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DA Smart Computing World With Emerging

How to facilitate trustworthy interactions among highly decentralized,
heterogeneous entities?

Outline

U Blockchain basis + Multi-signature

U Secure and Efficient Multi-Signature Schemes for Fabric

U Group-Oriented Multi-Signature Supporting Monotonic
Endorse Policies in Hyperledger Fabric
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) Blockchain — Data Organization

Blockchain: A chain structure connecting blocks of transactions—
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Image from Internet

SCHOOL OF ENGINEERING

Blockchain — Hosted by a
Distributed Network

€| Blockn+l | €| Blockn | €| Blockn-1 | €=

A peer-to-peer network with each node storing a copy (or a part of a copy) of the
blockchain data

Data consistency: consensus algorithm
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Non-repudiation
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Openness and Anonymity Trust

Openness

Supports simple script only

BitCoin

Transactions: coin ownership exchange
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Nakamoto, Satoshi. “Bitcoin: A peer-to-peer electronic cash system." Decentralized Business
Review (2008): 21260.

A peer-to-peer digital currency exchange system
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Ethereum
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A transaction represents a valid arc between two states.

¢

blockchain system is generalized as a state machine.

S
contract token {
mapping (addr
public coinBalance0f
event CoinTran
sender, address rece:

function token (uint
if supply (sup
10000;
coinBalanceOf [
supply;
}

~

Smart contracts
allow complex logic
=> Turing complete
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Image from Internet

* Strong identity management
* Enabled endorsement functions
* Adopt cryptographic digital signatures (ECDSA).

https://r6.ieee.org/scv-blockchain

Validating
Entity

.- HYPERLEDGER FABRIC

SCHOOL of ENGINEERING

June 11, 2024



Silicon Valley Blockchain Chapter, IEEE

11

Blockchain as a Computing
@ Infrastructure

Generalized blockchain system can potentially serve as a
computing infrastructure to facilitate diverse applications
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Challenge: Digital Signature Efficiency

e Endorsement process based on digital signature is
o Inefficient: signature collected from each endorser

o Resource consuming: verification & storage of multiple signatures;
significant broadcasting overhead

o Lack of scalability: 100- 2000 tps.
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A Promising Solution: Multi-Signature

Multi-signature allows a group of signers to jointly produce a single signature

on the same message.
Key aggregation:

@ privatekey apk « KAgg(pkq, ks, ...vky)

Signer 1 P9

_ @ private key 2 m
Siner? i Qo

o Verify(apk, m, o)

@ private key n
signer n & P

Advantage:

® One single signature saves storage space;

® One-time verification improves efficiency. 13
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Existing Multi-Signature Basis

Basic Scheme | Modulus Signature length Computation
Operations

2048 bits 2048 bits Multiplications
Schnorr 2048 bits 448 bits Multiplications
BLS 2048 bits 224 bits Bilinear parings

Multiplication time consuming: 0.0415ms

pairing time consuming: 232.7998ms

O Bilinear pairing operation takes much more time than multiplication operation.
O Considering the signature length and computational cost, we study the
Schnorr-based multi-signature schemes.

SCHOOL ofF ENGINEERING
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Schnorr Signatures

pk = g%

regrZ4

teg”

c < H(t,m)

s« r+4+cx*skmodq

o< (c5s)

Verification:
c=H(g°*pk™¢,m)
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Signing: & &
pky = g% Pk, = g2
T <R Zq T, g Zq
t; < g" t, < g
t « tityts t < tityts
c < H(t,m) c < H(t,m)

sq <11+ c*skymod q Sy < 1y + ¢ * skomod q

S« 51+ 5, +s3modq s« s+ 5, +s3modq

o« (cs) o« (c5s)

Verification:

apk « pky * pky * pk3
c=H(g® *apk=¢,m)

https://r6.ieee.org/scv-blockchain

3 “Plain” Schnorr multi-signatures

pk3 =g
r3 €p Zq

ty3 « g

sk

t « t1t2t3

c < H(t,m)
S3 <13 + ¢ * skymod q

S« 51+ 5, +s3modq

o« (cs)

16
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Problem 1: Rogue-key Attacks

e a malicious endorser arbitrarily claims his/her public key so that
he/she can independently forge a joint signature

- -
pky = g Pk, = g2 /pk;

sk,

apk = pky xpko =g

o The malicious endorser can control apk by claiming his/her public key
based on the other parties public keys

o Hence, he/she can compute signatures under apk by him/herself
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Problem 2: k-sum Attacks

e An attack can succeed if a malicious endorser can simultaneously open k-1
signature oracle queries with honest signers on a message m as s; , where
i € {1,..k — 13}, and get a valid signature o < (c*,s*) on a target message
m* # m, meaning that

k-1 k-1
c* =Zci s* =Zsi+c**sk - ¢* = H(g® »apk=¢,m")
i=1 i=1 _ H(gzlgll TimY)

e Since c; < H(t;, m), where t; can be controlled by the attacker, an attack
can succeed if the attacker is able to construct

k-1 k-1

_ [ Ea k=1, =7
Heom) EEE) 3 H{Em) = H(oE i

c* = ¢ =

i=1 i=1

e The last signer of the endorsement, with excessive power, can forge a joint
signature on a new message.
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K-Sum Problem

e Wagner’s generalized birthday attack (K-sum problem)

o Given k lists of random elements in Z,, find (¢y, ... ¢) in
lists such that ¢; + -+ ¢, = 0 mod g

