Compilers and Beyond:
Research towards enhancing the design
productivity for FPGA ML applications

Daniel Holanda Noronha and Steve Wilton
University of British Columbia, Vancouver, Canada
danielhn@ece.ubc.ca, stevew@ece.ubc.ca

March 4th 2019

IEEE Silicon Valley Machine Learning Compiler Workshop ﬂ
Milpitas, CA

UBC| THE UNIVERSITY
fwﬂ OF BRITISH COLUMBIA

What is this talk about

A compiler is not enough: Engineers expect a complete ecosystem to design complex
machine learning circuits.
® Ongoing research project towards such an ecosystem

PYTORCH @
Language Caffe2 C

‘o ompiler
¢ Caffe

Tensor!

Overview of today's talk

e Introduction - Using FPGAs for ML

e LeFlow - Going from Tensorflow to Verilog @
-

O General flow of our tool-kit Tensor

O Tuning performance

o Examples, Limitations and Opportunities

e On-chip debug of ML circuits L LLLLLILLLL _—
X Ui Analysis Tool
. . X ser Circul
o Existing debug flows 5
|
. . I d . f t Instrumentation
O Creating specialized instruments for]

debugging ML circuits

Introduction - Using FPGAs for Machine Learning

Introduction - Using FPGAs for Machine Learning

Deep learning has emerged as an important application area for FPGAs
e Often faster than software and less power than GPU
® Cloud computing -> More designers to take advantage of FPGAs

Microsoft Catapult
e Started with 1,600 FPGA-enabled servers (2014)
e Today: Hundreds of thousands of FPGAs (15 countries, 5 continents)
® Project Brainwave
o Offers real-time Al serving in the cloud
o Pre-trained DNN models with high efficiencies at low batch sizes

Introduction - Using FPGAs for Machine Learning

Problem with FPGAs:
® Designing such applications is challenging
e Not many people cando it

Hardware experts Machine learning

N\ / experts

Machine learning
Hardware developers

Introduction - Using FPGAs for Machine Learning

Design flow for an FPGA machine learning accelerator Done by Machine
Learning experts
e Step 1- Software model implemented using high-level framework

O Abstraction of implementation details

o Understand the required network size, convergence rate, etc.

Done by

e Step 2 - Map the network to a hardware implementation. Hardware experts

o Often done manually, by writing C or RTL code
o Time consuming and requires hardware design expertise

Our solution (research prototype):
LeFlow: FPGA High-Level Synthesis of Tensorflow Deep Neural Networks

LeFlow - Going from Tensorflow to Verilog

Introduction - Overview

LeFlow

® Uses Google’s XLA compiler which emits LLVM code directly from Tensorflow
® LLVM code transferred to HLS tool to automatically generate hardware
e Allows rapid prototype of machine learning algorithms on FPGAs
® Not as efficient as hand-optimized hardware design
0 Compelling for a large number of design scenarios

O May open the door for hardware acceleration to many domain experts

e Demonstrated using LegUp, but may be suitable for many other HLS tools

Introduction - Overview

Pull requests Issues Marketplace Explore

LeFlow

danielholanda / LeFlow ® Unwatch- 19 « Star 153 ¥ Fork | 27
¢ Code Issues 0 Pull requests 1 Projects 0 Wiki Insights Settings

. CO m p I ete Iy O pe n'SO U rce Enabling Flexible FPGA High-Level Synthesis of Tensorflow Deep Neural Networks Edit
e Available on GitHub e

1 52 commits i 1 branch < 0 releases 1t 5 contributors 4 View license

Branch: master - New pull request Create new file Upload files Find file _E

1 santacml and danielholanda Added support for reduce operation Latest commit 1flec@a 15 days ago

(#14)
i examples Added new demo video 4 months ago
mimg Added new demo 3 months ago
i src Added support for reduce operation (#14) 15 days ago
i test Removed matplotlib to fix issue #2 6 months ago
E) LICENSE.md Updated License 8 months ago
£ README.md Updated README file 2 menths ago
README.md ra
«LeFlow

LeFLow is an open-source tool-flow that maps numerical computation models written in Tensorflow to
synthesizable hardware. Our flow bridges Google's XLA compiler LegUp high-level synthesis tool to
automatically generate verilog from a Tensorflow specification.

See publication here: https://arxiv.org/abs/1807.05317.

