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XNNC: Analyzer
The front-end

• What’s in it?
– External framework support

– Tensor manipulations

– Network level optimizations & 
device-level pre-partitioning
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XNNC: Optimizer
The middle-end

• Goal: Map a CNN from high-level pre-optimized 
IR into a lower-level representation with heavy-
lifting optimizations

• Targets a family of Xtensa architectures:

– DSPs: VP6, VC5, VQ6, VQ7, etc.

– Accelerators: DNA100 and beyond…

• Recursive optimization process

– Thousands of alternatives evaluated

– Guided by performance estimations
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Tiling

Loop nest order

Kernel selection

Batching
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ASG: alternatives search graph
& interim layout selection

• Node – a data object global memory

• Edge – an operation (conv, pool, etc.)

• On construction:

– Search space is heuristically capped
– Contains meaningful transitions between data 

object formats

– Augmented with weights (perf model)

• As we go: lower/expand, redundancy 
elimination, local edge re-writing

• Goal: Find a fastest performing subgraph 
among alternative solutions

– Dijkstra w/ modified relaxation criteria in presence of 
“meet” nodes
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• Ex: eltWise add – 2 inputs, each supplied in a number of 
alternative layouts from predecessor kernels

ASG: More on alternatives…

A1 A2 B1 B2 A1 A2 B1 B2
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ASG: pinning objects to local memory
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• Extend ASG with nodes representing local memory objects
– Only consider objects that fully fit

• Note: decision is made via ASG – not a heuristic!

• Take away:
– Not always efficient to keep intermediate outputs in local memory

– May lead to: 
– Smaller tiles, more loop overhead and DMA ops

– Poorer efficiency of computation kernels

– Kernels – general term can be ISA, fixed function or library functions

– Overfetch (ex: reloading coefficients)

ASG: pinning objects to local memory

Input
Local Memory

Output Coefficients

Flexible

Not, so flexible…

Input
Local Memory

Output Coefficients
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• Redundant compute:
– Ex: Propagation of larger strides up the graph

ASG: redundancy: strength reduction
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• Most spurious copies introduced for connectivity reasons go away

• Ability to utilize non-linear memory operations for copying
– Ex: depth-wise concat in place

• Fuse aggressively to minimize memory objects in a given path

• Transform layout of data objects to allow more efficient memory transfers 
and computations

– Example: Pad a tensor to conform to memory access alignment rules

ASG: Redundancy: copies and layouts

Conv Conv
Conv

Conv
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• Graph transforms/lowering:
– A number of pattern matching rules

– Ex: deconvolution is expanded into a set of convolutions + an interleave
– Interleave can be done in local storage or DMA (i.e. may later disappear)

ASG: Edge rewriting and operations expansion
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XNNC IR: 10K foot view

• Multistage IR
– Operations are subject to stage-based rule 

rewriting

– A rule is an transformation or annotation of 
the IR

– Explicit semantics for high level operations
– Rules applied “gnostically”

– Loop abstractions – first class citizens

– Converges to straightforward unambiguous 
code generation
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BATCH( input   = [ax:DATATYPE0:whd:[227:227:3] pitch:[1:227:51529]]
output  = [ay:DATATYPE2:dwh:[1000:1:1] pitch:[1:1000:1000]]
count   = 4
## Formula ## 
dagraph( name   = 'formula',

input  = [ax:DATATYPE0:whd:[227:227:3] pitch:[1:227:51529]]
output = [ay:DATATYPE2:dwh:[1000:1:1] pitch:[1:1000:1000]]
op( name    = 'conv1',

input   = [ax:DATATYPE0:whd:[227:227:3] pitch:[1:227:51529],
conv1_coeff:DATATYPE0:whdn:[11:11:3:96] pitch:[1:11:121:363]

DATA: dRandom(1, DATATYPE0:whdn:[11:11:3:96] pitch:[1:11:121:363], -128, 127),
conv1_bias:DATATYPE4:bias:[96] pitch:[1]

DATA: dRandom(2, DATATYPE4:bias:[96] pitch:[1], -128, 127)]
output  = [t1:DATATYPE3:dwh:[96:55:55] pitch:[1:96:5280]]
## Formula ##
cnnConv3D((0, 0, 0, 0), [11, 11, 3], (4, 4), 1, 1, True, {'PARAM1’ … 'PARAM10'}, None, False, None)

),
op( name    = 'norm1',

input   = [t1:DATATYPE3:dwh:[96:55:55] pitch:[1:96:5280],
datastructure0:DATATYPE1:[1024] pitch:[1]

DATA: dRandom(3, DATATYPE1:[1024] pitch:[1], 0, 32767)]
output  = [t2:DATATYPE0:dwh:[96:55:55] pitch:[1:96:5280]]
## Formula ##
cnnLRN((5, 5), cnnLRN, {'PARAM1’, … ,'PARAM5'})

