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Cellphones are the main cameras




All imaging involves heavy computation

Image Capture

{j{}@>‘] ® | Computation

lmage
Deblurring




Mobile image processing is expensive

Image Capture Computation

CPU/GPU 13.6 minutes

1810 mAH battery 2284 J per frame

Phone dead after
deblurring only 10
photos!




Energy-Efficient Hardware Accelerators

Image Capture Computation

Deblurring
Accelerator

1.7 seconds
0.1)J per frame
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Video decoding

[Huang ISSCC 2013]
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T
Image Understanding

[chen Isscc 2016] CNN

|
[chen Isscc 2016] CNIN &

[Moons Isscc 2017] CNN
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Energy-Efficient Imaging Accelerators

Image
Deblurring

[P. Raina, M. Tikekar,
A. P. Chandrakasan
ESSCIRC 2016,

JSSC 2017]

HDR & Low

Light Imaging .. :
R Rithe, P. Raina, N.1ckes, | 10X - 100X reduction in runtime

S. Tenneti, A. P.

Chandrakasan 1000x lower energy

ISSCC 2013, -3
JSSC 2013] - % B |

Motion : il
Magnification - Motion

[P. Raina, D. Jeon, W. T.

Freeman, F. Durand, A. P. »
Chandrakasan, In progress] . , |
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Camera Shake Blur




e —

Blur Kernel




Image Deblurring

'

| Kernel _>._’
Estimation

Deconvolution

Input Blurred Blur
Image Kernel

Kernel Estimation

Deconvolution

134 s

A

99% of deblurring
time

Target for acceleration

Output Sarp
Image



EM-based Image Deblurring

Blurred Image (B)

| S

ID-> E-step

Expectation Maximization Blur

— (EM) based Kernel Estimation Kernel
(K)

Deconvolution

A 4

M-step

Initial Kernel (K) [Levin CVPR 2011]

From IMU or
Random Guess

23



EM-based Image Deblurring

'®

-%

N\ S“_ep

/
- -

[Levin CVPR 2011]

Regularization
based on
characteristics
of naturally
occurring sharp
images and
kernels is
enforced
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Challenges and Techniques

* Highly sequential and iterative with nested loops

— Extracting parallelism from matrix operations for
reducing execution time

— Sharing arithmetic units and on-chip memory
between non-concurrent stages to reduce area and
leakage power

* Very high memory bandwidth

— Exploiting spatial and temporal locality of memory
accesses with on-chip scratchpad buffer to reduce
memory bandwidth

25



Deblurring Accelerator Architecture

e O
e A -
On-chip ) Image Refinement (E step) .
Scratchpad IRLS Based Deconvolution Engine
Buffer: 16 Weights Conjugate Shared 1D
SRAM Banks || Engine Gradient Solver FFT Engine
\_ J 'y 7y A

y Y \ /

\ 4 A 4 A 4

Scheduling Engine

A A A

DRAM Upsampler Image Gradient
PRAM Ctrl (for:nulti- Correlator || Projection Solver -
resolution
processing) Kernel Refinement (M step)

[P. Raina, M.Tikekar, A. P. Chandrakasan, ESSCIRC 2016, JSSC 2017, ISSCC SRP 2016]



High-Throughput Image Correlator

* M-step: k = arg min%kTAk —b'k; k=0

* For an m x m kernel and n x n sharp image S, the m? x m?
correlation matrix is given by

n—1 n-—1

A(mx, +y;, mx; +y,) = z z S(xXx—x,y—=y1) *S(x — X3,y — y2)

x=m—-1y=m-1

e Shifts (x4, 1), (x,y5) vary from (0,0)to(m —1,m — 1)



Image Correlator

Shift 2 (x5, y5)

S S 8 56 5 S 55 T Sharp Image
s 22 ddddodoad nxn
(0,0)
(0,1)
(0,2)
= (1,0)
<
< (1) >
= (1,2)
wm
(2,0)
Multiply and accumulate in
(2,1) the orange area
(2,2) O(m*.n%) Computation Time

