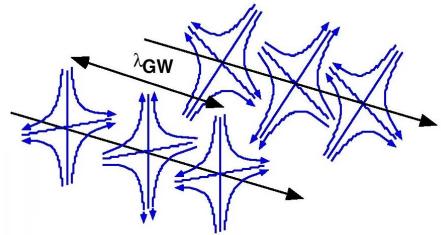


Gravitational Waves and LIGO: A Technical History

Stan Whitcomb IEEE SV Tech History Committee Event 11 October 2018

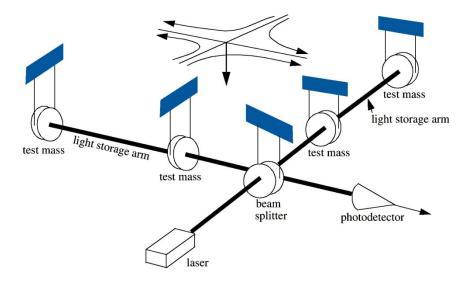
Goal of Talk


- Review a few of the technical developments that enabled LIGO, with emphasis on pre-1995 era
 - » Residual Gas Noise (Vacuum requirement)
 - » Thermal noise
 - » Mirror figure requirements
- Disclaimer: LIGO has an equally "rich" political history—NOT covered in this talk
 - » See e.g., Janna Levin, Black Hole Blues
 - » Caltech Archives--search for "LIGO Oral Histories" at http://archives.caltech.edu/search/index.html

Gravitational Wave Basics

- Einstein (in 1916) recognized gravitational waves in his theory of General Relativity
 - » Necessary consequence of Special Relativity with its finite speed for information transfer
 - » Most distinctive departure from Newtonian theory
- Time-dependent distortions of space-time created by the acceleration of masses
 - » Propagate away from the sources at the speed of light
 - » Pure transverse waves
 - » Two orthogonal polarizations

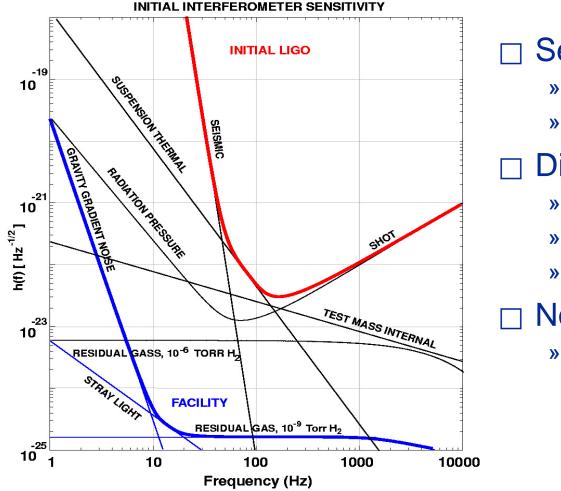
$$h = 2\Delta L / L$$


 $\sim 10^{-21}$ for plausible astrophysical sources

Detecting GWs with Interferometry


Suspended mirrors act as "freely-falling" test masses in horizontal plane for frequencies f >> f_{pend}

 $\Delta L = hL/2$



For a LIGO detector, L ~ 4 km, $h \sim 10^{-21}$ $\Delta L \sim 10^{-18}$ m

Laser Interferometer Gravitational-wave Observatory (LIGO)

