from fast memory banks is expensive, often involves DMA data transfers

• Cost of eviction is proportional to the amount of data to be transferred!

Sounds familiar??? Yes, it is rather similar to register allocation!!!

How to achieve the best performance?

• Keep the processing elements always busy
• Hide latency of memory accesses

• Use pre-fetching
• Intermix data-fetching and computation

• Partition data to fit into accelerator's memory
banks and process it in parallel
• e.g. scatter/gather approach

• Reduce the amount of data transfers
• Between accelerator RAM and fast memory

banks
• Between the host and accelerator RAM

• Use a good scheduling algorithm

Set DMA mode to stride [0x0, 0x0, 0x400, 0x400, 0x0, 0x0]
Start DMA request for block #1 into SRAM address 0xA000
Start DMA request for block #2 into SRAM address 0x0B800
Start DMA request for block #3 into SRAM address 0xFF0000
Configure the state of activation unit to 'RELU'
Wait for #1 and #2
Start Matrix Multiplication on #1 and #2 to SRAM 0xD0000
Wait for #3
Start Matrix Multiplication on #1 and #3 to SRAM 0xD0400
Start DMA request for block #4 into address SRAM 0xFF0000
Wait for #4
Start Matrix Multiplication on #1 and #4 to SRAM 0xA0400
Configure the state of activation unit to lookup table from
address SRAM 0xB0400

EXAMPLE: POSSIBLE CODE TO PERFORM CONVOLUTION

Glow

• Glow is a machine learning compiler for accelerators.
• We are working with hardware partners on opening ML acceleration.
• We rely on LLVM in many parts of the compiler.
• Lot's of hard problems to solve. Facebook is hiring. ;)

https://arxiv.org/abs/1805.00907

arXiv publication
Glow: Graph Lowering Compiler Techniques for Neural Networks

@Scale 2018 Keynote
Glow: A community-driven approach to AI
https://atscaleconference.com/videos/scale-2018-keynote-glow-a-community-driven-approach-to-ai/

Participate on GitHub
Glow: Compiler for Neural Network Hardware Accelerators
https://github.com/pytorch/glow

https://arxiv.org/abs/1805.00907
https://atscaleconference.com/videos/scale-2018-keynote-glow-a-community-driven-approach-to-ai/
https://github.com/pytorch/glow

Thank you

