
Cadence Tensilica XNNC
Xtensa Neural Network Compiler: Optimizer

Volodymyr Arbatov, Pedro Vaz Artigas, Xianmin Chen, et. al.

Presenter: Maxim Lukyanov

IEEE ML Compiler Workshop

San Jose, CA

March 4, 2019

2 © 2019 Cadence Design Systems, Inc. All rights reserved.

XNNC: Overview
Xtensa Neural Network Compiler

Analyzer

Optimizer

XNNC

Neural Net (NN) arch

NN desc

Trained data

+

Target

HW

Adapter

Vision

CNN/DNA100

kernels & meta

information

Target compiler

Target libs

+
Optimizer

3 © 2019 Cadence Design Systems, Inc. All rights reserved.

XNNC: Analyzer
The front-end

• What’s in it?
– External framework support

– Tensor manipulations

– Network level optimizations &
device-level pre-partitioning

Hardware compatibility

checks

Layer datatype

connectivity

Quantization

XNNC IR

Accuracy evaluation

Fixed point emulation

Floating Point NN

to Optimizer

Various modes, parametrizable

aggressiveness, influences from

connectivity constraints

Layer merge

E.g.: Conv+ReLU

Conv+BatchNorm+Scale

Mean/Variance Norm+Conv

Bit exact with hardware

A framework

adapter (e.g. TF)

Sparsity

Metrics for different

types of nets

Quantization flow

Net

Evaluation Metric

Calibration

Set

Layer wise

histograms

Accuracy/Range

tradeoffs

Net
Validation

Set

Quantization profiles (tradeoffs)

Net
Test

Set
Evaluation Metric

Best quantization profile

Top1/Top5

mAP

Mean IoU

Pixel accuracy

User provided

4 © 2019 Cadence Design Systems, Inc. All rights reserved.

XNNC: Optimizer
The middle-end

• Goal: Map a CNN from high-level pre-optimized
IR into a lower-level representation with heavy-
lifting optimizations

• Targets a family of Xtensa architectures:

– DSPs: VP6, VC5, VQ6, VQ7, etc.

– Accelerators: DNA100 and beyond…

• Recursive optimization process

– Thousands of alternatives evaluated

– Guided by performance estimations

Interim data layout

selection

Graph transformations

(Lowering/rewriting)

Tiling

Loop nest order

Kernel selection

Batching

IR + modified tensors

from the Analyzer

LIR or C or HAL to a back-end

Local memory pinning

IR construction

Redundancy

Elimination

Parallelization

(e.g. multicore)

Local memory

partitioning & buffering

Software pipelining

Global memory reuse

IR code generation

ASG scheduling

Kernel fusion

5 © 2019 Cadence Design Systems, Inc. All rights reserved.

ASG: alternatives search graph
& interim layout selection

• Node – a data object global memory

• Edge – an operation (conv, pool, etc.)

• On construction:

– Search space is heuristically capped
– Contains meaningful transitions between data

object formats

– Augmented with weights (perf model)

• As we go: lower/expand, redundancy
elimination, local edge re-writing

• Goal: Find a fastest performing subgraph
among alternative solutions

– Dijkstra w/ modified relaxation criteria in presence of
“meet” nodes

DWH WHD

 ...

... ...

... ...

... ...

copy copy

convconv

copy copy

pool pool

conv&pool

...

conv

conv&pool&conv

DWH WHD

 ...

... ...

... ...

... ...

copy copy

convconv

copy copy

pool pool

conv&pool

...

conv

conv&pool&conv

6 © 2019 Cadence Design Systems, Inc. All rights reserved.

• Ex: eltWise add – 2 inputs, each supplied in a number of
alternative layouts from predecessor kernels

ASG: More on alternatives…

A1 A2 B1 B2 A1 A2 B1 B2

7 © 2019 Cadence Design Systems, Inc. All rights reserved.

System memory

Blob3Blob1 BlobN...

Local Memory 1

Blob2

Blob2 Blob4 Blob5

Blob5

Blob4 Blob5

Local Memory N

Blob4 Blob5

Local Memory N

Local Memory iLocal Memory i

• Initial

• After pinning to a hierarchy

System memory

Blob3Blob1 BlobN...Blob2 Blob4 Blob5

System memory

Blob3Blob1 BlobN...Blob2 Blob4 Blob5

System memory

Blob3Blob1 BlobN...