The Core Principle Driving LIGO: Noise

Sensing Noise

- » Photon Shot Noise
- » Residual Gas

Displacement Noise

- » Seismic motion
- » Thermal Noise
- » Radiation Pressure

□ Noise sources add

 All noise sources have to be identified, understood and controlled

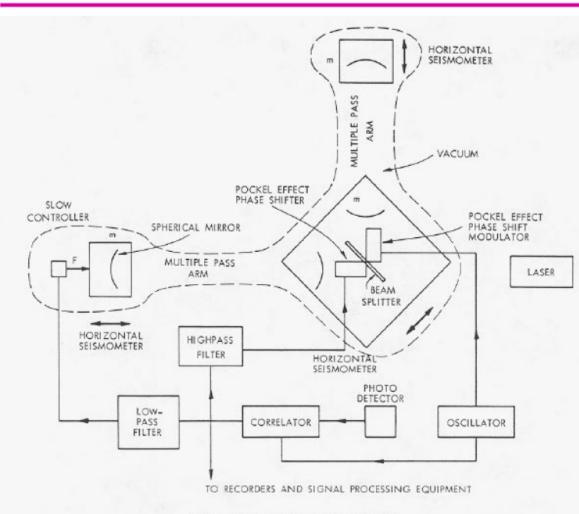
Reference Documents

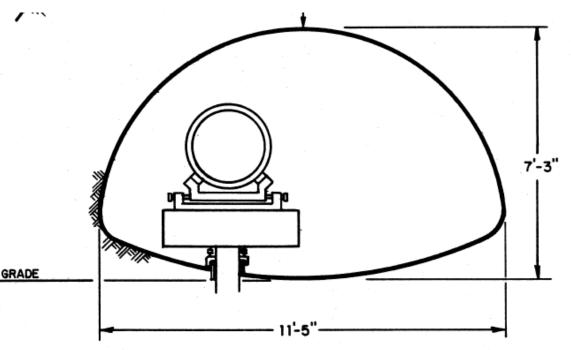
Three documents so central to the technical history of LIGO that they must be introduced immediately

• "Rai's RLE paper"

- » "Electromagnetically Coupled Broadband Gravitational Antenna" R. Weiss, Quarterly Reports of the Research Laboratory of Electronics MIT **105**, p. 54 (1973).
- » Paper "... grew out of an undergraduate seminar that I ran at M.I.T. several years ago..."
- The "Blue Book"
 - » "A Study of a Long Baseline Gravitational Wave Antenna System"
 - » Authors: Paul Linsay, Peter Saulson, Rai Weiss
 - » Dated October 1983, but not really published
- NSF Proposal for LIGO Construction ('89 proposal)
 - » Proposal team: Robbie Vogt, Ron Drever, Rai Weiss, Kip Thorne, Fred Raab, but with contributions from many others

Rai's RLE Paper

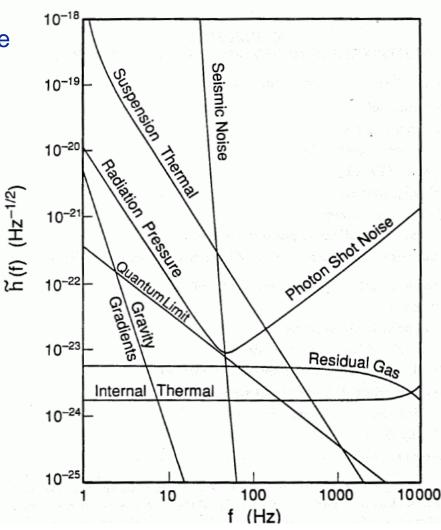



Fig. V-20. Proposed antenna.

Not first suggestion of a laser interferometer to measure GWs, but first detailed noise/ sensitivity analysis

- » Shot noise/ radiation pressure
- » Thermal noise
- » Seismic noise
- » Gravity gradient

» ..


- Science and Engineering study of feasibility
- Comprehensive scope—Chapter titles
 - » Sources of Gravitational Radiation
 - » Physics and Detection
 - » Prototypes and Optical Concepts
 - » Noise sources
 - » Vacuum System
 - » Site survey
 - » Construction
 - » Proposed Design
- Important because of first engagement of engineering firms

The '89 Proposal

- Two Volumes
 - » Science case, detector physics, noise analysis, prototype experience
 - » Engineering design and cost basis
- Defined sensitivity goals, phased approach, scope

