Teaching CMOS to Surf mm-Waves

Thursday July 17, 2007 Berkeley Wireless Research Center Ali M. Niknejad

The Big Kahuna: Jagadis Chandra Bose

 "Just one hundred years ago, J.C. Bose described to the Royal Institution in London his research carried out in Calcutta at millimeter wavelengths. He used waveguides, horn antennas, dielectric lenses, various polarizers and even semiconductors at frequencies as high as 60 GHz..." (http:// /www.tuc.nrao.edu/~demerson/bose/bose.html)

The Young Surfers

Nuntachai P.

Zhiming Deng

Ehsan Adabi

Bagher Afshar

Sahar Tabesh

Jung Dong Park

Cristian Marcu

Wei-Hung Chen

Debo Chowdhury

Omar Bakr

JiaShu Chen

Mounir Bohsali

Amin Arbabian

Reza Zamani

APPLICATION DRIVERS

The "Last Inch"

Universal Mobility

Automotive Radar

- Short range radar for parking assist, object detection
- Long range radars for automatic cruise control, low visibility (fog) object detection, impact warning
- Long range vision: automatic driver

mm-Wave Imaging ... THz?

- Use of microwave scattering from objects to predict image
- A low-cost, noninvasive solution (meV versus keV)
- Active and Passive Microwave Imaging
- Ultrawideband imaging
- THz detection ... ?

TeraView Ltd

Concealed Weapons Detection

Passive "Camera" contains many receivers

QinetiQ Passive Array

TeraView Ltd

Low Power Phased Array

- A fully integrated low-cost Gb/s data communication using 60 GHz band.
- 10 Gb/s at 100mW per channel should be possible! (10pJ/ bit) at 10's of meters

Distributed MIMO

Use 60 GHz band for local communication and form a MIMO at cellular bands using a cluster of radios.

THE FATE OF PASSIVE ELEMENTS

Passive Devices Don't Scale

For fixed frequency, area of inductors roughly constant
Multiple metal layers allow more compact inductors but high Q inductor still single layer (top thick layer)

Microprocessor or Inductor?

- It is widely appreciated that the area of an inductor in today's CMOS is equivalent to a powerful CPU
- Low frequencies: Get rid of them
 - Use broadband circuit techniques
 - Analog design = RF design ... use feedback
 - Use linearity enhancement schemes for out of band blockers
- High frequencies:
 - Area is still reasonable
 - T-line versus lumped?
- What to do with all that metal?
 - Slow wave structures

Scaling Helps and Hurts

- Can build very high density caps
- Cu and thick metal stacks were very exciting (130nm, 90nm)
- Metals are getting thinner (low K)
- Inductors and T-lines are getting worse

Inductor or T-Line?

- LC resonators have good Q factor ... varactors are problematic above 40GHz
- High Z0 quarter wave resonators \rightarrow loop inductors

Optimal Taper Profile

- Andress and Ham [JSSC 2005] showed that a tapered resonator has improved Q
- Assumed a constant Z0 line.
 What if you remove this constraint?
- Result looks like an LC tank!

Cristian Marcu

Transformers Scale to mm-Waves

- Isolation, impedance matching, biasing ...
 Good insertion loss
- Compact layout compared to T-lines

Broadband mm-Wave PA

- Two stage transformer coupled PA
- Pseudo-differential design
- Transformer used for tuning, AC coupling, and biasing

PA Die Photo

- Area: 0.25 mm²
- Small area due to transformers

Debopriyo Chowdhury and Patrick Reynaert

Measured Performance

- Broadband gain (45 65 GHz)
- Good matching (55 65 GHz)
- Stable (K > 1)
- $P_{-1dB} > 9dBm$
- $P_{sat} = 12.3 \text{ dBm}$

