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Vol 20 comprises: 

(1) Tesla AI Chief Explains Why Self-Driving Cars Don’t Need Lidar (complete article) 

(2) 6G Wireless Systems: Vision, Requirements, Challenges, Insights, Opportunities 
(3) A Novel Simulation Framework for the Design and Testing of Advanced Driver Assistance Systems 

(4) Learning to Automatically Catch Potholes in Worldwide Road Scene Images 

 

This series of newsletters is intended to provide the IEEE member with a top level briefing of the many 

different subjects relevant to the research, development and innovation of the connected vehicle. This 

newsletter additionally takes an early peek at 6G and ways in which  its development will differ from 5G. 

 

A note on the Connected Vehicle Newsletter development: Volume 20 departs from the norm and 
includes a complete article. Volume 19 returned to the usual format. Volume 18 was a top-level synopsis 

of the 74 most recent entries from the twelve previous volumes (vol 17 to vol 6) since March 2020.  

 

The objective is to provide a platform for fast learning and quick overview so that the reader may be 

guided to the next levels of detail and gain insight into correlations between the entries to enable growth 

of the technology. Intended audiences are those that desire a quick introduction to the subject and who 

may wish to take it further and deepen their knowledge. This includes those in industry, academia or 

government and the public at large. Descriptions will include a range of flavors from technical detail to 
broad industry and administrative issues. A (soft) limit of 300 to 600 words is usually set for each entry, 

but not rigorously exercised, as in this newsletter where the full article is presented.  

 

As descriptions are not exhaustive, hyperlinks are occasionally provided to give the reader a first means 

of delving into the next level of detail. The reader is encouraged to develop a first level understanding of 

the topic in view. The emphasis is on brief, clear and contained text. There will be no diagrams in order to 

keep the publication concise and podcast-friendly. Related topics in the case of Connected Vehicle 
technology, such as 5G cellular and the Internet of Things will be included. The terms Connected Vehicle 

and Automated Driving will be used inter-changeably. Articles from other published sources than IEEE 

that add to the information value will occasionally be included.  
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This newsletter forms part of the regional Advanced Technology Initiative (ATI) of which connected 

vehicles form a constituent part. Technical articles solely from IEEE journals/magazines are referred to by 

their Digital Object Identifier (DOI) or corresponding https link. The link for each article is provided. Those 
readers who wish to delve further to the complete paper and have access to IEEE Explore 

(www.ieeexplore.ieee.org) may download complete articles of interest. Those who subscribe to the 

relevant IEEE society and receive the journal may already have physical or electronic copies. In case of 

difficulty please contact the editor at kaydas@mac.com. The objective is to provide top level guidance on 

the subject of interest. As this is a collection of summaries of already published articles and serves to 

further widen audiences for the benefit of each publication, no copyright issues are foreseen.  

 

Readers are encouraged to develop their own onward sources of information, discover and draw 
inferences, join the dots, and further develop the technology. Entries in the newsletter are normally either 

editorials or summaries or abstracts of articles. Where a deepening of knowledge is desired, reading the 

full article is recommended.  

 
1. Tesla AI Chief Explains Why Self-Driving Cars Don’t Need Lidar, Ben Dickinson 
The Machine, Making sense of AI, 3 July 2021, (FULL ARTICLE) 
https://venturebeat.com/2021/07/03 

 
What is the technology stack you need to create fully autonomous vehicles? Companies and researchers 

are divided on the answer to that question. Approaches to autonomous driving range from just cameras 

and computer vision to a combination of computer vision and advanced sensors. Tesla has been a vocal 

champion for the pure vision-based approach to autonomous driving, and in this year’s Conference on 

Computer Vision and Pattern Recognition (CVPR), its chief AI scientist Andrej Karpathy explained why. 

 

Speaking at CVPR 2021 Workshop on Autonomous Driving, Karpathy, who has been leading Tesla’s self-

driving efforts in the past years, detailed how the company is developing deep learning systems that only 
need video input to make sense of the car’s surroundings. He also explained why Tesla is in the best 

position to make vision-based self-driving cars a reality. 

