Rethinking Analog: Digital Driven Analog Design Mark Horowitz

Chip Design Is Growing Up

- We have come a long way
 - From op amps and SSI components
- To today's mega SOC

IBM Cell Processor

And Analog Design Is Getting Harder

- Requirements are growing
 - More bits, higher speeds, lower power
- Transistors are getting less precise
 - Ft might be better
 - Matching is worse
 - Vdd range smaller

Analog a component in a larger system

Our Current Solutions ...

- Digitally assisted analog
 - ADC calibration, PA and DAC pre-distortion, mostly digital PLLs, ...

Why Are We Moving This Way?

Digital logic is small

Why Are We Moving This Way?

Digital power scales better than analog

- Digital
 - Energy/gate transition CV²
 - (NAND2) in 0.13µm CMOS is order 10fJ
- Analog
 - State-of-the-art 10-bit Nyquist ADCs is order 1nJ
 - 1nJ/10fJ= 100,000
- For energy
 - Tens of thousand gates are "free"

What Is the Problem?

- Today's integrated chips need analog
 - > 50% of all chips have some analog
- Only 2% of transistors are "analog"
 Analog/digital design times are comparable
- Average number of re-spins grows from one to three when analog is on board
 - Big impact on cost and time to market

Embracing Change:

- Rather then using digital logic to fix stuff
 - And incrementally change design
- Ask the question:
 - Given nearly unlimited digital processing power, what analog operations are essential to preserve the information in the analog signals?
 - Does this provide a new set of building blocks for analog designs

Rethinking Analog

New System Level Analog Approach

- What does the system really require
 - Is there a way to change the system?
- What is the minimal requirements
 - For measuring signals, might only need resolution
 - Accuracy, linearity, etc can be corrected
 - Digital logic is much easier to design
- Look at three examples
 - ADC, link front end, supply noise measurement

Digital Nonlinearity Compensation

- Use gates to measure and correct distortion
 - Not analog circuits
- Must track changes overtime
 - Correct for analog drift

Back to the Future

Precision Amplifier

+ Lower Noise

- + Increased Signal Range
- + Lower Power
- + Faster
 - Nonlinear Use DSP to linearize!

Example: Pipeline ADC Prototype

Open-loop amplifier in first, most critical stage

- Statistics based system ID
 - allows continuous parameter tracking
- Judicious analog/digital co-design
 - Only two correction parameters (linear and cubic error)

Measurement Results

Stage1 Power Breakdown

High-Speed A/D for Wireline Links

- Real cables have high-frequency loss
 - And reflections
- So data pulses get filtered

Equalization

- Create inverse filters to compensate
 - FIR transmitter filter popular
 - Attenuate low freq to flatten freq
 - Cleaner signals, but smaller as well
 - Can take many taps
 - DFE input filter
 - Subtract off residual error
 - Number of taps limited if done in analog domain

Data

rallel

Pal

b.

b,

b

Filter Taps

Out

Complex Equalization Implies Digital

- But a high-speed links needs a very fast ADC
 - And power efficiency is key

Target 25Gsps, ~100mW, 4-5bit performance

Leverage system environment, constraints

System Will Have Great Clocks

- And lots of transistors
- Interleave ADC
- Leverage clocksTo simply ADC

Use Single Slope Converter

- No linear amplifiers
 - Only a comparator (almost digital element)
 - Creates a number to voltage conversion
 - Need not be linear
- Tconv = dt * 2^{Nbits}, but dt and N are small

New Paradigm For Charge Transfer (Aside)

Op-amp forces virtual ground

Comparator detects virtual ground

90nm Itanium Microprocessor Noise

S. Naffziger, B. Stackhouse, T. Grutkowski, D. Josephson, J. Desai, E. Alon, and M. Horowitz, "The Implementation of a 2-Core, Multi-Threaded Itanium Family Processor," *Journal of Solid-State Circuits*, Jan. 2006.

Measuring "Random" Supply Noise

- Supply noise is basically deterministic
 - But extremely complicated to calculate
- "Noise" is a label for a random process
 - Can be characterized by its frequency spectrum
- Measure autocorrelation to find spectrum of supply noise
 - Extension of sub-sampling technique
 - Only needs 2 low rate samplers

- Don't need V for all t just need sample pairs
- Autocorrelation is an average property
 - Nyquist frequency set by minimum τ
 - Not by sampling rate
- Supply noise is cyclostationary
 - With extra processing, easy to extend measurement technique to this too

Measurement System Block Diagram

E. Alon, V. Stojanović, and M. Horowitz, "Circuits and Techniques for High-Resolution Measurement of On-Chip Power Supply Noise," *Journal of Solid-State Circuits*, April 2005.

"ADC" Implementation

Chip Designers Like Measurements...

0.13 µm Link,

90nm Itanium,

90nm SOI I/O, ...