),
op( name    = 'pool1',

......
),
......
op( name    = 'prob',

input   = [t13:DATATYPE1:dwh:[1000:1:1] pitch:[1:1000:1000],
datastructure2:DATATYPE2:[9875] pitch:[1]

DATA: dRandom(19, DATATYPE2:[9875] pitch:[1], 0, 65535)]
output  = [ay:DATATYPE2:dwh:[1000:1:1] pitch:[1:1000:1000]]
## Formula ##
cnnSoftmax(D, {'PARAM1’, 'PARAM2'})

)

XNNC IR: At the start of compilation
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• Applicable to a single operation in the search graph and 
applied recursively:

– Each local transformation has a set of rules associated with it

– Top level transforms are invoked in-order each examining degrees 
of freedom per rule

– A degree of freedom is typically associated with a parameter, e.g. tile size

– If Transform i explored N degrees of freedom applied to a single 
parameter, it’ll yield N variants to Transform i+1

– Given M parameters per rule, with each having a freedom degree 
it’s a vast space, obviously growing exponentially

– When exploring the search space various heuristics kick in to cap 
traversal of the space

• Although order is initially fixed, each transformation may 
yield some or no opportunities for subsequent ones

XNNC IR: Local transformations and rules

Tiling

Loop nest order

Kernel selection

Batching

Parallelization

(e.g. multicore)

Local memory partitioning & 

buffering

Software pipelining



15 © 2019 Cadence Design Systems, Inc. All rights reserved.

XNNC IR: Introducing loop nests

• Tiling – introduces an initial loop nest structure with default index maps.

• Index mapping function:
– Basically, an affine map for data and iteration spaces

[ ## Gathers ##
....
H(  domain: DATATYPE0:align=X:ndwh:[((ind(2, 7) < 7-1)?(14):(12)):3:11:11] # Ex: Local memory 

range:  DATATYPE0:align=X:ndwh:[14:3:11:77] # Ex: Global memory
[ # offs dom.n dom.d dom.w dom.h ..loops..

[0, 1, 0, 0, 0, 0, 0, 0,  0] # rng.n, pitch: 1
[0, 0, 1, 0, 0, 0, 0, 0,  0] # rng.d, pitch: 64
[0, 0, 0, 1, 0, 0, 0, 0,  0] # rng.w, pitch: 192
[0, 0, 0, 0, 1, 0, 0, 11, 0] # rng.h, pitch: 2112

]
)]

[ ## Scatters ##
H(  domain: DATATYPE3:dwh:[((ind(2, 7) < 7-1)?(14):(12)):55:((ind(1, 2) < 2-1)?(28):(27))]

range:  DATATYPE3:dwh:[96:55:55]
[ # offs dom.d dom.w dom.h ..loops..

[0, 1, 0, 0, 0, 0, 14, 96] # rng.d, pitch: 1
[0, 0, 1, 0, 55, 0, 0,  0] # rng.w, pitch: 96
[0, 0, 0, 1, 0, 28, 0,  0] # rng.h, pitch: 5280

]
)

]],
## Loops ##
[1, 2, 7, 1]
attribute loop_order: ALoopOrder(2, 1, 0, 3)
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Strided index mapping:

𝑓 𝑥1, … , 𝑥𝑛 → 𝑦1, … , 𝑦𝑚

𝑦𝑖 = 𝑃𝑖 +

𝑗=1

𝑛

𝑥𝑗𝑆𝑖𝑗

Strided index mapping composition

(at compile-time):

𝑔 𝑧1, … , 𝑧𝑙 → 𝑥1, … , 𝑥𝑛

𝑓 ∘ 𝑔 → 𝑓 𝑔 𝑧1, … , 𝑧𝑙 → 𝑦1, … , 𝑦𝑚

൯𝑓(𝑥𝑗

ሻ𝑔(𝑧𝑘

System 

Memory
Local 

strided

accesses
Downsampling

XNNC IR: Example of an index mapping function*

* - For details, see: F. Franchetti et al., "SPIRAL: Extreme Performance Portability," in Proceedings 

of the IEEE, vol. 106, no. 11, pp. 1935-1968, Nov. 2018.

[ ## Gathers ##
....
H(  domain: DATATYPE0:align=X:ndwh:[14:3:11:11]

range:  DATATYPE0:align=X:ndwh:[14:3:11:77]
[ # offs dom.n dom.d dom.w dom.h ..loops..

[0, 1, 0, 0, 0, 0, 0, 0,  0] # rng.n, pitch: 1
[0, 0, 1, 0, 0, 0, 0, 0,  0] # rng.d, pitch: 64
[0, 0, 0, 1, 0, 0, 0, 0,  0] # rng.w, pitch: 192
[0, 0, 0, 0, 1, 0, 0, 11, 0] # rng.h, pitch: 

2112
]

)
],
[ ## Scatters ##

H(  domain: DATATYPE3:dwh:[14:55:28]
range:  DATATYPE3:dwh:[96:55:55]
[ # offs dom.d dom.w dom.h ..loops..