 

A general computer vision system: Deep neural networks are one of the main components of the self-

driving technology stack. Neural networks analyze on-car camera feeds for roads, signs, cars, obstacles, 

and people. But deep learning can also make mistakes in detecting objects in images. This is why most 

self-driving car companies, including Alphabet subsidiary Waymo, use lidars, a device that creates 3D 
maps of the car’s surrounding by emitting laser beams in all directions. Lidars provided added information 

that can fill the gaps of the neural networks. 
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However, adding lidars to the self-driving stack comes with its own complications. “You have to pre-map 

the environment with the lidar, and then you have to create a high-definition map, and you have to insert 

all the lanes and how they connect and all the traffic lights,” Karpathy said. “And at test time, you are 
simply localizing to that map to drive around.” It is extremely difficult to create a precise mapping of every 

location the self-driving car will be traveling. “It’s unscalable to collect, build, and maintain these high-

definition lidar maps,” Karpathy said. “It would be extremely difficult to keep this infrastructure up to date.” 

Tesla does not use lidars and high-definition maps in its self-driving stack. “Everything that happens, 

happens for the first time, in the car, based on the videos from the eight cameras that surround the car,” 

Karpathy said. 

 

The self-driving technology must figure out where the lanes are, where the traffic lights are, what is their 
status, and which ones are relevant to the vehicle. And it must do all of this without having any predefined 

information about the roads it is navigating. Karpathy acknowledged that vision-based autonomous 

driving is technically more difficult because it requires neural networks that function incredibly well based 

on the video feeds only. “But once you actually get it to work, it’s a general vision system, and can 

principally be deployed anywhere on earth,” he said. With the general vision system, you will no longer 

need any complementary gear on your car. And Tesla is already moving in this direction, Karpathy says. 

Previously, the company’s cars used a combination of radar and cameras for self-driving. But it has 

recently started shipping cars without radars. “We deleted the radar and are driving on vision alone in 
these cars,” Karpathy said, adding that the reason is that Tesla’s deep learning system has reached the 

point where it is a hundred times better than the radar, and now the radar is starting to hold things back 

and is “starting to contribute noise.” 

 

Supervised learning: The main argument against the pure computer vision approach is that there is 

uncertainty on whether neural networks can do range-finding and depth estimation without help from lidar 

depth maps. “Obviously humans drive around with vision, so our neural net is able to process visual input 
to understand the depth and velocity of objects around us,” Karpathy said. “But the big question is can the 

synthetic neural networks do the same. And I think the answer to us internally, in the last few months that 

we’ve worked on this, is an unequivocal affirmative.” 
 

Tesla’s engineers wanted to create a deep learning system that could perform object detection along with 

depth, velocity, and acceleration. They decided to treat the challenge as a supervised learning problem, 

in which a neural network learns to detect objects and their associated properties after training on 

annotated data. To train their deep learning architecture, the Tesla team needed a massive dataset of 
millions of videos, carefully annotated with the objects they contain and their properties. Creating datasets 

for self-driving cars is especially tricky, and the engineers must make sure to include a diverse set of road 
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settings and edge cases that don’t happen very often. “When you have large, clean, diverse datasets, 

and you train a large neural network on it, what I’ve seen in practice is… success is guaranteed,” 

Karpathy said. 

 
Auto-labeled dataset: With millions of camera-equipped cars sold across the world, Tesla is in a great 

position to collect the data required to train the car vision deep learning model. The Tesla self-driving 

team accumulated 1.5 petabytes of data consisting of one million 10-second videos and 6 billion objects 

annotated with bounding boxes, depth, and velocity. 
 

But labeling such a dataset is a great challenge. One approach is to have it annotated manually 

through data-labeling companies or online platforms such as Amazon Turk. But this would require a 

massive manual effort, could cost a fortune, and become a very slow process. 
Instead, the Tesla team used an auto-labeling technique that involves a combination of neural networks, 

radar data, and human reviews. Since the dataset is being annotated offline, the neural networks can run 

the videos back in forth, compare their predictions with the ground truth, and adjust their parameters. This 

contrasts with test-time inference, where everything happens in real-time and the deep learning models 

can’t make recourse. 