List 1 List 2 List k
[ I—
I— (|
(| 2 | (|
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Multi-Signature for Blockchain

Xiao Yue, Peng Zhang, Yuhong Liu, “Secure and Efficient Multi-Signature Schemes
for Fabric: An Enterprise Blockchain Platform™, IEEE Transactions on Information
Forensics and Security, 16 (2020): 1782-1794.
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CoSi: Multi-signature Scheme

o A very popular Schnorr-based scheme
e High scalability due to the spanning tree structure
o aloop-free logical topology

o asingle active path between any two network nodes.

The leader node

K-sum problem attacks: the leader of the endorsement,
with excessive power, can forge a joint signature on a
new message.

Rogue-key attacks: a malicious endorser arbitrarily

claims his/her public key so that he/she can
independently forge a joint signature

Endorser network

SCHOOL Of ENGINEERING

Proposed Schemes

e A Gamma Multi-Signature (GMS) — security
o Spanning tree structure (high scalability)

o Proof of possession against rogue-key attacks

o Improved signing process - against k-sum attacks

e An Advanced Gamma Multi-Signature (AGMS) - efficiency

o Improved online efficiency by reordering the signing
process

SCHOOL ofF ENGINEERING
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Proof of Possession

Please prove you
have the

corresponding
secret key sk

My public
key is pk

Proof of possession

e

Verify

Signer Verifier

a = Hy(g1,97)

Proof of possession ™ = (a, d){
d =rx*a— H,(pk) * sk mod q

verification

a = H,(gy, (gfy"2)a™")?
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Proposed GMS - Signing Process

Child €, Signer S, Parent P (Leader S,)

message m message m

e=H,(m) Phase 1: Announcement

partical commitment ¥,

V=g 2
T 7 artical commitment V,
I‘_l.l_]l‘(‘lu p

=y Phase 2: Commitment
=t ]

c= Ha(g‘,f',j’)
challenge ¢

challcasc Phase 3: Challenge

partical response 5,

s, =v,*c—e*sk,

§=5+, §

partical response §,

S =35, |Phase 4. Response

Fig. 1. The signing algorithm of our GMS scheme (We suppose that signer
5; holds the key pair (pk;, sk;). where pk; = (v;, x;). and parent P; works
as a leader Sp. If parent FP; is not a leader, it just works as signer S;. Finally,
the leader Sy outputs (c, §) as the joint signature.).
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. ChildC,

Signer S, Parent P (Leader S,)

message m Message m

partical commitment 7,
Vi=g"
V=Vl 1%

partical commitment 17,

C=Ho(g|,l7,)?)

challenge ¢ challenge ¢

Phase 3: Chall

Phase 2: Commitment

Phase |: Announcement

Fig. 1.

partical response 5,

5=V, *c—e*sk,

5= +Euq"v N

partical response 5,
§=35,

Phase 4: Response

The signing algorithm of our GMS scheme (We suppose that signer
5; holds the key pair (pk;, sk;). where pk; = (v;, x;). and parent P; works
as a leader 5'“. If parent P,' is not a leader, it jl.lh'l works as .\ll_‘__:m_‘r S,'. F'ln;lll}-',
the leader Sy outputs (c, §) as the joint signature.).
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Proposed GMS - Signing Process

Advanced GMS (AGMS)

Child € Signer S, Parent P (Leader 5)

partical commitment 7,,
V=g"
vV =, ¥ partical commitment 7
) H""' '| partical aggregated _

Zi=n]1 e %o | public ey i

Phase 1: Commitment |

o LB S A S
c=Hy(g,V,X)
challenge ¢

MEsSage m

message m

o= H,(m)

Phase 3: Announcement

al response §,

s=wwc—gugk
§=5+X 5,

partical responsc 3,
5=3,

Phase 4: Response

Fig. 2. The signing algorithm of the proposed AGMS scheme (Text in red
indicates changes from Fig. 1. We suppose that signer S; holds the key pair
(pk;, ski). where pk; = (v;, 7). and parent P; works as a leader 5. If parent
P; is not a leader, it just works as signer 5;. The key aggregation algorithm
also runs together with the signing algorithm. Finally, the leader 5 outputs
&) as the joint signature. ).

