
Compilers and Beyond:
Research towards enhancing the design
productivity for FPGA ML applications

Daniel Holanda Noronha and Steve Wilton
University of British Columbia, Vancouver, Canada

danielhn@ece.ubc.ca, stevew@ece.ubc.ca

IEEE Silicon Valley Machine Learning Compiler Workshop
March 4th 2019
Milpitas, CA

What is this talk about

2

A compiler is not enough: Engineers expect a complete ecosystem to design complex
machine learning circuits.

● Ongoing research project towards such an ecosystem

Overview of today's talk

3

• Introduction - Using FPGAs for ML

• LeFlow - Going from Tensorflow to Verilog

○ General flow of our tool-kit

○ Tuning performance

○ Examples, Limitations and Opportunities

• On-chip debug of ML circuits

○ Existing debug flows

○ Creating specialized instruments for

debugging ML circuits

Introduction - Using FPGAs for Machine Learning

4

Introduction - Using FPGAs for Machine Learning

5

Deep learning has emerged as an important application area for FPGAs
● Often faster than software and less power than GPU
● Cloud computing -> More designers to take advantage of FPGAs

Microsoft Catapult
● Started with 1,600 FPGA-enabled servers (2014)
● Today: Hundreds of thousands of FPGAs (15 countries, 5 continents)
● Project Brainwave

○ Offers real-time AI serving in the cloud
○ Pre-trained DNN models with high efficiencies at low batch sizes

Introduction - Using FPGAs for Machine Learning

6

Problem with FPGAs:
● Designing such applications is challenging
● Not many people can do it

Introduction - Using FPGAs for Machine Learning

7

Design flow for an FPGA machine learning accelerator

● Step 1 - Software model implemented using high-level framework
○ Abstraction of implementation details
○ Understand the required network size, convergence rate, etc.

● Step 2 - Map the network to a hardware implementation.
○ Often done manually, by writing C or RTL code
○ Time consuming and requires hardware design expertise

Our solution (research prototype):
LeFlow: FPGA High-Level Synthesis of Tensorflow Deep Neural Networks

LeFlow - Going from Tensorflow to Verilog

8

Introduction - Overview

9

LeFlow

● Uses Google’s XLA compiler which emits LLVM code directly from Tensorflow

● LLVM code transferred to HLS tool to automatically generate hardware

● Allows rapid prototype of machine learning algorithms on FPGAs

● Not as efficient as hand-optimized hardware design
○ Compelling for a large number of design scenarios
○ May open the door for hardware acceleration to many domain experts

● Demonstrated using LegUp, but may be suitable for many other HLS tools

Introduction - Overview

10

LeFlow

● Completely open-source
● Available on GitHub

LeFlow Tool-kit - Overall Flow

11

• Open source library for numerical computation
• Nodes represent mathematical operations, edges represent

tensors
• Extensive support for Deep Learning algorithms
• XLA: a domain-specific compiler for linear algebra

• Open source HLS tool developed at the University of Toronto
• LegUp can synthesize most of the C language to hardware
• Uses LLVM compiler infrastructure

LeFlow Tool-kit - Overall Flow

12

• The user creates a design in Python using Tensorflow

• Use XLA compiler to generate an LLVM intermediate
representation (IR)

• LeFlow performs several transformations to the IR (will
be described soon)

• LLVM IR can then be read as an input to a HLS tool,
which generates a hardware description in Verilog.

LeFlow Tool-kit - Creating a Stand-Alone Hardware Unit

13

• Handling inputs and outputs

○ XLA generates IR that is written in a software-like way

○ LeFlow remaps this IR to make it more suitable for
generating hardware

○ Inputs to the network are stored in on-chip memory

○ LeFlow also takes special care to avoid those
memories from being optimized away

LeFlow Tool-kit - Handling Unsupported Kernels

14

• Each particular Tensorflow operation can be transformed to IR in many different ways

• The best way to generate IR depends on the several factors

• XLA handles this design problem by implementing multiple kernels for a single
operation and selecting them according to the problem at compile time.

• Problem: Not all kernels implemented in Tensorflow can be directly mapped to our
version of LegUp

• LeFlow avoids unsupported XLA kernels through the use of flags added to Tensorflow
○ Decision abstracted away from the user

LeFlow Tool-kit - Handling Unsupported Kernels

15

LeFlow Tool-kit - Other transformations

16

• Optimization passes
○ XLA can emit both optimized (with O3) or unoptimized IR
○ Some optimizations might

■ Drastically change the way in which variables are addressed, making it hard
to identify inputs and outputs

■ Generate IR instructions not supported by the HLS tool
○ LeFlow uses unoptimized IR and has its own tailored optimization recipe to

avoid those problems

• LLVM Version Issues
○ LegUp uses LLVM 3.5.0, while Tensorflow uses LLVM 7.0
○ LeFlow performs transformations to address these differences

Tuning Performance - Compiler Optimizations

17

• Compiler optimizations can have a significant impact on the final hardware design

• Unrolling and Inlining offer tradeoff between area and latency

Unrolling -> area cycles
Inlining -> area cycles

• LeFlow enables the user to optionally tune both unrolling and inlining thresholds at
the Python level.