Demo Videos

LeFlow Tool-kit - Overall Flow

e Open source library for numerical computation
e Nodes represent mathematical operations, edges represent

™
|‘ tensors
Tensor e Extensive support for Deep Learning algorithms
e XLA: a domain-specific compiler for linear algebra
e Open source HLS tool developed at the University of Toronto P
e LegUp can synthesize most of the C language to hardware ==
e LegUp

e Uses LLVM compiler infrastructure

LeFlow Tool-kit - Overall Flow

Python code

Ccode e The user creates a design in Python using Tensorflow
Tensor

°:’L‘L'ca',"“ e Use XLA compiler to generate an LLVM intermediate
representation (IR)

LeFlow

W e LeFlow performs several transformations to the IR (will
be described soon)

constraints

e LLVM IR can then be read as an input to a HLS tool,
v ' which generates a hardware description in Verilog.

RTL
Generation

Synthesizable Verilog :
' 12

LeFlow Tool-kit - Creating a Stand-Alone Hardware Unit

e Handling inputs and outputs

Clk —»)

Top-level Module

Memory
Controller

[

Reset —»

Start —)\

Memory

Main Module ——__|

—>»Finish

—~»Return_val
32

o

o

o

o

XLA generates IR that is written in a software-like way

LeFlow remaps this IR to make it more suitable for
generating hardware

Inputs to the network are stored in on-chip memory

LeFlow also takes special care to avoid those
memories from being optimized away

13

LeFlow Tool-kit - Handling Unsupported Kernels

e Each particular Tensorflow operation can be transformed to IR in many different ways
e The best way to generate IR depends on the several factors

e XLA handles this design problem by implementing multiple kernels for a single
operation and selecting them according to the problem at compile time.

~
Kernel1 ——

Kernel 2 ——>

Ways to
generate Kemel 3 Choose the
IR for the Kernel4 ——> kernel —> Selected Kernel

operation Kernel 5 —>

KernelN ——>

14

LeFlow Tool-kit - Handling Unsupported Kernels

e Problem: Not all kernels implemented in Tensorflow can be directly mapped to our
version of LegUp

e LeFlow avoids unsupported XLA kernels through the use of flags added to Tensorflow
O Decision abstracted away from the user

Kernel 1 —\L»
W t Kernel 2 %»
ays to Kernel 3 -\L>
generate Choose the
IR for the Kernel 4 kernel — Selected Kernel
operation Kernel 5 &>
Kernel N 4L>
-

15

LeFlow Tool-kit - Other transformations

e Optimization passes

O XLA can emit both optimized (with O3) or unoptimized IR

O Some optimizations might
m Drastically change the way in which variables are addressed, making it hard

to identify inputs and outputs

m Generate IR instructions not supported by the HLS tool

O LeFlow uses unoptimized IR and has its own tailored optimization recipe to
avoid those problems

e LLVM Version Issues

O LegUp uses LLVM 3.5.0, while Tensorflow uses LLVM 7.0
O LeFlow performs transformations to address these differences

16

Tuning Performance - Compiler Optimizations

e Compiler optimizations can have a significant impact on the final hardware design
e Unrolling and Inlining offer tradeoff between area and latency

4 Unrolling -> 4 area § cycles
4 Inlining > 4 area } cycles

e LeFlow enables the user to optionally tune both unrolling and inlining thresholds at
the Python level.

options.setuUnrollThreshold(150)
options.setInliningTheshold(500)

17

Tuning Performance - Memory Partitioning

Hioad HEMuliply HStore HRetun o A common performance bottleneck in any parallel
11213[4|5]6(7|8]| [1[2]|3]|4[5|6]|7(8] [1[2]|3[4|5|6(7|8 . . .

implementations is the memory
O Dual-port RAMs -> Only two reads/writes per cycle

e FPGAs contain a vast number of independently accessible
memories
O Itis good to split big arrays into multiple memories

e Memory partitioning is not part of LegUp 4.0, so LeFlow
implements its own version of this transformation pass.

e This pass is performed at the LLVM IR level, but
configured at the user’s python code.

|| | ||
1 Block 2 Blocks 4 Blocks 18

Examples - MLP and MNIST digit recognition

e |n this example
O MLP followed by a softmax is trained offline in Tensorflow using XLA
O LeFlow-generated hardware is deployed in an FPGA for inference

e The example including the training phase with XLA is part of the LeFlow
distribution.