Debopriyo Chowdhury and Patrick Reynaert

TEENY TINY BUT VERY FAST

"Roundtable" 90nm Layout

• MSG 60GHz = 8.5 dB, NFmin $\sim 3-4$ dB

• $f_{\text{max}} = 300 \text{ GHz}$ (*extrapolated*), $f_{\text{T}} = 100 \text{ GHz}$

• Highest reported $f_{max}/f_T=3$ ratio for CMOS! Babak Heydari, Mounir Bohsali, Ehsan Adabi

Mason's Unilateral Gain

 $T = \frac{|k_{21} - k_{12}|^2}{4(\Re(k_{11})\Re(k_{22}) - \Re(k_{12})\Re(k_{21}))}$

- Apply lossless feedback to unilateralize the 2-port
- Properties of U:
 - If U > 1, the two-port is active. Otherwise, if U 1, the two-port is passive.
 - U is the maximum unilateral power gain of a device under a lossless reciprocal embedding.
 - U is the maximum gain of a three-terminal device regardless of the common terminal.
- U is very sensitive to any loss in the 2-port. Good way to test accuracy of model *and* measurements.

Cascode HF Bilateralization

- MSG of cascode close to U of common-source device below 30 GHz
- At 60 GHz MSG of cascode same as common-source ... device is no longer unilateral

mm-Wave Cascode Device

Cascode Gain Enhancement

- Tune out parasitics or design as a two-stage amplifier.
- Cannot use shared junction layout.

N-port Unilateralization

Babak Heydari

Single Transistor Scheme

$$\begin{array}{lll} \Re(Y_{ext}) & = & \underbrace{\frac{\omega^2 C_1 C_2}{g_{ds}}} \\ \Im(Y_{ext}) & = & -\omega(C_1 + C_2) - \frac{g_m C_2}{g_{ds}} \end{array}$$

$$\begin{aligned} \Re(\overline{Y_{11}}) &= g_m + g_{ds} (1 + \frac{C_1}{C_2}) \ge 0 \\ \Re(\overline{Y_{22}}) &= \frac{\omega^2 (C_1 - C_2) C_1}{g_m^2 + \omega^2 C_1^2} g_{ds} \ge 0 \end{aligned}$$

Stable if $C_{gs} > C_{gd}$

Babak Heydari

Unilateralization of Cascode Device

Possible to simultaneously cancel the real and imaginary of Y₁₂ using a gate inductance on cascode device.

• Substantial gain enhancement possible (MSG 8 dB \rightarrow 20 dB). Babak Heydari

Classic Distributed Amplifier

DA with Internal Feedback

Proposed Cascade DA

- Conventional DA's at input and output with *m*-derived sections
- Gain boosting internal feedback DA at core

Amin Arbabian

Measured Response

Amin Arbabian

60 GHz Front-End Receiver

Bagher Afshar, Yanjie Wang Ali M. Niknejad

60GHz Link Margin

Link budget for a 1Gb/s 60GHz wireless system at ~1m communication distance

Tx Power	+10dBm	PA at P ₋₁ dB	Background Noise	-174dBm	KT at room
Tx Antenna Gain	+2dB			+90dB	1GHz
Path Loss	-68dB	Path loss at	Noise	. 3040	noise BW
		1m		+10dB	NF of
Shadowing/			Figure	1000	receiver
Fading	-10dB		Net Noise	-74dBm	
Loss			Power	-740Dm	
Rx Antenna	TOAD				
Gain	TZUD				
Net Signal					
Power	-640BM				

SNR at input =10dB adequate for many

modulation schemes

Process Performance

- 90nm digital process with f_{T} =100GHz
- Cascode device unconditionally stable for *f* >40GHz
- Maximum stable gain is 9.1dB for cascode and 8.2dB for a common source device

60GHz Front-End Receiver

- Includes LNA, Mixer, VGA, DC off-set cancellation loop, and output buffer
- Output buffer included for measurement purposes

LNA Schematic

- Two stage cascode LNA
- CPW Transmission line with $Z_0 = 50.8\Omega$
- Consumes 14.5mW from a 1V supply
- LNA output matched to 50Ω