IEEE SV Tech History

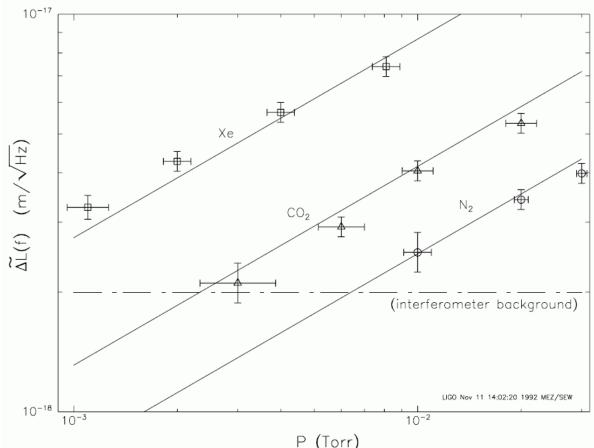
Residual Gas Noise

 Not the most interesting noise source to typical physicist, but important because the vacuum system is one of the largest cost items in LIGO

Residual Gas Noise

- Even though very small, the residual gas in the vacuum system contributes to index of refraction
- Not mentioned in Rai's RLE paper
- The Blue Book (1983)
 - » Has an essentially correct treatment of the noise due to residual gas—statistical fluctuations in the number of gas molecules in the beam causing fluctuations in refractive index
 - » Correct requirement for initial LIGO (~10⁻⁶ torr)
- Correct formulation independently published by the Munich/Garching group
 - » Referenced to Albrecht Rüdiger as unpublished derivation in paper on Munich 30 m prototype ("Noise behavior of the Garching 30-meter prototype gravitational wave detector," Shoemaker et al., *Phys Rev* D 38, 423 (1988))

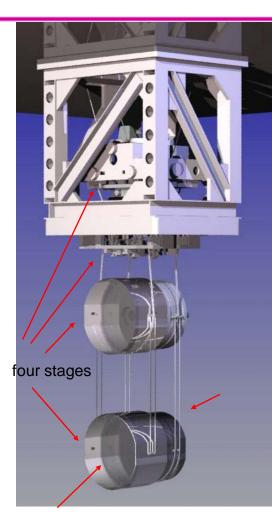
Residual Gas Noise, cont.


- Not entirely a straight line progression
- 1987 LIGO R&D proposal
 - » Initial LIGO requirement quoted (at least one place) as 10⁻³ torr, three orders of magnitude too high
- LIGO '89 proposal
 - » A new formulation of the problem, in terms of the forward scattering matrix for individual gas molecules
 - » Simple mathematical error ended up with incorrect formula
 - » Gave approximately correct vacuum requirement (probably why the incorrect formula was not noticed)

Residual Gas Noise Experiment

- Finally, definitively resolved (better than $\sqrt{2}$ level) and confirmed experimentally in 1994
 - "Measurement of Optical Pathlength Fluctuations due to Residual Gas in the LIGO 40m Interferometer,"
 M. E. Zucker et al., in *Proc. Of the*

Seventh Marcel Grossmann Conference, (1994)


 Just prior to beginning construction (whew!)

Thermal Noise

• One of the most important and complex fundamental noise sources

40 kg silica test mass

Thermal Noise

Rai's RLE paper

- Importance clearly recognized (third noise source mentioned after shot noise and laser frequency noise)
- Single mode analysis for thermal noise, assuming viscous damping (suspension modes and internal modes)
- Suspension not defined as a pendulum
 - » Described as a "long-period seismometer suspension"

The RLE Paper

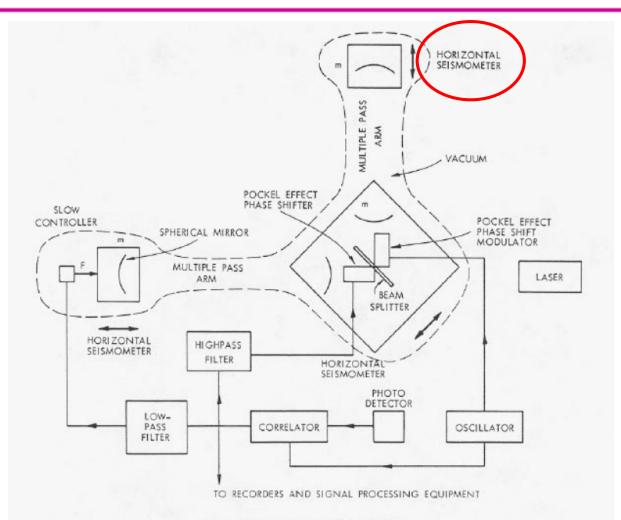


Fig. V-20. Proposed antenna.