19

Examples - MLP and MNIST digit recognition

Pixel 0
Pixel 1
Pixel 2
Pixel 3

Pixel 4
Pixel 5
Pixel 6
Pixel 7 ® Qutput 0
N .
Pixel3 Output 2
Pixel 9 ® Output 3
Pixel 10 O= ® Qutput 4
— Pixel 11 (< ® Qutput 5
Pixel 12 O« ® Output 6
® Qutput 7
® Qutput 8
® Qutput 9

Pixel 19

pixel 20 O*

1 import tensorflow as tf

2 import numpy as np

3 input = tensorflow.placeholder(tensorflow.float32, shape=[None, 784])
4 weights = tensorflow.placeholder(tensorflow.float32, shape=[784, 10])
5 bias = tensorflow.placeholder(tensorflow.float32, shape=[10])
6
7
8
9

with tf.Session() as sess:
session.run(tensorflow.global_variables_initializer())
with tf.device("device: XLA_CPU:0"):
y = tensorflow.nn.softmax(tensorflow.add(tensorflow.matmul(input, weights)[0], bias))
10 session.run(y,{input: MNIST_digit to_classify, weights: desired_weights, bias: desired_bias})

Examples - Convolutional Network

* |n this example a CNN with 1 input and 5 outputs is compiled to hardware using
LeFlow.

e Image shows the result of the CNN when specific 3x3 filters are used as the
weights of the network

e T m
ree
B e O
[¥ -
_WFF TR
5.

21

Examples - Convolutional Network

e |t is unreasonable to fit an entire image and weights in the internal memory of an FPGA
o Common practice: split the image in tiles and process it over multiple batches
e In this example, each input and output has 32x32 pixels

1
2
3
4
5
6
7
8
9

import tensorflow as tf
import numpy as np
inputs = tf.placeholder(tf.float32, [1, 32,32,1])
weights = tf.placeholder(tf.float32, [3,3,1,5])
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
with tf.device(’device: XLA_CPU:0”):
y = tf.nn.conv2d(inputs, weights, strides=[1, 1, 1, 1], padding="SAME’)
result = sess.run(y, {inputs: original_image, weights: desired_filters})

Circuit LEs MemB FMax Cycles
Default 2,291 198,048 149.59 MHz 1,449,734
Unrolled 2,682 198,048 186.36 MHz 1,275,700 22

e More interesting examples available on our GitHub repository

DNN running on FPGA

P bl o) 0:4/0:49

23

Benchmarking Individual Layers

LEs MemB | FMax | Cycles
vecmul_a 661 768 301.93 | 123
vecmul_b 664 6,144 289.69 | 963
veemul_b_u | 2,346 | 6,144 228.78 | 98
dense_a 1,743 1,056 267.45 | 380
dense_b 1,749 | 8,224 291.21 | 3,012
softmax_a 7,209 | 960 203.54 | 902
softmax_b 7,206 | 6,336 206.31 | 7,174
softmax_b_u | 21,688 | 6,336 135.72 | 4,708
conv2d_a 2,286 | 6,720 165.23 | 32,187
conv2d_a_u | 63,430 | 6,720 47.70 1,784
conv2d_b 2,289 | 393,792 | 152.32 | 2,370k
maxp_a 981 2,176 22143 | 229
maxp_b 979 35,968 | 219.25 | 5,533
maxp_b_u 59,346 | 35,968 160.93 | 502
thxprlsg 18,520 | 704 185.22 | 4675

e LeFlow comes with an automated test
script to run multiple small components

e These components represent building
blocks needed to create a deep neural
network

e Simulation times of different blocks
vary from seconds to hours

e Especially useful for those in the
community who wish to build upon and
expand this tool

24

Quality of results

e Not as efficient as hand-optimize RTL designs but flexible
O Itis easy to add support for new operations
O LeFlow should be expanded to support blocks optimized for single
workload acceleration (e.g. CNN overlays of MISuite)

e Ongoing work towards evaluating the quality of the results of circuits
generated by LeFlow

25

Limitations and Opportunities

1. LeFlow currently uses kernels meant to be used by CPUs
o Compiler optimizations and scheduling are able to retrieve a substantial

amount of parallelism

O LeFlow would heavily benefit from an XLA back-end with kernels for FPGAs

2. Automatic memory partitioning for ML.

O

O

The high dimensionality of inputs/weights and the amount of parallel
accesses in ML applications is a challenge

LeFlow would specially benefit from a machine learning specific automatic
memory partitioning algorithm

26

Limitations and Opportunities

3. Using a customizable fixed-point bit width

o Adding fixed-point support

o Automatically profile the application choose the appropriate
representation

4. Debug Infrastructure

o

o

It is straightforward to use Tensorflow to debug the functionality of an
implementation

Difficult for software developers to debug the generated hardware in terms
of the original Python code

A performance debugging infrastructure suitable for software developers is
another interesting venue for research.