Cascode Design Issues

- Vdd Finger Mos Shared junction devices **Layout Parasitic** Cap Cap Inductance Unconditionally stable at DC Bias *f* =60GHz Mos Finger Finger Cap Сар Cap High maximum available **RF** Output RF gain of 9.1dB at 1V Finger I=7.25mA Next Stage Input Cap High isolation (S_{12}) DC Bias ᠕᠕ Finger Mos Modeling required for gate W 40um Cap Cap of the cascode transistor
- Bias circuit uses C-R-C network to prevent low frequency oscillation

Cascode Gate Inductance

42

LNA Simulated Process Variation

- Vary T-line lengths to emulate process variations
- Electrical length variation due to layout dependent performance

Mixer Schematic

High Frequency Loss Mechanism

- High frequency signal loss through the intersection parasitic capacitances
- Conversion gain could be improved more than 7dB by tuning this node

Gain Enhancement Tuning Network

- Series tuning transmission line is less sensitive to variations in electrical length
 - It's longer and more natural to layout
 - Mainly concerned about modeling errors rather than actual length variation

Balun Design

- Single-turn lateral balun
- Converts the single-ended LO
 - signal to differential
- Matches the LO port directly to 50Ω
 - Removes the need to add additional matching networks
 - Decreases the LO power loss

Simulated Balun Performance

- Optimum width and spacing to minimize the loss
- Design depends on transformer coupling (K) and winding Q factor

- VGA: variable gain, wide bandwidth, wide tuning range
- DC Offsets Correction: input & inter-stage offset correction
- Inverse Scaling: bandwidth extension, reducing power

VGA Cell Schematic

- Modified Cherry-Hooper amplifier
- Wide tuning range by M_D and M_F
- Vc is analog control voltage
- Vdd=1V

Die Photo of the FE RX

- Die area=1.55mm² (including pads)
- 90nm digital CMOS process
- Power consumption =24mW from
 - 1V Supply
- The RF/DC pads are part of the design and not de-embed ded

RF

RF and LO Port Matching

- Input match <-15dB (center) and <-9dB for the 60GHz band (57GHZ-63GHz)
- Small signal LO port match < -25dB (center) and <-9dB for the 60GHz band

Receiver Power Gain and BW

- Peak receiver gain 55.5dB
- Gain tuning range from -8.5dB to 55.5dB
- Receiver IF bandwidth > 2.2 GHz
- IF bandwidth varies from 2.2GHz to 3.2GHz (high gain to low gain mode)

Noise and Linearity

- Noise figure measurement using 50-75GHz noise source
- DSB NF < 6.35dB at high gain mode (V_c=0.8V)
- P-1dB= -26dBm at low gain mode (V_c=0.1V)

Performance Summary

Technology	90nm digital CMOS	<i>f_T</i> =100GHz	
Power Gain	-8.5 to +55.5dB	>60dB gain tuning range	
Noise Figure	6.1-6.35dB	High gain mode	
Input P _{-1dB}	-26dBm	Low gain mode	
Input return loss	>-15dB (center)	>-9dB across the band	
LO port return loss	>-25dB (center)	>-9dB across the band	
Upper <i>f_{-3dB}</i>	2.2GHz-3.2GHz	High gain-Low gain	
Power Dissipation	24mW	1V Supply	

Conclusion

- CMOS technology offers
 - Fast transistors (low noise)
 - Low supply voltage and poor linearity
- Circuit techniques can overcome many limitations in linearity and power
- Technology scaling mostly beneficial for mmwave
 - High f_{max} transistors, reduced power consumption
 - Circuit techniques to realize broadband and near $f_{\rm T}$ designs

Acknowledgements

- DARPA TEAM Program, C2S2
- STMicroelectronicschip fabrication and support
- BWRC Member Companies
- UC Micro Program
 - Panasonic, Nokia, Broadcom, Analog Devices