IEEE SV Tech History

Thermal Noise

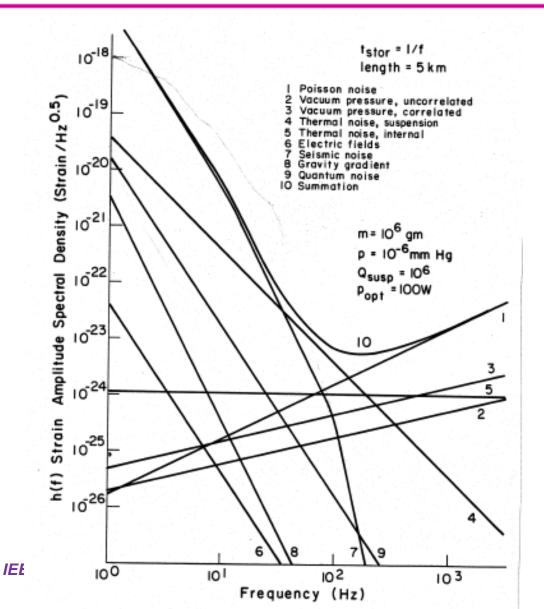
Rai's RLE paper

- Importance clearly recognized (third noise source mentioned after shot noise and laser frequency noise)
- Single mode analysis for thermal noise, assuming viscous damping (suspension modes and internal modes)
- Suspension not defined as a pendulum
 - » Described as a "long-period seismometer suspension"
 - » "The suspensions are critical components in the antenna, and there is no obvious optimal design"
 - » Suspension mode Q ~10⁴ (actual requirement for Advanced LIGO ~10⁹)
- Multimode nature recognized
 - » "The general problem with suspensions in the real world is that they have not one degree of freedom but many,..."

Thermal Noise

The "Blue Book"

LIGO


- Still single mode analysis of thermal noise for estimating noise
- Beginning to recognize the complexity:
 - » "...a frequency independent stochastic force is at this time still only a conjecture."
 - » "There are situations where a blithe application of the model will give the wrong results." (coupled oscillators and servo damping)
- Largely unreferenced, so source of incorrect aspects hard to pin down

» Fused silica Q_{mat} given as ~10⁴ (actual Q_{mat} ~ 10⁷)

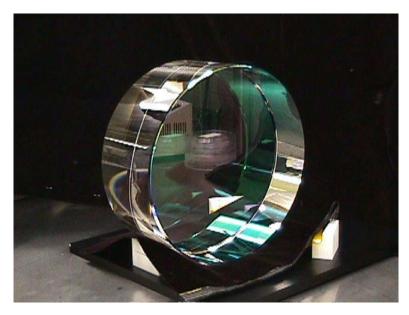
Thermal Noise, cont

Blue Book

- Noise Budget
 - Thermal noise from the suspensions (4) estimated to dominate in mid-frequency band

The '89 proposal

- First (?) mention of the Fluctuation-Dissipation Theorem (powerful theoretical tool)
 - » Not really used, however
- Noise estimates still based on viscous damping, but
 - » "...the damping can be frequency dependent so that a simple measurement of the Q of a resonance is not sufficient to predict the thermal noise off resonance."
- Recognized importance of overlap between internal mechanical modes and optical modes
 - » "Estimates of the equivalent gravitational wave strain ... depend upon the overlap integral of the optical mode shape with the mechanical mode of the mass."