- Measurement circuits included in several chips:
 - Rambus (0.13 µm, 90 nm SOI),
 - Intel/HP (90 nm, 45 nm),
 - AMD (65 nm SOI),
 - TI (90 nm),
 - NEC (90 nm)

Great! Are We Done?

- Is system optimized analog it?
 - Depends on how hard it is to design.
 - System optimized analog will still have some analog
- Let's do a brief trip through memory lane ...

My Misspent Early Teens 70-74

- Got my first IC around 71
 - Uncle was an EE
 - Signetics 8T80? (pre 7400)
 - Thought it was very cool, but never used it

The MIT Years 74-78

- Built lots of stuff at home
 - Calculator 3 pMOS chips, incandescent 7-seg
 - Digital clock 1 pMOS chip, LED 7-seg

Design Tools

Chips: 7400 TTL, and pMOS LSI

Fabrication Tools

1978 – Hello Silicon Valley

Hot new technologies

- 3μ nMOS
- Depletion loads and 5V operation, TTL I/O

HMOS –2147 at Intel

VMOS at AMI

Worked at Signetics

- Worked on bipolar designs
 - 1 kbit ECL CAM, ISL gate array

- Design Flow
 - We did have circuit simulation

Backend (Layout) Flow

- Handed schematic to layout designer
 - She produced stick diagrams to check

Layout Flow Cont'd

- She drew it with color pencils on mylar
 - A central group digitized it,
 - Plotted results on large flatbed pen plotters

Manually checked DRC and ERC

Computer DRC only before tape-out

We Have Come A Long Way,

- Digital chip design today is very different
 - Verilog input, with some external IP
 - Floorplan information
 - Tools generate the chip
 - But you need to be expert in using the tools
- Design moved through many phases
 - Spice, custom layout
 - Logic, Std cells manual placement/routing
 - Synthesis, automatic placement/routing
 - SOC design macro block reuse

Well, Maybe Not (for Analog)

- Now draw schematics on a computer
- And layout is done directly on computer too
- But the process is still manual

John - Layout designer at Micron

Analog Design Tools Still Primitive

- Basically a custom flow
 - With no ERC, SI checks
- Problem likely to get worse not better
 - As scaling slows, more technology options
 - Many transistor types, capacitors, resistors, etc.
 - Using these features ties design to fab
 - RET techniques make layout "interesting"

Digital Analog Design

- Don't just use more digital gates
- Make analog design more like digital
 - Better encapsulation of function
 - Methods for system validation
 - Automatic electrical rules checking
 - Better reuse of components
- Reduce time to port design

- Digital design leverages automation
 - Binary logic abstraction
 - Similar constraints and goals for each circuit

Analog CAD Tools

Multi-Variable Optimization

Time

- Analog circuits are custom designed
 - Wide range of functionalities
 - Implicit goals and constraints
 - Different checks/objectives for each circuit

Analog Design

- Analog design tool scaling
 - SPICE and custom layout
 - Better SPICE and custom layout
 - Matlab, SPICE, and custom layout
 - Not much change
- Basic Problem
 - Little/no encapsulation of functional blocks
 - No abstraction / ERC pairs
 - Leads to large amount of analog redesign

Management Problem

- Must port a mixed signal block to new fab
 - Old design is great
 - But former design is not working on the port
- New designer looks at block
 - And doesn't like the way it was designed
 - It is not the way that she would do it
- There is little validation documentation around
 - So you trust the new designer
 - You need to redesign the block

Need to Capture Goals/Constraints For Each Analog Circuit

- Need to record designer's intention
 - Circuit topology and sizes records answers
 - Need to know what questions were asked
 - What problems were tested
- Only (good) designers know this
 - Needs to be captured as part of the design
- Offer incentives to encourage capture
 - Make the documentation benefit the current designer

Design: Circuit Simulation

Annotated Schematics

- Annotate specifications and goals
 - For each circuit on the schematic
- Annotate constraints on schematic
 - Requirements for correct operation
- Annotations create simulation files
 - And data collection routines

Active Comment Operation

- Written on circuit's schematic
- Composed of predefined functions

Executed by a prototype engine

Next Link To Functional Simulation

- In mostly digital systems
 - Need to simulate many cycles to validate system
 - This is usually to slow to run in SPICE
 - To slow even in fast SPICE engines
 - Write functional model for analog block
 - How to validate this model?
 - How to make the system simulation worst-case?
- Once you have intent, and tests
 - Need to link these to functional models

Layout: The Final Frontier

- Layout rules are getting ridiculous
 - RET creates many issues
 - DRC decks are not complete
- Proximity effects:
 - Feature dimensions
 - Strain variations
- Regularity is key
 - Move to gate matrix designs?

Conclusions

- The nature of design is changing
 - Basic CMOS circuit forms are maturing
 - Scaling has changed cost ratio of analog/digital
- Creates an opportunity to rethink analog design
 - Stanford RAD Project
- Two main research directions:
 - Leveraging system constraints and digital gates
 - Making analog design more like digital design