Local Memory 1

Blob2

Blob2 Blob4 Blob5

Blob5

Blob4 Blob5

Local Memory N

Blob4 Blob5

Local Memory N

Local Memory iLocal Memory i

ASG: pinning objects to local memory

8 © 2019 Cadence Design Systems, Inc. All rights reserved.

• Extend ASG with nodes representing local memory objects
– Only consider objects that fully fit

• Note: decision is made via ASG – not a heuristic!

• Take away:
– Not always efficient to keep intermediate outputs in local memory

– May lead to:
– Smaller tiles, more loop overhead and DMA ops

– Poorer efficiency of computation kernels

– Kernels – general term can be ISA, fixed function or library functions

– Overfetch (ex: reloading coefficients)

ASG: pinning objects to local memory

Input
Local Memory

Output Coefficients

Flexible

Not, so flexible…

Input
Local Memory

Output Coefficients

9 © 2019 Cadence Design Systems, Inc. All rights reserved.

• Redundant compute:
– Ex: Propagation of larger strides up the graph

ASG: redundancy: strength reduction

ReLU

EltWise

BatchNorm

Scale

1x1, 512s2

BatchNorm

Scale

1x1, 2048s2

BatchNorm

Scale

1x1, 1024s1

ReLU

ReLU

DnSmpl EltWise

BatchNorm

Scale

1x1, 512s1

BatchNorm

Scale

1x1, 2048s1

BatchNorm

Scale

1x1, 1024s2

ReLU

10 © 2019 Cadence Design Systems, Inc. All rights reserved.

• Most spurious copies introduced for connectivity reasons go away

• Ability to utilize non-linear memory operations for copying
– Ex: depth-wise concat in place

• Fuse aggressively to minimize memory objects in a given path

• Transform layout of data objects to allow more efficient memory transfers
and computations

– Example: Pad a tensor to conform to memory access alignment rules

ASG: Redundancy: copies and layouts

Conv Conv
Conv

Conv

11 © 2019 Cadence Design Systems, Inc. All rights reserved.

• Graph transforms/lowering:
– A number of pattern matching rules

– Ex: deconvolution is expanded into a set of convolutions + an interleave
– Interleave can be done in local storage or DMA (i.e. may later disappear)

ASG: Edge rewriting and operations expansion

Input
Bias

Output

Coeff
32x32

Input

Bias

Stack of
convolutions

Output

Interleave

Deconvolution

Coeff
32x32
Coeff
32x32
Coeff
32x32
Coeff
32x32
Coeff
2x2

Coeff
32x32
Coeff
32x32
Coeff
32x32
Coeff
32x32
Conv
2x2

12 © 2019 Cadence Design Systems, Inc. All rights reserved.

XNNC IR: 10K foot view

• Multistage IR
– Operations are subject to stage-based rule

rewriting

– A rule is an transformation or annotation of
the IR

– Explicit semantics for high level operations
– Rules applied “gnostically”

– Loop abstractions – first class citizens

– Converges to straightforward unambiguous
code generation

Attribs

Parallelization

Local memory

Alignment

Padding

Scratch space

Uniform data

...

External

Batching

Internal

Op

Inputs

Outputs

Formula

Op

Inputs

Outputs

Formula

Formula

Kernel

Index function

Loop nest

Formula

Kernel

Index function

Loop nest

Loop Nest

Loop attributes

...

Loop Nest

Loop attributes

...

Loop Nest

Loop attributes

...

f1 fm

Reorder

Interleave

...

f1 fm

Reorder

Interleave

...

, , ,ASG Op1 Op2 Opn...

13 © 2019 Cadence Design Systems, Inc. All rights reserved.