Tuning Performance - Memory Partitioning

18

• A common performance bottleneck in any parallel
implementations is the memory

○ Dual-port RAMs -> Only two reads/writes per cycle

• FPGAs contain a vast number of independently accessible
memories

○ It is good to split big arrays into multiple memories

• Memory partitioning is not part of LegUp 4.0, so LeFlow
implements its own version of this transformation pass.

• This pass is performed at the LLVM IR level, but
configured at the user’s python code.

Examples - MLP and MNIST digit recognition

19

• In this example
○ MLP followed by a softmax is trained offline in Tensorflow using XLA
○ LeFlow-generated hardware is deployed in an FPGA for inference

• The example including the training phase with XLA is part of the LeFlow
distribution.

Examples - MLP and MNIST digit recognition

20

Examples - Convolutional Network

21

• In this example a CNN with 1 input and 5 outputs is compiled to hardware using
LeFlow.

• Image shows the result of the CNN when specific 3x3 filters are used as the
weights of the network

Examples - Convolutional Network

22

• It is unreasonable to fit an entire image and weights in the internal memory of an FPGA
○ Common practice: split the image in tiles and process it over multiple batches

• In this example, each input and output has 32x32 pixels

Examples

23

• More interesting examples available on our GitHub repository

Benchmarking Individual Layers

24

• LeFlow comes with an automated test
script to run multiple small components

• These components represent building
blocks needed to create a deep neural
network

• Simulation times of different blocks
vary from seconds to hours

• Especially useful for those in the
community who wish to build upon and
expand this tool

Quality of results

25

• Not as efficient as hand-optimize RTL designs but flexible
○ It is easy to add support for new operations
○ LeFlow should be expanded to support blocks optimized for single

workload acceleration (e.g. CNN overlays of MlSuite)

• Ongoing work towards evaluating the quality of the results of circuits
generated by LeFlow

Limitations and Opportunities

26

1. LeFlow currently uses kernels meant to be used by CPUs
○ Compiler optimizations and scheduling are able to retrieve a substantial

amount of parallelism
○ LeFlow would heavily benefit from an XLA back-end with kernels for FPGAs

2. Automatic memory partitioning for ML.
○ The high dimensionality of inputs/weights and the amount of parallel

accesses in ML applications is a challenge
○ LeFlow would specially benefit from a machine learning specific automatic

memory partitioning algorithm

Limitations and Opportunities

27

3. Using a customizable fixed-point bit width
○ Adding fixed-point support
○ Automatically profile the application choose the appropriate

representation

4. Debug Infrastructure
○ It is straightforward to use Tensorflow to debug the functionality of an

implementation
○ Difficult for software developers to debug the generated hardware in terms

of the original Python code
○ A performance debugging infrastructure suitable for software developers is

another interesting venue for research.

On-chip debug of Machine Learning Circuits

28

On-chip debug

29

• Records the behaviour of the design as it runs at speed for later interrogation

• Challenge:
○ Record enough information on-chip to understand the problem

Why focus on on-chip debug?

30

Ha
rd

w
ar

e

tf.conv2d(
filters=32,
...

Automatically
Generated RTL

Compiler
FP

GA

Automatically
Generated
Hardware

Other
Hardware

Other
Hardware

I/O Devices

These are the
difficult bugs

Kernel-level bugs
• Self-contained
• Debug in isolation
• Easy to reproduce

Debug code on workstation
(gdb, pdb, tensorboard).

RTL-level bugs
• Framework/RTL mismatch
• Framework tool errors or

usage errors

Run co-simulation on
workstation.

System-Level Bugs
• Bugs in interfaces
• Dependent on:

• I/O data patterns
• Interaction timing

• Hard to reproduce, or require
long run times

Debug on FPGA
(Requires observing
internals of FPGA)

So
ft

w
ar

e
Si

m
ul

at
io

n

Key observation

31

To find certain bugs we must debug in hardware

Why not use common on-chip hardware debug tools?

32

Embedded Logic Analyzer (Altera SignalTap II):

Your
RTL

Circuit

Debug Tool:
- Chooses signals to trace
- Debug circuitry added

Run

● RTL-level debug is not suitable for debugging applications designed at a high level of abstraction
○ Understanding the hardware is time consuming
○ RTL looks nothing like the original description due to compiler optimizations
○ Beyond the expertise of software developers

Debug levels of abstraction

33

HLS-oriented debug

ML-specific debug

Hardware-oriented debug
Abstraction

On-chip debug for HLS

Capture system-level bugs → Need to run at-speed, on-chip

Solution: Record and Replay

HLS

3. Execute and record

4. Stop and
retrieve

5. Software-like debug using recorded data
On-Chip
Memory

34

1. User selects variables,
tool determines signals,
inserts instrumentation

void qSort(int *arr) {

int piv, beg[N],
end[N];
int i=0;
int L, R, swap;
…
}

2. Compile

How we used to do it

35

HLS Debug - Efficiency

36

HLS Debug Instrumentation• Signals are recorded according to selected signals and

the HLS schedule

• Recorded signals change each cycle

• Circuit-by-Circuit custom compression

• 50x-100x more memory efficient than traditional

hardware-oriented debug

Debug levels of abstraction

37

HLS-oriented debug

ML-specific debug

Hardware-oriented debug
Abstraction

On-chip debug of Machine Learning Circuits

38

• Previous work is not ideal for debugging ML circuits
○ Even longer run-times; “Correctness” hard to determine; Commonly designed at a high level.

