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What is this talk about
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A compiler is not enough: Engineers expect a complete ecosystem to design  complex 
machine learning circuits.

● Ongoing research project towards such an ecosystem



Overview of today's talk
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• Introduction - Using FPGAs for ML

• LeFlow - Going from Tensorflow to Verilog

○ General flow of our tool-kit

○ Tuning performance

○ Examples, Limitations and Opportunities

• On-chip debug of ML circuits

○ Existing debug flows

○ Creating specialized instruments for 

debugging ML circuits



Introduction - Using FPGAs for Machine Learning
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Introduction - Using FPGAs for Machine Learning
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Deep learning has emerged as an important application area for FPGAs
● Often faster than software and less power than GPU
● Cloud computing -> More designers to take advantage of FPGAs 

Microsoft Catapult
● Started with 1,600 FPGA-enabled servers (2014)
● Today: Hundreds of thousands of FPGAs (15 countries, 5 continents)
● Project Brainwave

○ Offers real-time AI serving in the cloud
○ Pre-trained DNN models with high efficiencies at low batch sizes



Introduction - Using FPGAs for Machine Learning
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Problem with FPGAs:
● Designing such applications is challenging
● Not many people can do it



Introduction - Using FPGAs for Machine Learning
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Design flow for an FPGA machine learning accelerator

● Step 1 - Software model implemented using high-level framework
○ Abstraction of implementation details
○ Understand the required network size, convergence rate, etc.

● Step 2 - Map the network to a hardware implementation.
○ Often done manually, by writing C or RTL code
○ Time consuming and requires hardware design expertise

Our solution (research prototype):
LeFlow: FPGA High-Level Synthesis of Tensorflow Deep Neural Networks



LeFlow - Going from Tensorflow to Verilog
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Introduction - Overview
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LeFlow

● Uses Google’s XLA compiler which emits LLVM code directly from Tensorflow

● LLVM code transferred to HLS tool to automatically generate hardware

● Allows rapid prototype of machine learning algorithms on FPGAs 

● Not as efficient as hand-optimized hardware design 
○ Compelling for a large number of design scenarios
○ May open the door for hardware acceleration to many domain experts

● Demonstrated using LegUp, but may be suitable for many other HLS tools



Introduction - Overview
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LeFlow

● Completely open-source
● Available on GitHub



LeFlow Tool-kit - Overall Flow 
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• Open source library for numerical computation
• Nodes represent mathematical operations, edges represent 

tensors
• Extensive support for Deep Learning algorithms
• XLA: a domain-specific compiler for linear algebra

• Open source HLS tool developed at the University of Toronto
• LegUp can synthesize most of the C language to hardware
• Uses LLVM compiler infrastructure



LeFlow Tool-kit - Overall Flow 
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• The user creates a design in Python using Tensorflow

• Use XLA compiler to generate an LLVM intermediate
representation (IR) 

• LeFlow performs several transformations to the IR (will 
be described soon)

• LLVM IR can then be read as an input to a HLS tool, 
which generates a hardware description in Verilog.



LeFlow Tool-kit - Creating a Stand-Alone Hardware Unit
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• Handling inputs and outputs

○ XLA generates IR that is written in a software-like way 

○ LeFlow remaps this IR to make it more suitable for 
generating hardware

○ Inputs to the network are stored in on-chip memory

○ LeFlow also takes special care to avoid those 
memories from being optimized away



LeFlow Tool-kit - Handling Unsupported Kernels
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• Each particular Tensorflow operation can be transformed to IR in many different ways

• The best way to generate IR depends on the several factors

• XLA handles this design problem by implementing multiple kernels for a single 
operation and selecting them according to the problem at compile time.