 

Offline labeling also enabled the engineers to apply very powerful and compute-intensive object detection 

networks that can’t be deployed on cars and used in real-time, low-latency applications. And they used 
radar sensor data to further verify the neural network’s inferences. All of this improved the precision of the 

labeling network. “If you’re offline, you have the benefit of hindsight, so you can do a much better job of 

calmly fusing [different sensor data],” Karpathy said. “And in addition, you can involve humans, and they 

can do cleaning, verification, editing, and so on.” According to videos Karpathy showed at CVPR, the 

object detection network remains consistent through debris, dust, and snow clouds. Karpathy did not say 

how much human effort was required to make the final corrections to the auto-labeling system. But 

human cognition played a key role in steering the auto-labeling system in the right direction. 
 

While developing the dataset, the Tesla team found more than 200 triggers that indicated the object 

detection needed adjustments. These included problems such as inconsistency between detection results 

in different cameras or between the camera and the radar. They also identified scenarios that might need 

special care such as tunnel entry and exit and cars with objects on top. It took four months to develop and 

master all these triggers. As the labeling network became better, it was deployed in “shadow mode,” 

which means it is installed in consumer vehicles and run silently without issuing commands to the car. 

The network’s output is compared to that of the legacy network, the radar, and the driver’s behavior. The 
Tesla team went through seven iterations of data engineering. They started with an initial dataset on 

which they trained their neural network. They then deployed the deep learning in shadow mode on real 
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cars and used the triggers to detect inconsistencies, errors, and special scenarios. The errors were then 

revised, corrected, and if necessary, new data was added to the dataset. 

 

“We spin this loop over and over again until the network becomes incredibly good,” Karpathy said. So, the 
architecture can better be described as a semi-auto labeling system with an ingenious division of labor, in 

which the neural networks do the repetitive work and humans take care of the high-level cognitive issues 

and corner cases. Interestingly, when one of the attendees asked Karpathy whether the generation of the 

triggers could be automated, he said, “[Automating the trigger] is a very tricky scenario, because you can 

have general triggers, but they will not correctly represent the error modes. It would be very hard to, for 

example, automatically have a trigger that triggers for entering and exiting tunnels. That’s something 

semantic that you as a person have to intuit  that this is a challenge… It’s not clear how that would work.” 

 
Tesla’s self-driving team needed a very efficient and well-designed neural network to make the most out 

of the high-quality dataset they had gathered. The company created a hierarchical deep learning 

architecture composed of different neural networks that process information and feed their output to the 

next set of networks. The deep learning model uses convolutional neural networks to extract features 

from the videos of eight cameras installed around the car and fuses them together using transformer 

networks. It then fuses them across time, which is important for tasks such as trajectory-prediction and to 

smooth out inference inconsistencies. 

 
The spatial and temporal features are then fed into a branching structure of neural networks that Karpathy 

described as heads, trunks, and terminals. “The reason you want this branching structure is because 

there’s a huge amount of outputs that you’re interested in, and you can’t afford to have a single neural 

network for every one of the outputs,” Karpathy said. The hierarchical structure makes it possible to reuse 

components for different tasks and enable feature-sharing between the different inference pathways. 

 

Another benefit of the modular architecture of the network is the possibility of distributed development. 
Tesla is currently employing a large team of machine learning engineers working on the self-driving 

neural network. Each of them works on a small component of the network and they plug in their results 

into the larger network. 

 

Vertical integration: In his presentation at CVPR, Karpathy shared some details about the 

supercomputer Tesla is using to train and finetune its deep learning models. The compute cluster is 

composed of 80 nodes, each containing eight Nvidia A100 GPUs with 80 gigabytes of video memory, 

amounting to 5,760 GPUs and more than 450 terabytes of VRAM. The supercomputer also has 10 
petabytes of NVME superfast storage and 640 tbps networking capacity to connect all the nodes and 

allow efficient distributed training of the neural networks. Tesla also owns and builds the AI chips installed 
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inside its cars. “These chips are specifically designed for the neural networks we want to run for [full self-

driving] applications,” Karpathy said. 
 

Tesla’s big advantage is its vertical integration. Tesla owns the entire self-driving car stack. It 
manufactures the car and the hardware for self-driving capabilities. It is in a unique position to collect a 

wide variety of telemetry and video data from the millions of cars it has sold. It also creates and trains its 

neural networks on its proprietary datasets, its special in-house compute clusters, and validates and 

finetunes the networks through shadow testing on its cars. And, of course, it has a very talented team of 

machine learning engineers, researchers, and hardware designers to put all the pieces together. “You get 

to co-design and engineer at all the layers of that stack,” Karpathy said. “There’s no third party that is 

holding you back. You’re fully in charge of your own destiny, which I think is incredible.” 