9 X 9 Correlation Matrix for a 3 X 3 kernel
m?2 x m?2 m X m



Diagonal Computation Reuse

Makes the computation of the correlation matrix O(m?n?) rather
than O(m*n2), providing a speedup of 42x for a 13x13 kernel

Shift 2 (xz, yz)

~ ~ ~ —~ ~ ~ —~ —~ ~—~ bo— IO
o < N ©o I « o A —r,+t .
S O O &4 49 4 o o o 0" "0 Integral image
—=-7 L3 of the overlapped
(0,0) product
0,1
O Sl PLEAL PILE
: | b, -1
0.2) Relative Shift it
>‘5‘ (1,0) = (X1 T x2,)1 —y2) + (1,)0) 4__1__ ?
<
= (1.1 o mininiel teieinte itk piehel el aiaieiel g
Z (1,2)
n ~= ~ /,’ |2 |1 Io bzbl
(2’0) ‘NN“~~~~ ///
(2.1) e !
b, — 1,




6-Parallel Correlator with Image Tiling

o addr
Relative shift — Read Unit (with ixels | Image
address management) |« P Buffer
pixels shifted pixels
[ [ [ > | shift
v v v v \ 4 v v registers
Correlation PEs PE PE 1 PE 2 PE 3 PE PES5
v v v v v v
Results Buffers 0 1 2 3 4 5
v v v v v v
D BN O
<<‘0<<‘., <. Image tiling
A for parallel
v 'y v
O access to any
two shifted
versions
Correlation Matrix P




Gradient Projection Solver

1
min, —kTAk —bTk;k >0

NV

Image Correlator

Compute Cauchy Point Perform Conjugate
Initial | First local minimum along the Gradient Refinement |  Updated
kernel gradient projected on to the Over non-zero kernel kernel
k search space entries only
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My seeapdnrasistipditakioosipanpamsive
memory
Minimize %kTAk — bTk to get the best k, where k > 0
Large (up to 841x841 pixels)

~ N R s R

o1 Yo [P Yo + ap1dx;

a1 X1 X1 + Axy Y1 y1+ag1Ax
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Hardware Sharing in Gradient Projection

Sharing of floating point units between the two steps results in
56% area savings in solver hardware

Initial
kernel

Compute Cauchy Point
First local minimum along the
gradient projected on to the

search space

Perform Conjugate
Gradient Refinement

Over non-zero kernel
entries only

Updated
—>
kernel

Shared Floating Point Units

FPAdd

FPMult

FPSub

FPDiv
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Image Deblurring Accelerator

7

Technology | 40 nm CMOS
Core Area 2.1 mm X 2.1 mm
Gate Count | 2046 k
SRAM Size 272 kB
Core Supply |09V
Voltage
1/O Supply 2.5V
Voltage
Frequency 25 —-83 MHz
Core Power | 59.5 mW

(0.9V, 83 MHz)
Kernel Size 7 X71t029 X 29

pixels

34




Image Deblurring Demonstration




Deblurring Results on Real Images

Input Blurred Image (1920>X1080 pixels) Deblurred Image Estimated Kernel

PSS ' |MCHOCOLATE & ALMOND

NATURALLY FLAVORED
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Deblurring Results on Real Images

Input Blurred Image (1920>X1080 pixels)  Deblurred Image Estimated Kernel
™ A P 21X21

g, ™
| hl‘ BN




Energy and Runtime Reduction

78x reduction in kernel estimation time, 56x reduction in total
deblurring time for FullHD image and three orders of
magnitude reduction in energy w.r.t. CPU

Size Time (s) Energy (J)
Algorithm and Platform | Kernel | Patch | Image Estiﬁgzirl)er: DequrrFirljg Estir:zir:)er:
EM on Intel Core i5 13x13 ligg 12(2)23 134.00|  134.75|  467.000
™ || | we| |
521005% '\('S\F’)'S'A Tesla 15x15 : 42?{ 169.70 |  170.50 :

[1] M. Hirsch, C. J. Schuler, S. Harmeling and B. Schoélkopf, "Fast removal of non-uniform camera shake,” ICCV, pp.