• Problem: Not all kernels implemented in Tensorflow can be directly mapped to our 
version of LegUp 

• LeFlow avoids unsupported XLA kernels through the use of flags added to Tensorflow 
○ Decision abstracted away from the user

LeFlow Tool-kit - Handling Unsupported Kernels
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LeFlow Tool-kit - Other transformations
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• Optimization passes
○ XLA can emit both optimized (with O3) or unoptimized IR
○ Some optimizations might

■ Drastically change the way in which variables are addressed, making it hard 
to identify inputs and outputs

■ Generate IR instructions not supported by the HLS tool
○ LeFlow uses unoptimized IR and has its own tailored optimization recipe to 

avoid those problems

• LLVM Version Issues
○ LegUp uses LLVM 3.5.0, while Tensorflow uses LLVM 7.0
○ LeFlow performs transformations to address these differences



Tuning Performance - Compiler Optimizations

17

• Compiler optimizations can have a significant impact on the final hardware design

• Unrolling and Inlining offer tradeoff between area and latency

Unrolling    ->           area                        cycles
Inlining       ->           area                        cycles

• LeFlow enables the user to optionally tune both unrolling and inlining thresholds at 
the Python level.



Tuning Performance - Memory Partitioning
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• A common performance bottleneck in any parallel 
implementations is the memory

○ Dual-port RAMs -> Only two reads/writes per cycle

• FPGAs contain a vast number of independently accessible 
memories

○ It is good to split big arrays into multiple memories

• Memory partitioning is not part of LegUp 4.0, so LeFlow 
implements its own version of this transformation pass.

• This pass is performed at the LLVM IR level, but 
configured at the user’s python code.



Examples - MLP and MNIST digit recognition

19

• In this example
○ MLP followed by a softmax is trained offline in Tensorflow using XLA 
○ LeFlow-generated hardware is deployed in an FPGA for inference

• The example including the training phase with XLA is part of the LeFlow 
distribution.



Examples - MLP and MNIST digit recognition
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Examples - Convolutional Network
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• In this example a CNN with 1 input and 5 outputs is compiled to hardware using 
LeFlow.

• Image shows the result of the CNN when specific 3x3 filters are used as the 
weights of the network



Examples - Convolutional Network
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• It is unreasonable to fit an entire image and weights in the internal memory of an FPGA
○ Common practice: split the image in tiles and process it over multiple batches 

• In this example, each input and output has 32x32 pixels



Examples 

23

• More interesting examples available on our GitHub repository



Benchmarking Individual Layers
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• LeFlow comes with an automated test 
script to run multiple small components

• These components represent building 
blocks needed to create a deep neural 
network

• Simulation times of different blocks 
vary from seconds to hours

• Especially useful for those in the 
community who wish to build upon and 
expand this tool



Quality of results
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• Not as efficient as hand-optimize RTL designs but flexible
○ It is easy to add support for new operations
○ LeFlow should be expanded to support blocks optimized for single 

workload acceleration (e.g. CNN overlays of MlSuite)

• Ongoing work towards evaluating the quality of the results of circuits 
generated by LeFlow



Limitations and Opportunities
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1. LeFlow currently uses kernels meant to be used by CPUs
○ Compiler optimizations and scheduling are able to retrieve a substantial 

amount of parallelism
○ LeFlow would heavily benefit from an XLA back-end with kernels for FPGAs

2. Automatic memory partitioning for ML. 
○ The high dimensionality of inputs/weights and the amount of parallel 

accesses in ML applications is a challenge
○ LeFlow would specially benefit from a machine learning specific automatic 

memory partitioning algorithm



Limitations and Opportunities
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3. Using a customizable fixed-point bit width 
○ Adding fixed-point support
○ Automatically profile the application choose the appropriate 

representation 

4. Debug Infrastructure
○ It is straightforward to use Tensorflow to debug the functionality of an 

implementation
○ Difficult for software developers to debug the generated hardware in terms 

of the original Python code
○ A performance debugging infrastructure suitable for software developers is 

another interesting venue for research.



On-chip debug of Machine Learning Circuits
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On-chip debug
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• Records the behaviour of the design as it runs at speed for later interrogation

• Challenge: 
○ Record enough information on-chip to understand the problem



Why focus on on-chip debug?
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Key observation
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To find certain bugs we must debug in hardware



Why not use common on-chip hardware debug tools?
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Embedded Logic Analyzer (Altera SignalTap II):

Your 
RTL 

Circuit

Debug Tool:
- Chooses signals to trace
- Debug circuitry added

Run

● RTL-level debug is not suitable for debugging applications designed at a high level of abstraction
○ Understanding the hardware is time consuming
○ RTL looks nothing like the original description due to compiler optimizations
○ Beyond the expertise of software developers