27

On-chip debug of Machine Learning Circuits

28

On-chip debug

e Records the behaviour of the design as it runs at speed for later interrogation

e Challenge:
O Record enough information on-chip to understand the problem

309 0 R 9 9 O |
X Off-line
t User Circuit Analysis Tool
X

X

i

X

X

X

51565 X B

29

Why focus on on-chip debug?

Kernel-level bugs

tf.conv2d(e Self-contained
filters=32, e Debug in isolation

e Easy to reproduce

iCompiler
I RTL-level bugs

e Framework/RTL mismatch

v
Automatically e Framework tool errors or
Generated RTL

usage errors

System—LeveI I?',ugs
* Bugsininterfaces

e Dependent on:
Generated

- e |/O data patterns

e Interaction timing
'
Hardware Hardware

FPGA

Hard to reproduce, or require
long run times

Debug code on workstation
(gdb, pdb, tensorboard).

Run co-simulation on
workstation.

Debug on FPGA
(Requires observing
internals of FPGA)

These are the
difficult bugs

Software

Simulation

Hardware

Key observation

To find certain bugs we must debug in hardware

31

Why not use common on-chip hardware debug tools?

Embedded Logic Analyzer (Altera SignalTap Il):

Your Debug Tool:
RTL - Chooses signals to trace

Circuit - Debug circuitry added

Run

RTL-level debug is not suitable for debugging applications designed at a high level of abstraction
0 Understanding the hardware is time consuming
O RTLlooks nothing like the original description due to compiler optimizations

O Beyond the expertise of software developers
32

Debug levels of abstraction

Hardware-oriented debug

HLS-oriented debug

ML-specific debug

uolneIsqy

33

On-chip debug for HLS

Capture system-level bugs - Need to run at-speed, on-chip

Solution: Record and Replay

Execution Mode FPCA Replay :
-, i)
3. Execute and record 8¢ 4 IV 531
Function: main State: 6
gsort_labeled.c B FPGA Vars | Tools Design Stats
13 13§
14 14 = Refresh Values
. 15 void quickSort(int *arr, int elements) | 158 i e
1. User selects variables, 6 ncpiv,begl15] ndl15] 1 0 L., v |- |18 T
tool determines signals, 4. Stop and % el
H H H . A * heg
inserts instrumentation retrieve B vend
:] elaments
’ : 10 i

. . L

void gSort (int *arr) { R
’ piv 3
int piv, beg[N], 2 C . correct lic
) . Compile

?nd [N] ! 1 = getalementptr inbounds [eg., 32 0, i32 %i.09., |dbg 174
int 1=0; petelementptr inbsunds [ndli, 132 €, 32 %i.09., Idbg 178
int L, R, swap; On-Chip : ;
N Memory 5. Software-like debug using recorded data

34

How we used to do it

HLS Debugger (fhome/jgoeders/Dropbex/linux/legupjexamples/debugf03 fshazse)

Execution Mode FPGA Live Interactive
8N {1 T

Design State: Stopped

Function: main

* —-Globals-

218) 218 (33 iy
211 211

212 int nai 212 v shu_nu-n}.u.w
213 213 5 id

35

HLS Debug - Efficiency

Signals are recorded according to selected signals and

the HLS schedule

Recorded signals change each cycle

Circuit-by-Circuit custom compression

50x-100x more memory efficient than traditional

hardware-oriented debug

HLS Debug Instrumentation

Control Logi
—Lompress>

Global|Memory | Mem
Mem

Datapath

Trace Scheduler /

Jracﬁve
Active Signals
S, [r3 [rq Jetd
S \rnen1| 4
Sel Is | Is | I's
S7 g
Sz lctrl
S, [mem| rqg

36

Debug levels of abstraction

Hardware-oriented debug

HLS-oriented debug

ML-specific debug

uolneIsqy

37

On-chip debug of Machine Learning Circuits

A flow to accelerate the debug of machine learning applications on FPGAs

e Previous work is not ideal for debugging ML circuits
O Even longer run-times; “Correctness” hard to determine; Commonly designed at a high level.