BATCH(input = [ax:DATATYPE0:whd:[227:227:3] pitch:[1:227:51529]]
output = [ay:DATATYPE2:dwh:[1000:1:1] pitch:[1:1000:1000]]
count = 4
Formula ##
dagraph(name = 'formula',

input = [ax:DATATYPE0:whd:[227:227:3] pitch:[1:227:51529]]
output = [ay:DATATYPE2:dwh:[1000:1:1] pitch:[1:1000:1000]]
op(name = 'conv1',

input = [ax:DATATYPE0:whd:[227:227:3] pitch:[1:227:51529],
conv1_coeff:DATATYPE0:whdn:[11:11:3:96] pitch:[1:11:121:363]

DATA: dRandom(1, DATATYPE0:whdn:[11:11:3:96] pitch:[1:11:121:363], -128, 127),
conv1_bias:DATATYPE4:bias:[96] pitch:[1]

DATA: dRandom(2, DATATYPE4:bias:[96] pitch:[1], -128, 127)]
output = [t1:DATATYPE3:dwh:[96:55:55] pitch:[1:96:5280]]
Formula
cnnConv3D((0, 0, 0, 0), [11, 11, 3], (4, 4), 1, 1, True, {'PARAM1’ … 'PARAM10'}, None, False, None)

),
op(name = 'norm1',

input = [t1:DATATYPE3:dwh:[96:55:55] pitch:[1:96:5280],
datastructure0:DATATYPE1:[1024] pitch:[1]

DATA: dRandom(3, DATATYPE1:[1024] pitch:[1], 0, 32767)]
output = [t2:DATATYPE0:dwh:[96:55:55] pitch:[1:96:5280]]
Formula
cnnLRN((5, 5), cnnLRN, {'PARAM1’, … ,'PARAM5'})

),
op(name = 'pool1',

......
),
......
op(name = 'prob',

input = [t13:DATATYPE1:dwh:[1000:1:1] pitch:[1:1000:1000],
datastructure2:DATATYPE2:[9875] pitch:[1]

DATA: dRandom(19, DATATYPE2:[9875] pitch:[1], 0, 65535)]
output = [ay:DATATYPE2:dwh:[1000:1:1] pitch:[1:1000:1000]]
Formula
cnnSoftmax(D, {'PARAM1’, 'PARAM2'})

)

XNNC IR: At the start of compilation

14 © 2019 Cadence Design Systems, Inc. All rights reserved.

• Applicable to a single operation in the search graph and
applied recursively:

– Each local transformation has a set of rules associated with it

– Top level transforms are invoked in-order each examining degrees
of freedom per rule

– A degree of freedom is typically associated with a parameter, e.g. tile size

– If Transform i explored N degrees of freedom applied to a single
parameter, it’ll yield N variants to Transform i+1

– Given M parameters per rule, with each having a freedom degree
it’s a vast space, obviously growing exponentially

– When exploring the search space various heuristics kick in to cap
traversal of the space

• Although order is initially fixed, each transformation may
yield some or no opportunities for subsequent ones

XNNC IR: Local transformations and rules

Tiling

Loop nest order

Kernel selection

Batching

Parallelization

(e.g. multicore)

Local memory partitioning &

buffering

Software pipelining

15 © 2019 Cadence Design Systems, Inc. All rights reserved.

XNNC IR: Introducing loop nests

• Tiling – introduces an initial loop nest structure with default index maps.

• Index mapping function:
– Basically, an affine map for data and iteration spaces

[## Gathers ##
....
H(domain: DATATYPE0:align=X:ndwh:[((ind(2, 7) < 7-1)?(14):(12)):3:11:11] # Ex: Local memory

range: DATATYPE0:align=X:ndwh:[14:3:11:77] # Ex: Global memory
[# offs dom.n dom.d dom.w dom.h ..loops..

[0, 1, 0, 0, 0, 0, 0, 0, 0] # rng.n, pitch: 1
[0, 0, 1, 0, 0, 0, 0, 0, 0] # rng.d, pitch: 64
[0, 0, 0, 1, 0, 0, 0, 0, 0] # rng.w, pitch: 192
[0, 0, 0, 0, 1, 0, 0, 11, 0] # rng.h, pitch: 2112

]
)]

[## Scatters ##
H(domain: DATATYPE3:dwh:[((ind(2, 7) < 7-1)?(14):(12)):55:((ind(1, 2) < 2-1)?(28):(27))]

range: DATATYPE3:dwh:[96:55:55]
[# offs dom.d dom.w dom.h ..loops..