 
This vertical integration and repeating cycle of creating data, tuning machine learning models, and 

deploying them on many cars puts Tesla in a unique position to implement vision-only self-driving car 

capabilities. In his presentation, Karpathy showed several examples where the new neural network alone 

outmatched the legacy ML model that worked in combination with radar information. And if the system 

continues to improve, as Karpathy says, Tesla might be on the track of making lidars obsolete. And I don’t 

see any other company being able to reproduce Tesla’s approach. 

 

Open issues: But the question remains as to whether deep learning in its current state will be enough to 
overcome all the challenges of self-driving. Surely, object detection and velocity and range estimation 

play a big part in driving. But human vision also performs many other complex functions, which scientists 

call the “dark matter” of vision. Those are all important components in the conscious and subconscious 

analysis of visual input and navigation of different environments. 
Deep learning models also struggle with making causal inference, which can be a huge barrier when the 

models face new situations they haven’t seen before. So, while Tesla has managed to create a very huge 

and diverse dataset, open roads are also very complex environments where new and unpredicted things 
can happen all the time. 

 

The AI community is divided over whether you need to explicitly integrate causality and reasoning into 

deep neural networks or if you can overcome the causality barrier through “direct fit,” where a large and 

well-distributed dataset will be enough to reach general-purpose deep learning. Tesla’s vision-based self-

driving team seems to favor the latter (though given their full control over the stack, they could always try 

new neural network architectures in the future). It will be interesting to observe  how the technology fares 

against the test of time. 
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2. 6G Wireless Systems: Vision, Requirements, Challenges, Insights, and Opportunities 

By Harsh Tatari et al 

Proceedings of the IEEE Year: July 2021, Volume: 109, Issue: 7  
 
Abstract: 
Mobile communications have been undergoing a generational change every ten years or so. However, 
the time difference between the so-called “G’s” is also decreasing. While fifth-generation (5G) systems 

are becoming a commercial reality, there is already significant interest in systems beyond 5G, which we 

refer to as the sixth generation (6G) of wireless systems. In contrast to the already published papers on 

the topic, we take a top-down approach to 6G. More precisely, we present a holistic discussion of 6G 

systems beginning with lifestyle and societal changes driving the need for next-generation networks. This 

is followed by a discussion into the technical requirements needed to enable 6G applications, based on 

which we dissect key challenges and possibilities for practically realizable system solutions across all 

layers of the Open Systems Interconnection stack (i.e., from applications to the physical layer). Since 
many of the 6G applications will need access to an order-of-magnitude more spectrum, utilization of 

frequencies between 100 GHz and 1 THz becomes of paramount importance.  

 

As such, the 6G ecosystem will feature a diverse range of frequency bands, ranging from below 6 GHz up 

to 1 THz. We comprehensively characterize the limitations that must be overcome to realize working 

systems in these bands and provide a unique perspective on the physical and higher layer challenges 

relating to the design of next-generation core networks, new modulation and coding methods, novel 

multiple-access techniques, antenna arrays, wave propagation, radio frequency transceiver design, and 
real-time signal processing. We rigorously discuss the fundamental changes required in the core 

networks of the future, such as the redesign or significant reduction of the transport architecture that 

serves as a major source of latency for time-sensitive applications. This is in sharp contrast to the present 

hierarchical network architectures that are not suitable to realize many of the anticipated 6G services. 

While evaluating the strengths and weaknesses of key candidate 6G technologies, we differentiate what 

may be practically achievable over the next decade, relative to what is possible in theory. Keeping this in 

mind, we present concrete research challenges for each of the discussed system aspects, providing 
inspiration for what follows. 