• This work uses domain-specific characteristics of ML circuits to create instruments that:

○ Maximize the utilization of trace buffer space

○ Provide information that is meaningful to an engineer

A flow to accelerate the debug of machine learning applications on FPGAs

New

New

Debug Instruments

39

Distribution Instrument

• Creates a history of the distribution of the matrix we are observing over time (over multiple frames)

• In a CNN, a frame may represent all calculations corresponding to a single input image

• Many machine learning applications consist of large arrays (eg. activations or weights)

• Instruments track large arrays over time

Overview of our instruments

Debug Instruments

40

Spatial Sparsity Instrument

• Stores an indication whether each element of the array is zero or non-zero.

• The same logic could also be used to track elements close to 1, another upper bound or NaN.

Summary Statistics Instrument

• Tracks only one kind of statistic (sparsity, mean, std. dev) per frame.

User Interface

41

Main Differences

• Stepping through frames instead of stepping through clock cycles (hardware-oriented debug) or lines

of C code (HLS-debug)

• No access to raw values, we can trace the circuit for a longer period

Results

42

(HLS-oriented debug)

Results

43

Takeaway:
Domain-specific instrumentation allow us to store more useful information on-chip

(HLS-oriented debug)

Architecture Study

44

Distribution Instrument

• In this experiment, we vary the number of bins

while number of histograms remains the same.

• Frequency drops as the number of bins

increases, however, the impact is less than 5%

when using 64 bins and 64 frames.

• Area and memory bits grow linearly with the

number of bins

Architecture Study

45

Spatial Sparsity Instrument

• In this experiment, we vary the number of frames

traced while keeping the size of each frame

constant, for several kernels.

• Frequency has not changed for most cases.

• Approximately same initial area overhead all

circuits that does not increase with the trace size.

• Memory bits grows linearly with the number of

frames traced.

Future Work

46

• Making instrumentation configurable at debug time

○ FPGA synthesis is very slow -> Debug cycles are slow

○ Important for scenarios in which FPGA cannot be turned off

• Adapting this infrastructure debug multiple FPGAs are on a single task

○ Not practical to have one USB JTAG on each FPGA;

○ Project Brainwave

• Combining this domain-specific instrumentation with general-purpose debug tools

○ Domain-specific -> Coarse-grained view of circuit for long period

○ General-purpose -> Fine-grained view of circuit for short period

Final remarks

47

Final remarks

48

● A compiler is not enough: Engineers expect a complete ecosystem to design complex
machine learning circuits.

● So far, we explored:
○ Compiler (LeFlow)

■ Allows software developers without hardware expertise to implement Deep
Neural Networks in FPGAs using Tensorflow.

○ On-chip debug of ML applications
■ By specializing the debug instrumentation we store more useful information

on the chip

• More integration between components of our ecosystem

• Better use of scheduling information, not only for debug, but why not for power

• More specialized solutions for application-specific problems

Final remarks

49

What is next?

	Compilers and Beyond: Research towards enhancing the design productivity for FPGA ML applications
	What is this talk about
	Overview of today's talk
	Introduction - Using FPGAs for Machine Learning
	Introduction - Using FPGAs for Machine Learning
	Introduction - Using FPGAs for Machine Learning
	Introduction - Using FPGAs for Machine Learning
	LeFlow - Going from Tensorflow to Verilog
	Introduction - Overview
	Introduction - Overview
	LeFlow Tool-kit - Overall Flow
	LeFlow Tool-kit - Overall Flow
	LeFlow Tool-kit - Creating a Stand-Alone Hardware Unit
	LeFlow Tool-kit - Handling Unsupported Kernels
	LeFlow Tool-kit - Handling Unsupported Kernels
	LeFlow Tool-kit - Other transformations
	Tuning Performance - Compiler Optimizations
	Tuning Performance - Memory Partitioning
	Examples - MLP and MNIST digit recognition
	Examples - MLP and MNIST digit recognition
	Examples - Convolutional Network
	Examples - Convolutional Network
	Examples
	Benchmarking Individual Layers
	Quality of results
	Limitations and Opportunities
	Limitations and Opportunities
	On-chip debug of Machine Learning Circuits
	On-chip debug
	Why focus on on-chip debug?
	Key observation
	Why not use common on-chip hardware debug tools?
	Debug levels of abstraction
	On-chip debug for HLS
	How we used to do it
	HLS Debug - Efficiency
	Debug levels of abstraction
	On-chip debug of Machine Learning Circuits
	Debug Instruments
	Debug Instruments
	User Interface
	Results
	Results
	Architecture Study
	Architecture Study
	Future Work
	Final remarks
	Final remarks
	Final remarks