[0, 1, 0, 0, 0, 0, 14, 96] # rng.d, pitch: 1
[0, 0, 1, 0, 55, 0, 0, 0] # rng.w, pitch: 96
[0, 0, 0, 1, 0, 28, 0, 0] # rng.h, pitch: 5280

]
)

]],
Loops
[1, 2, 7, 1]
attribute loop_order: ALoopOrder(2, 1, 0, 3)

16 © 2019 Cadence Design Systems, Inc. All rights reserved.

Strided index mapping:

𝑓 𝑥1, … , 𝑥𝑛 → 𝑦1, … , 𝑦𝑚

𝑦𝑖 = 𝑃𝑖 +෍

𝑗=1

𝑛

𝑥𝑗𝑆𝑖𝑗

Strided index mapping composition

(at compile-time):

𝑔 𝑧1, … , 𝑧𝑙 → 𝑥1, … , 𝑥𝑛

𝑓 ∘ 𝑔 → 𝑓 𝑔 𝑧1, … , 𝑧𝑙 → 𝑦1, … , 𝑦𝑚

൯𝑓(𝑥𝑗

ሻ𝑔(𝑧𝑘

System

Memory
Local

strided

accesses
Downsampling

XNNC IR: Example of an index mapping function*

* - For details, see: F. Franchetti et al., "SPIRAL: Extreme Performance Portability," in Proceedings

of the IEEE, vol. 106, no. 11, pp. 1935-1968, Nov. 2018.

[## Gathers ##
....
H(domain: DATATYPE0:align=X:ndwh:[14:3:11:11]

range: DATATYPE0:align=X:ndwh:[14:3:11:77]
[# offs dom.n dom.d dom.w dom.h ..loops..

[0, 1, 0, 0, 0, 0, 0, 0, 0] # rng.n, pitch: 1
[0, 0, 1, 0, 0, 0, 0, 0, 0] # rng.d, pitch: 64
[0, 0, 0, 1, 0, 0, 0, 0, 0] # rng.w, pitch: 192
[0, 0, 0, 0, 1, 0, 0, 11, 0] # rng.h, pitch:

2112
]

)
],
[## Scatters ##

H(domain: DATATYPE3:dwh:[14:55:28]
range: DATATYPE3:dwh:[96:55:55]
[# offs dom.d dom.w dom.h ..loops..

[0, 1, 0, 0, 0, 0, 14, 96] # rng.d, pitch: 1
[0, 0, 1, 0, 55, 0, 0, 0] # rng.w, pitch: 96
[0, 0, 0, 1, 0, 28, 0, 0] # rng.h, pitch: 5280

]
)

]],
Loops
[1, 2, 7, 1]
attribute loop_order: ALoopOrder(2, 1, 0, 3)

P S

SP

17 © 2019 Cadence Design Systems, Inc. All rights reserved.

• Kernels – generic term for us to describe an atomic entity or a primitive

– Can be an ISA intrinsic, a fixed function unit or a library function

• Kernel descriptions carry attributes
– represented either computationally or via a composition of index mapping functions

• We narrow a set of kernels applicable to an operation with a number parameters
– data layout, data types, I/O sizes, strides/dilations, etc.

• Ultimate choice is based on a set of evaluations based on the XNNC performance
model (using the same recursive scheme)

XNNC IR: Kernel selection

dagraph(name = 'gt',
....
layer(name = 'gt',

input = [input0: ..., input1: ..., input2: ...,]
output = [output0: ...]
Formula
xiConvolved3D_S_MxN_DATATYPE0DATATYPE0IXCa2_MOD_WHD_DWH(
IOPorts([DATATYPE0:whd:[217<5,5>:((ind(1, 2) < 2-1)?(109):(105))<5,5>:3],

DATATYPE0:align=X:ndwh:[((ind(2, 7) < 7-1)?(14):(12)):3:11:11],
DATATYPE4:bias:[((ind(2, 7) < 7-1)?(14):(12))] pitch:[1]],
[DATATYPE3:dwh:[((ind(2, 7) < 7-1)?(14):(12)):55:((ind(1, 2) < 2-1)?(28):(27))], []),
[11, 11, 3], (4, 4), 1, True, None, {'PARAM1' ... 'PARAM10'})

)
)

18 © 2019 Cadence Design Systems, Inc. All rights reserved.