Thermal Noise

- Peter Saulson's paper
 - » "Thermal Noise in mechanical experiments," Phys Rev D 42, 2437 (1990)
 - » Complete set of references!
- Began while Peter was at MIT, during writing of '89 proposal, completed during a sabbatical at JILA
- First (?) presentation in the GW literature of:
 - » Structural damping on an equal basis with viscous damping
 - » Thermoelastic damping
 - » Clear discussion of Fluctuation-Dissipation Theorem
 - » Multi-mode systems, systems with localized losses, etc.
- Set the stage for progress in several areas: Yuri Levin's work, modern appreciation of coating thermal noise, etc.

Mirror Figure Requirement

- One of the biggest challenges in initial LIGO
- Requirement for Initial LIGO detectors: 0.6 nm rms

Mirror Figure Requirement

- Not mentioned in RLE paper
- Not mentioned in Blue Book
- 1987 LIGO R&D Proposal:
 - » "Mirror specifications (substrate material, surface polish, figure and slope errors) have been developed with industry."
 - » No clear discussion of where those requirements came from
 - Requirement given as 20 nm (for laser wavelength ~500 nm) (Correcting for wavelength difference, ~60 times poorer than requirement for initial LIGO detectors)

 Same requirement repeated, without elaboration in '89 proposal (still for wavelength ~500 nm)

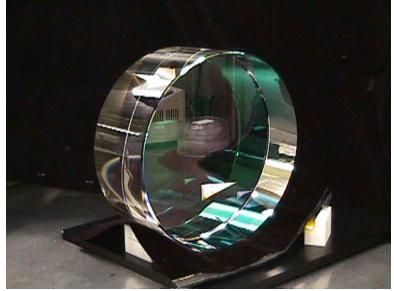
	Parameter	Value	Notes ¹
	Mirror Coatings		
	Cavity storage time	2 msec	
	Scattering + absorption	$\lesssim~50~{ m ppm}$	
	Surface microroughness	< 3 Å rms	for < 50 ppm scattering
	Coating uniformity	≲ 1.5%	rms variation of transmission coefficient over central 8 cm
	\mathbb{C} avity length L	4.0 km	(2.0 km)
<	Millior curvature R	3.0 km	(1.5 km)
	Figure error	200 Å	rms over central 8 cm
	Cavity stability parameter		
	$g = 1 - \frac{L}{R}$	-0.33	(-0.33)

TABLE IV-B-3 PARAMETERS FOR MAIN OPTICAL CAVITIES

Mirror Figure Requirement, cont.

- Began to realize challenge as a result of effort to define specification of the substrate uniformity
 - » Mike Burka (MIT postdoc) undertook a program of measurements and modeling to study effects of mirror substrate inhomogenities on the dark port contrast (to assure adequate recycling gain)
- Slowly the requirement began to tighten
 - » Developed optical modal model for full interferometer
 - » First FFT models for interferometer a few years later
- By 1995, when construction of detectors began
 - » Requirement had tightened to $\lambda/400$
 - » Laser type changed from Ar+ laser to Nd:YAG (wavelength from 500 nm to 1064 nm)
 - » "Discovered" the AXAF Test Flat (LIGO sized optic polished by Perkin-Elmer for NASA x-ray satellite—approximately 1 nm rms)

Test Mass/Mirror Specification


- Detailed optical modelling led to final specification (another factor of ~4)
- Polishing

LIGO

- » Surface uniformity < 0.6 nm rms $(\lambda / 1600)$
- » Radii of curvature matched < 3%

Coating

- » Scatter < 50 ppm
- » Absorption < 2 ppm
- » Uniformity <10⁻³
- The final challenge was to convince industry that not only could they do it, they were already doing it

- Some of the challenges facing LIGO were recognized early, and the path to overcoming them was steady, even if difficult (thermal noise)
- Some of the challenges were recognized early, and the path to overcoming them involved both positive and negative progress (residual gas noise)
- Some of the challenges were not recognized until rather late in the project, and had to be overcome under intense pressure (mirror figure reqt.)