e This work uses domain-specific characteristics of ML circuits to create instruments that:

O Maximize the utilization of trace buffer space

O Provide information that is meaningful to an engineer

ek

User Circuit

New

Off-line
Analysis Tool

New

38

Debug Instruments

Overview of our instruments

e Many machine learning applications consist of large arrays (eg. activations or weights)

e Instruments track large arrays over time

Distribution Instrument

Observed Matrix Tracked Information

02040703 |
0.3]0.2(0.4(0.2 |}

0.3/0.3 0.1/0.3

Time i<l = ‘%'vime

e Creates a history of the distribution of the matrix we are observing over time (over multiple frames)

* In a CNN, a frame may represent all calculations corresponding to a single input image

39

Debug Instruments

Spatial Sparsity Instrument

Observed Matrix Tracked Information

03 00 02 0.1
0.2 0.4‘0.0‘0.07 ‘
0.3 0.2‘0.4‘0.2 H ‘

0.0 0.3‘ 0.1 ‘ 0.0 A’
ime

/Tqime

e Stores an indication whether each element of the array is zero or non-zero.

e The same logic could also be used to track elements close to 1, another upper bound or NaN.

Summary Statistics Instrument

e Tracks only one kind of statistic (sparsity, mean, std. dev) per frame.

40

User Interface

Main Differences

e Stepping through frames instead of stepping through clock cycles (hardware-oriented debug) or lines
of C code (HLS-debug)

e No access to raw values, we can trace the circuit for a longer period

Distribution | Spatial Sparsity = Summary Statistics Distribution | Spatial Sparsity = Summary Statistics
Histogram Tracked Variables Sparsity Matrix Tracked Variables
50 - -
0 L weight conv2 weight conv5
= weight _conv3 actv_convs
o ERE- actv_conv2
=0 EEER actv_conv3
40
| I —-
> [
oD I
]
0504030201 0 010203 0405060708
Playback Design Playback Design
Info Offline Statistics Info Offline Statistics
Trigger Variable: Epoch Mean: 35.64 Trigger Variable: idx Avg. Sparsity: 46.8%
Trace Length: 100 Std dev: 1.23 Trace Length: 128
<< < STEP 25 > > << < STEP 89 > >

41

Configuration Kernel FMax | LEs | # Traced
(MHz) Frames
32x28x28 | 213.79 | 3391 0.124
Previous work (HLS-oriented debug) 8x28x28 260.05 | 3324 0.498
1x28x28 | 287.89 | 3167 3.985
32x28x28 | 200.48 | 2867 195
Distribution Instrument - 32 bins 8x28x28 | 227.65 | 2834 223
1x28x28 | 229.87 | 2676 284
32x28x28 | 189.62 | 3670 48
Distribution Instrument - 128 bins 8x28x28 | 225.17 | 3600 55
1x28x28 | 228.98 | 3488 71
32x28x28 | 200.46 | 2547 3
Spatial Sparsity Instrument 8x28x28 | 211.13 | 2531 15
1x28x28 | 214.70 | 2393 127
32x28x28 | 213.17 | 2557 6666
Summary Statistics Instrument - Sparsity | 8x28x28 | 258.75 | 2531 7692
1x28x28 | 285.30 | 2390 10000
32x28x28 | 189.23 | 2930 3
Proposed instruments combined 8x28x28 | 206.69 | 2927 14
1x28x28 | 220.51 | 2786 87

42

Configuration Kernel FMax | LEs | # Traced
(MHz) Frames
32x28x28 | 213.79 | 3391 0.124
Previous work (HLS-oriented debug) 8x28x28 260.05 | 3324 0.498
1x28x28 | 287.89 | 3167 | [3.985]
32x28x28 | 200.48 | 2867 195
Distribution Instrument - 32 bins 8x28x28 | 227.65 | 2834 223
1x28x28 | 229.87 | 2676 | | 284 |
32x28x28 | 189.62 | 3670 48
Distribution Instrument - 128 bins 8x28x28 | 225.17 | 3600 55
1x28x28 | 228.98 | 3483 | |71 |
32x28x28 | 200.46 | 2547 3
Spatial Sparsity Instrument 8x28x28 | 211.13 | 2531 15
1x28x28 | 214.70 | 2393 127
32x28x28 | 213.17 | 2557 6666
Summary Statistics Instrument - Sparsity | 8x28x28 | 258.75 | 2531 7692
1x28x28 | 285.30 | 2390 | (10000)
32x28x28 | 189.23 | 2930 3
Proposed instruments combined 8x28x28 | 206.69 | 2927 14
1x28x28 | 220.51 | 2786 | |87 J
Takeaway:

