Tutorials
Calendar of Events
S
Sun
|
M
Mon
|
T
Tue
|
W
Wed
|
T
Thu
|
F
Fri
|
S
Sat
|
---|---|---|---|---|---|---|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
13 events,
-
Power system frequency and voltage control are vital for maintaining power grid stability. With the large-scale integration of power electronic converter-interfaced sources into power grids (e.g., wind farms, solar-PV systems, and battery energy storage systems), the conventional frequency and voltage control strategies are rapidly becoming inadequate due to reduced system inertia and strength. Therefore, new strategies should be deployed to maintain frequency and voltage within acceptable levels stipulated in grid codes/ rules, such as by employing grid forming and grid-supporting inverters. This tutorial will cover the power system frequency and voltage control aspects in converter-interfaced renewable-rich power grids, including the modeling and controlling of grid-forming and grid-supporting inverters. Moreover, the tutorial will also shed light on emerging system support services in frequency and voltage control domains.
-
Due to changing utility infrastructure with regards to increased penetration of inverter-based generation and retirement of conventional generation, dynamic shunt compensation solutions are becoming ever more vital for transmission system operation and reliability. The emergence of Voltage Source Converter (VSC) STATCOMs with and without energy storage has increased potential grid support applications through grid-forming control strategies. This tutorial presents study methodologies covering functional network and performance requirements during different stages of a grid-forming STATCOM project, including Planning, Specification, Design, Manufacturing, and Commissioning. Validation of the performance using hardware-in-the-loop (HIL) and software-in-the-loop (SIL) testing will be discussed. Case studies and examples will be presented.
-
This tutorial will inform attendees of emerging challenges and opportunities in transmission planning and introduce them to methods to address these challenges and take advantage of these opportunities throughout the transmission planning process, with a focus on the execution of quantitative studies. The following challenges and opportunities will be addressed: (a) Extreme weather and natural disasters (challenge). (b) Large-scale loads and other phenomena on the load side (challenge). (c) Decarbonization policies (challenge). (d) New technologies (FACTS, GETs, etc.) (opportunity). First, each of the challenges and opportunities will be addressed separately, covering: (1) Description of the challenge or opportunity. (2) Incorporation into the transmission planning process: (2.1) Modeling and decision-making in quantitative studies. (2.2) Stakeholder consultation and other process requirements. The trainers will then explore how to consider interactions between these challenges and opportunities to ensure transmission planning contributes to supply reliability, affordability, and sustainability. |
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|