[0, 1, 0, 0, 0, 0, 14, 96] # rng.d, pitch: 1
[0, 0, 1, 0, 55, 0, 0,  0] # rng.w, pitch: 96
[0, 0, 0, 1, 0, 28, 0,  0] # rng.h, pitch: 5280

]
)

]],
## Loops ##
[1, 2, 7, 1]
attribute loop_order: ALoopOrder(2, 1, 0, 3)

P S

SP
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• Kernels – generic term for us to describe an atomic entity or a primitive

– Can be an ISA intrinsic, a fixed function unit or a library function

• Kernel descriptions carry attributes
– represented either computationally or via a composition of index mapping functions

• We narrow a set of kernels applicable to an operation with a number parameters
– data layout, data types, I/O sizes, strides/dilations, etc.

• Ultimate choice is based on a set of evaluations based on the XNNC performance 
model (using the same recursive scheme)

XNNC IR: Kernel selection

dagraph( name   = 'gt',
....
layer( name    = 'gt',

input   = [input0:  ..., input1:  ..., input2:  ...,]
output  = [output0: ... ]
## Formula ##
xiConvolved3D_S_MxN_DATATYPE0DATATYPE0IXCa2_MOD_WHD_DWH(
IOPorts([DATATYPE0:whd:[217<5,5>:((ind(1, 2) < 2-1)?(109):(105))<5,5>:3],

DATATYPE0:align=X:ndwh:[((ind(2, 7) < 7-1)?(14):(12)):3:11:11],
DATATYPE4:bias:[((ind(2, 7) < 7-1)?(14):(12))] pitch:[1]],
[DATATYPE3:dwh:[((ind(2, 7) < 7-1)?(14):(12)):55:((ind(1, 2) < 2-1)?(28):(27))], []),
[11, 11, 3], (4, 4), 1, True, None, {'PARAM1' ...  'PARAM10'})

)
)
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XNNC IR: Parallelization/batching & kernel fusion

• Parallelization and batching:
– Parallelization – effectively picking a loop in a loop nest and performing a loop 

interchange to make it outermost
– Can be nested, if hierarchy’s necessary, i.e. vectorization

– Batching introduces a loop over batch of elements
– Merge it with a loop nest for an operation

– Easy, just an extra loop dimension!

– Can also be mapped onto a kernel that handles batching

• Kernel fusion
– Ex: Fusing 2 convolutions

– Tile the last convolution first 

– The index function that gathers elements for the bottom convolution will determine the shape of the top 
convolution output 

– Continue propagate information up to the input of an operation as a whole

– Intermediate data is kept in local memory

– The rest is identical to forming any other loop nest
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• Main goals:
– Execution of DMA transfers & heterogenous kernels pipelined

– Local memory partitioning and buffering

– Using multi-buffering schemes

• Takeaway:
– Gets funky very fast in presence of fused kernels due to large 

IIs and increased buffer pressure

XNNC IR: Software pipeliner
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Kernel
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DMA0
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ASG: Final touches

• ASG scheduling:
– Given a dataflow subgraph of ASG – schedule it

– The criteria for a topological sort is reduction of storage pressure
– I.e. minimize the number of buffers that are simultaneously live

• Storage coalescing:
– Decide which storage is shared by which data objects

– A typical allocation problem

– Uses a technique similar to linear scan register allocation sans spilling
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Performance model

• >500 DSP kernels used by the compiler to select from
– More if we consider accelerators

• Each has parameterized model derived from its code structure
– Covers all DMA transfers, loop nest structure, latency, access patterns for all 

kernels

• Very high accuracy

• Why do we need an accurate performance model?

– To generate code, compile, and perform a cycle accurate simulation run: 
usually takes about 10 seconds per measure per sample

– Very slow if thousands and thousands of samples!

• Parameters of the performance model of a kernel are built 
automatically from large number of samples taken during search.

Network Error

AlexNet 2.5%

Inception V3 1.6%

ResNet 50 3.7%

MobileNet V1 1.4%
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XNNC: Automatic verification

• Simplified reference is generated along with a net binary:
– high level, bit exact reference functions

• Automated testing of optimized code against reference
– all necessary harness generated by the compiler

• We heavily use an option to apply transforms randomly
– Doesn’t use perf model, just randomly transforms the code

– Ex: random graph transformations, rules, attributes, tile sizes etc.

– Produces valid implementation, verified against a reference
– I.e. it “classifies” or “object detects” just may take a while

– Greatly improves code coverage, may create unanticipated graph topologies.
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XNNC Optimizer: what was our goal here?

• To mention the obvious:
– Powerful framework with state-of-the-art techniques… sure!

• …but, most importantly:
– High level of abstraction

– Do not lower too soon, hard or impossible to backtrack

– Semantic ties with multiple targets – know what you’re compiling for!

– Unambiguous and straight-forward code generation

– Ultra precise performance modelling
– Critical for IP, don’t need HW to tune
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