Domain-specific instrumentation allow us to store more useful information on-chip

43

Architecture Study

Distribution Instrument

—8— 8 histograms
16 histograms
—&— 32 histograms
200 + —¥— 64 histograms
—&— 128 histograms

e In this experiment, we vary the number of bins 210 4

while number of histograms remains the same.

e Frequency drops as the number of bins o 32507

increases, however, the impact is less than 5%

when using 64 bins and 64 frames.

mem Bits

:

e Area and memory bits grow linearly with the 0 20 40 60 80 100 120

Number of Bins

number of bins

44

Architecture Study

Spatial Sparsity Instrument

300

. . W8 g Matrix elements = ﬁé_ﬂ
e In this experiment, we vary the number of frames Matrix elements = 128

—8— Matrix elements = 256
—¥— Matrix elements = 512

— T, —&— Matrix elements = 1024

b

traced while keeping the size of each frame

200 4 —»— Matrix elements = 2048 ;
constant, for several kernels. r— s
2400 4 e —%
4
e Frequency has not changed for most cases. 2300 1 — - -

e Approximately same initial area overhead all 200:'
150k ~

mok_k_‘_‘,’k”l///—‘
50k | = - =¥

Trace Size

mem Bits

circuits that does not increase with the trace size.

e Memory bits grows linearly with the number of

frames traced.

45

e Making instrumentation configurable at debug time

O FPGA synthesis is very slow -> Debug cycles are slow

O Important for scenarios in which FPGA cannot be turned off

e Adapting this infrastructure debug multiple FPGAs are on a single task
O Not practical to have one USB JTAG on each FPGA;

O Project Brainwave

e Combining this domain-specific instrumentation with general-purpose debug tools
o Domain-specific -> Coarse-grained view of circuit for long period

O General-purpose -> Fine-grained view of circuit for short period ie

Final remarks

47

Final remarks

e A compiler is not enough: Engineers expect a complete ecosystem to design complex
machine learning circuits.

e So far, we explored:
o Compiler (LeFlow)

m Allows software developers without hardware expertise to implement Deep
Neural Networks in FPGAs using Tensorflow.
o On-chip debug of ML applications

m By specializing the debug instrumentation we store more useful information
on the chip

48

Final remarks

What is next?

e More integration between components of our ecosystem

» Better use of scheduling information, not only for debug, but why not for power

» More specialized solutions for application-specific problems

#‘-
t

{

PYTbch
c/C++ O
Language Caffe?

+ Caffe

Tensor!

ompiler

49

	Compilers and Beyond:
Research towards enhancing the design productivity for FPGA ML applications
	What is this talk about
	Overview of today's talk
	Introduction - Using FPGAs for Machine Learning
	Introduction - Using FPGAs for Machine Learning
	Introduction - Using FPGAs for Machine Learning
	Introduction - Using FPGAs for Machine Learning
	LeFlow - Going from Tensorflow to Verilog
	Introduction - Overview
	Introduction - Overview
	LeFlow Tool-kit - Overall Flow
	LeFlow Tool-kit - Overall Flow
	LeFlow Tool-kit - Creating a Stand-Alone Hardware Unit
	LeFlow Tool-kit - Handling Unsupported Kernels
	LeFlow Tool-kit - Handling Unsupported Kernels
	LeFlow Tool-kit - Other transformations
	Tuning Performance - Compiler Optimizations
	Tuning Performance - Memory Partitioning
	Examples - MLP and MNIST digit recognition
	Examples - MLP and MNIST digit recognition
	Examples - Convolutional Network
	Examples - Convolutional Network
	Examples
	Benchmarking Individual Layers
	Quality of results
	Limitations and Opportunities
	Limitations and Opportunities
	On-chip debug of Machine Learning Circuits
	On-chip debug
	Why focus on on-chip debug?
	Key observation
	Why not use common on-chip hardware debug tools?
	Debug levels of abstraction
	On-chip debug for HLS
	How we used to do it
	HLS Debug - Efficiency
	Debug levels of abstraction
	On-chip debug of Machine Learning Circuits
	Debug Instruments
	Debug Instruments
	User Interface
	Results
	Results
	Architecture Study
	Architecture Study
	Future Work
	Final remarks
	Final remarks
	Final remarks