Debug levels of abstraction
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HLS-oriented debug

ML-specific debug

Hardware-oriented debug 
Abstraction



On-chip debug for HLS

Capture system-level bugs → Need to run at-speed, on-chip

Solution: Record and Replay

HLS

3. Execute and record

4. Stop and 
retrieve

5. Software-like debug using recorded data
On-Chip 
Memory
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1. User selects variables, 
tool determines signals, 
inserts instrumentation

void qSort(int *arr) {

int piv, beg[N], 
end[N];
int i=0;
int L, R, swap;
…
}

2. Compile



How we used to do it
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HLS Debug - Efficiency
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HLS Debug Instrumentation• Signals are recorded according to selected signals and 

the HLS schedule

• Recorded signals change each cycle

• Circuit-by-Circuit custom compression

• 50x-100x more memory efficient than traditional 

hardware-oriented debug



Debug levels of abstraction
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HLS-oriented debug

ML-specific debug

Hardware-oriented debug 
Abstraction



On-chip debug of Machine Learning Circuits
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• Previous work is not ideal for debugging ML circuits
○ Even longer run-times; “Correctness” hard to determine;  Commonly designed at a high level.

• This work uses domain-specific characteristics of ML circuits to create instruments that:

○ Maximize the utilization of trace buffer space

○ Provide information that is meaningful to an engineer

A flow to accelerate the debug of machine learning applications on FPGAs

New 

New



Debug Instruments

39

Distribution Instrument

• Creates a history of the distribution of the matrix we are observing over time (over multiple frames)

• In a CNN, a frame may represent all calculations corresponding to a single input image

• Many machine learning applications consist of large arrays (eg. activations or weights)

• Instruments track large arrays over time

Overview of our instruments



Debug Instruments
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Spatial Sparsity Instrument

• Stores an indication whether each element of the array is zero or non-zero.

• The same logic could also be used to track elements close to 1, another upper bound or NaN.

Summary Statistics Instrument

• Tracks only one kind of statistic (sparsity, mean, std. dev) per frame. 



User Interface
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Main Differences

• Stepping through frames instead of stepping through clock cycles (hardware-oriented debug) or lines 

of C code (HLS-debug)

• No access to raw values, we can trace the circuit for a longer period



Results
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(HLS-oriented debug)



Results
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Takeaway: 
Domain-specific instrumentation allow us to store more useful information on-chip

(HLS-oriented debug)



Architecture Study
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Distribution Instrument

• In this experiment, we vary the number of bins 

while number of histograms remains the same.

• Frequency drops as the number of bins 

increases, however, the impact is less than 5% 

when using 64 bins and 64 frames.

• Area and memory bits grow linearly with the 

number of bins



Architecture Study
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Spatial Sparsity Instrument

• In this experiment, we vary the number of frames 

traced while keeping the size of each frame 

constant, for several kernels.

• Frequency has not changed for most cases.

• Approximately same initial area overhead all 

circuits that does not increase with the trace size.

• Memory bits grows linearly with the number of 

frames traced.



Future Work
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• Making instrumentation configurable at debug time

○ FPGA synthesis is very slow -> Debug cycles are slow

○ Important for scenarios in which FPGA cannot be turned off

• Adapting this infrastructure debug multiple FPGAs are on a single task

○ Not practical to have one USB JTAG on each FPGA; 

○ Project Brainwave

• Combining this domain-specific instrumentation with general-purpose debug tools

○ Domain-specific   -> Coarse-grained view of circuit for long period

○ General-purpose -> Fine-grained view of circuit for short period 



Final remarks
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Final remarks
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● A compiler is not enough: Engineers expect a complete ecosystem to design  complex 
machine learning circuits.

● So far, we explored:
○ Compiler (LeFlow) 

■ Allows software developers without hardware expertise to implement Deep 
Neural Networks in FPGAs using Tensorflow.

○ On-chip debug of ML applications
■ By specializing the debug instrumentation we store more useful information 

on the chip



• More integration between components of our ecosystem

• Better use of scheduling information, not only for debug, but why not for power

• More specialized solutions for application-specific problems  

Final remarks

49

What is next?
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