 

Excerpt: …Starting from the technical capabilities needed to support the 6G applications, we discuss the 

new spectrum bands that present an opportunity for 6G systems. While a lot of bandwidth is available in 

these new bands, how to utilize it effectively remains a key challenge. For instance, frequency bands at 

100 GHz and above present formidable challenges in the development of hardware and surrounding 

system components, limiting the application areas where all of the spectra can be utilized. We discuss the 

deployment scenarios where 6G systems will most likely be used, as well as the technical challenges that 
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must be overcome to realize the development of such systems. This includes new modulation methods, 

waveforms and coding techniques, multiple-access techniques, antenna arrays, RF transceivers, real-

time signal processing, and wave propagation aspects. We note that these are all substantial challenges 

in the way of systems that can be realized and deployed. Nevertheless, addressing these challenges at 
the PHY layer is only a part of resolving the potential issues. Improvements in the network architecture 

are equally important. The present core network design is influenced—and encumbered—by historical 

legacies. For example, the submillisecond latency required by many of the new services cannot be 

handled by the present transport network architecture. To this end, flattening or significant reduction of 

the architecture is necessary to comply with 6G use case requirements. The basic fabric of mobile 

Internet—the Transmission Control Protocol/Internet Protocol (TCP/IP)—is not able to guarantee quality-

of-service (QoS) needed for many 6G applications, as it is in effect based on best effort services. These 

and many other aspects require a complete rethink of the network design, where the present transport 
networks will begin to disappear and be virtualized over existing fiber, as well as be isolated using 

modern software-defined networking (SDN), and virtualization methodologies. At the same time, the core 

network functions will be packaged into a microservice architecture and enabled on the fly. (673 words) 

DOI: https://doi.org/10.1109/JPROC.2021.3061701 

 

  
3. A Novel Simulation Framework for the Design and Testing of Advanced Driver Assistance 
Systems , by Florian Schiegg et al 

Excerpt of article published in 2019 IEEE Vehicular Technology Conference (VTC2019-Fall) 

Abstract: 
The number and complexity of newly developed automated driving systems has been constantly rising 

over the past decade. Especially the introduction of vehicle-to-everything (V2X) communication is 

expected to further potentiate this development. In order to be deployed, the functional safety of the 

developed systems has to be assured previously. However, the testing in a representative number of field 

tests is costly and time-consuming. For this reason, virtual test drives have risen as an important option 

for design and testing of automated driving technologies, leaving only the final validation to test with real 

vehicles and thus significantly reducing the overall expenditure. The authors of the work at hand introduce 
a simulation framework based on the vehicle simulator CarMaker, complemented with the middleware 

platform Robot Operating System (ROS) and fed with real traffic data, which allows to automatically test 

advanced driver assistance systems for a large number of real world scenarios by varying topology, 

vehicle and communication parameters, among others. The simulation framework is then used to 

demonstrate the benefit of collective perception (i.e. sharing of on-board sensor data among nearby 

vehicles by V2X communication) for a vehicle merging into a freeway, with metrics such as the vehicle 

awareness on spot and the time it has to plan and execute its maneuver. (210 words) 

DOI: https://doi.org/10.1109/VTCFall.2019.8891221 
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4. Learning to Automatically Catch Potholes in Worldwide Road Scene Images,  

by Javier Yebes et al. 

Excerpt of article published in 2021 IEEE Intelligent Transportation Systems Magazine 

 (Volume: 13, Issue: 3, Fall 2021)  

Abstract: 

Among several road hazards that are present in any paved way in the world, potholes are one of the most 

annoying and involving higher maintenance costs. There is an increasing interest on the automated 

detection of these hazards enabled by technological and research progress. Our work tackled the 

challenge of pothole detection from images of real world road scenes. The main novelty resides on the 

application of latest progress in Artificial Intelligence to learn the visual appearance of potholes. We built a 

large dataset of images with pothole annotations. They contained road scenes from different cities in the 

world, taken with different cameras, vehicles and viewpoints under varied environmental conditions. 
Then, we fine-tuned four different object detection models based on Deep Neural Networks. We achieved 

mean average precision above 75% and we used the pothole detector on the Nvidia DrivePX2 platform 

running at 5-6 frames per second. Moreover, it was deployed on a real vehicle driving at speeds below 60 

km/h to notify the detected potholes to a given Internet of Things platform as part of AUTOPILOT H2020 

project. 

Pothole detectors researched were ultrasonic-based, accelerometer-based, image-based, and depth and 

vision-based. In another approach a 2D LiDAR and a camera were combined. (201 words) 
DOI: 10.1109/MITS.2019.2926370 
 

 

 

 