XNNC IR: Parallelization/batching & kernel fusion

• Parallelization and batching:
– Parallelization – effectively picking a loop in a loop nest and performing a loop

interchange to make it outermost
– Can be nested, if hierarchy’s necessary, i.e. vectorization

– Batching introduces a loop over batch of elements
– Merge it with a loop nest for an operation

– Easy, just an extra loop dimension!

– Can also be mapped onto a kernel that handles batching

• Kernel fusion
– Ex: Fusing 2 convolutions

– Tile the last convolution first

– The index function that gathers elements for the bottom convolution will determine the shape of the top
convolution output

– Continue propagate information up to the input of an operation as a whole

– Intermediate data is kept in local memory

– The rest is identical to forming any other loop nest

19 © 2019 Cadence Design Systems, Inc. All rights reserved.

• Main goals:
– Execution of DMA transfers & heterogenous kernels pipelined

– Local memory partitioning and buffering

– Using multi-buffering schemes

• Takeaway:
– Gets funky very fast in presence of fused kernels due to large

IIs and increased buffer pressure

XNNC IR: Software pipeliner

DMA0

DMA1

DMA2

Kernel

Steady State

DMA0

DMA1

DMA2

Kernel

DMA0

DMA1

DMA2

Kernel

DMA0

DMA1

DMA2

Kernel

20 © 2019 Cadence Design Systems, Inc. All rights reserved.

ASG: Final touches

• ASG scheduling:
– Given a dataflow subgraph of ASG – schedule it

– The criteria for a topological sort is reduction of storage pressure
– I.e. minimize the number of buffers that are simultaneously live

• Storage coalescing:
– Decide which storage is shared by which data objects

– A typical allocation problem

– Uses a technique similar to linear scan register allocation sans spilling

21 © 2019 Cadence Design Systems, Inc. All rights reserved.

Performance model

• >500 DSP kernels used by the compiler to select from
– More if we consider accelerators

• Each has parameterized model derived from its code structure
– Covers all DMA transfers, loop nest structure, latency, access patterns for all

kernels

• Very high accuracy

• Why do we need an accurate performance model?

– To generate code, compile, and perform a cycle accurate simulation run:
usually takes about 10 seconds per measure per sample

– Very slow if thousands and thousands of samples!

• Parameters of the performance model of a kernel are built
automatically from large number of samples taken during search.

Network Error

AlexNet 2.5%

Inception V3 1.6%

ResNet 50 3.7%

MobileNet V1 1.4%

22 © 2019 Cadence Design Systems, Inc. All rights reserved.

XNNC: Automatic verification

• Simplified reference is generated along with a net binary:
– high level, bit exact reference functions

• Automated testing of optimized code against reference
– all necessary harness generated by the compiler

• We heavily use an option to apply transforms randomly
– Doesn’t use perf model, just randomly transforms the code

– Ex: random graph transformations, rules, attributes, tile sizes etc.

– Produces valid implementation, verified against a reference
– I.e. it “classifies” or “object detects” just may take a while

– Greatly improves code coverage, may create unanticipated graph topologies.

23 © 2019 Cadence Design Systems, Inc. All rights reserved.

XNNC Optimizer: what was our goal here?

• To mention the obvious:
– Powerful framework with state-of-the-art techniques… sure!

• …but, most importantly:
– High level of abstraction

– Do not lower too soon, hard or impossible to backtrack

– Semantic ties with multiple targets – know what you’re compiling for!

– Unambiguous and straight-forward code generation

– Ultra precise performance modelling
– Critical for IP, don’t need HW to tune

© 2019 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, the Cadence logo, and the other Cadence marks found at www.cadence.com/go/trademarks are trademarks or registered trademarks of Cadence Design

Systems, Inc. Accellera and SystemC are trademarks of Accellera Systems Initiative Inc. All Arm products are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All MIPI

specifications are registered trademarks or service marks owned by MIPI Alliance. All PCI-SIG specifications are registered trademarks or trademarks of PCI-SIG. All other trademarks are the property of their respective owners.

Thank you!

Q&A

http://www.cadence.com/go/trademarks