https://r6.ieee.org/scv-blockchain

Reorder phase 1, 2, 3
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Running Time on the Leader node
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Fig. 7. The CPU running time on a leader node of CoSi and AGMS in
online signing phase (v-axis has logarithmic scale.).
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Fig. 9. The revised Fabric transaction process.
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Performance Testing on Fabric

1000.0
evised Fabric transact proce Online
10.00
=)
S S 100+ ‘
128 P, 12 1 - 2048 409¢ 8192 16384
Number of endorsers

Fig. 13.  The total CPU running time on a client node between the default
Fabric transaction process and the revised Fabric transaction process (v-axis

has logarithmic scale.).
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Another Problem - Flexible
Endorsement

'O Endorsement policy in Fabric can be expressed as:
EXPR(E[, E..]),

where EXPR is “AND”, “OR” or “OutOf”; and E is either an endorser or

another nested call to EXPR.

O Typical endorsement policies are monotonic and group-based:

AND(Orgl.member,’ Org2.member; ...),
where “OR” expression is used to check if any member from Orgl (and Org2)
has endorsed.
U Not supported by existing Multi-signature schemes: Existing multi-
signature schemes mainly focus on “AND?” relationship among multiple

singers, they can only support individual-based endorsement policies like

AND('memberl; member2,..)".

30
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Peng Zhang, Yongwen Huang, Fa Ge, Yuhong Liu, “Group-Oriented Multi-Signature
Supporting Monotonic Endorse Policies in Hyperledger Fabric”, IEEE Blockchain
2023, Hainan, China, Dec. 17-23, 2023

SCHOOL OF ENGINEERING

The Proposed Scheme

® We propose a Group-oriented Multi-Signature scheme, which supports
secure and more flexible endorsement policy

® Based on the proposed scheme, the transaction protocol in Fabric is
optimized, so that the block size and verification time are reduced.

SCHOOL of ENGINEERING
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The Proposed Scheme

Group-oriented multi-signature scheme with smart contract

O Smart contract on blockchains is distributed on peer-to-peer networks,
publicly verifiable, and executed automatically.
O By introducing public and trustworthy smart contracts to be the last signer

responsible for commitment operations, k-sum problem attacks are

prevented.
O It is responsible for:
g 1. Collecting commitments R;; from all signers;
2. Recording the timestamp t and computing
Signer 1 ‘/ Slgner 2 the last commitment W = gH®;
‘/ 3. Computing and Distributing the joint

Smart contra‘ct\‘ commitments.
m
Signer 3 S1gner4 k= ]l'HH Ri;

Fig. 3 The network structure of our scheme

SCHOOL OF ENGINEERING

The Proposed Scheme

O By introducing Chinese Remainder Theorem to combine all
public keys of members in a group into one group public key, the
public key of each member is unknown to all others except the
group administrator, so that only the group public key is involved

in verification.
ki = X, 1(mod p; 1)

J{i’i = Xi:n(mod pi:’?)

SCHOOL of ENGINEERING
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Security Analysis

We conduct a security analysis on the proposed scheme. Based on the

difficulty problem assumption, our scheme satisfies the unforgeability,

anonymity, revocability and traceability.

O Unforgeability: The signature cannot be forged by an attacker.

O Anonymity: The identity of the signer will not be revealed.

O Revocability: Signers who exit the group cannot be regenerated into
legal signatures.

O Traceability: Only the group administrator knows the identities of the

members participating in the multi-signature.
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Comparison

Tablel The comparisons of key and signature length (0 represents the number of groups)

Musig2 1G] |Zq| |G| + |Z|
GMS 1G] |Zq| IG| + (6 + DIZ,|

Table2 The comparisons of computational cost and security assumptions
(Exp represents the calculation cost of an exponential operation in the group)

Musig2 7EXP 2EXP — AOMDL

GMS  2EXP 2EXP 1EXP  0OEXP DL

SCHOOL ofF ENGINEERING
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Nsmber of pners

Fig. 4 Signature time comparisons of Musig2
and GMS.

Number ofsigaers

Fig. 5 Verification time comparisons of Musig2
and GMS
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on Fabric

Crating mode Committing nodes.

Fig. 6 Original transaction protocol in Fabric

https://r6.ieee.org/scv-blockchain
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Fig. 7 Improved transaction protocol in Fabric

Since the proposed scheme introduces smart contracts, we install them on the ordering

nodes, and endorsing nodes need to interact with the ordering nodes.
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Endorsement Policy

AND(OR(orgl.memberl, orgl.member2), ..., OR(org10.memberl,.., org10. member2)

A
f
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Y / Y, ! \ Y PN y
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Fig. 8 The endorsement policy used in this experiment
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Block Siae( i)

Fig. 9 The block size in original and
improved transaction protocols

https://r6.ieee.org/scv-blockchain

Fig. 10 The verification time for each transaction
in original and improved transaction protocols
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Other Relevant Studies

* Autonomous vehicle networks,
* Transactive Energy trading,
* Internet of Things,

42
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