463-470, 2011.
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Energy Reduction with Voltage Scaling

At the minimum energy point, the energy consumption is 33%
lower than at nominal, and can be used for batch processing

4.5 120

4.0

35 o9v | 100
. 59.5 mW .
v 3.0 - 80 E?
£ 25 =
g L 60 &0
c 2.0 o
> c
© 15 t L 40 W

1.0

- 20
0.5 _
10 lterations
0.0 0

30 36 42 48 54 60 66 72 78 84 90
Frequency (MHz)



Energy Scalability with Iterations

Number of EM iterations can be tuned to trade off image
quality with runtime giving 10x energy scalability

Blurred HEM Estimated Deblurred

Image Iterations  Kernel Output
140
1.8 | 83 MHz, 0.9V, 59.5 mW
1 1.7 120
15
£
A 14 i
3 ® — 1.2 !
GJ .
/, £ o9 e
: ® HE
£ g6 10x energy 20
¥ 05 scalability
10 ® 03 | 20
0.2 | @ '
/ 0.0 0
Sharp ® 01 2 3 4 5 6 7 8 91011
Image EM lIterations 40

[
o
o
®

Energy (m)J)



Energy (mJ) o

Energy Scalability with Kernel Size

Kernel size can be tuned to achieve energy scalability

260 / Down-sample

83 MHz, 0.9V, 59.5 mW ;@
240
220

200 Bllurred Kernel
mage i i
180 g Estimation

160
140
120
100
80
60

40 Final
20 Deconvolution
0

7x7
Up-sample

13 x 13

A 4

5 7 9 11 13 15 17 19 21 /

Kernel Size 2.15x reduction in energy ® Full Sharp

Image
41



Summary: Image Deblurring Accelerator

* First hardware accelerator for image deblurring employing
techniques such as

— Computation Reuse: Statically based on shared computation and
dynamically based on sparse data updates

— Hardware Sharing between non-concurrent stages to reduce area and
leakage power

— Memory management: On-chip scratchpad buffer to reduce memory
bandwidth

e 78x reduction in kernel estimation time, and 56x reduction in
total deblurring time of FullHD images

* 3 orders of magnitude reduction in energy

* 10x energy scalability allows trading off runtime with image
qguality in energy-constrained scenarios

42



Energy-Efficient Imaging Accelerators
v e

Image
Deblurring

[P. Raina, M.Tikekar,
A. P. Chandrakasan
ESSCIRC 2016,

JSSC 2017]

HDR & Low
Light Imaging

[R. Rithe, P. Raina, N. Ickes,
S. Tenneti, A. P.
Chandrakasan

ISSCC 2013,

JSSC 2013]

Motion |
oo . S Motion
Magnification | ' Magnification

[P. Raina, D. Jeon, W. T.
Freeman, F. Durand, A. P.

Accelerator
(HINH

|
Chandrakasan, In progress] - |

43




Gaussian vs Bilateral Filtering

N
1°= & G,(n)1 I = & GG, (L, -1 I

p—n

n=-N n=-N

Gaussian Bilateral

[Tomasi, ICCV 1998] “**



B I I ateral G I I d [Chen, SIGGRAPH 2007]

2D Image
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Bilateral Grid

0 1 2

2D Image
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Bilateral Grid

0 1 2 A > 1.8
Fny 1 0.7
ol | | W | | 2
L L my £
Ul NEE = =
1 N L Histogram  Summed Intensity

0.49

0.44

a7



Bilateral Grid

0 1 2 A > 1.8
Fny 1 0.7
ol | | W | | 2
L L my £
Ul NEE = =
1 N L Histogram  Summed Intensity

g

0.49 N o 1o
5
<
0.87 [PERNWY :
0 0
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Bilateral Grid

0

1 2 i 2 1.8
2 1 0.7
%
[> E
B
Histogram Summed Intensity
2D Image \ \
2
‘0
= 2,1.8) || (2,19 | (2 1.8)
= 1,07 || @14 | @07
D, O
1 ' 0 0
3D Grid O : - :
o) 1 2




Bilateral Grid

0

1 2 0 2 1.8
2 1 0.7
%
=
Histogram Summed Intensity
2D Image \ \
>
c 2,18) || 1.9 | (@ 18)
= 1,07) || 214 | (@07
0. 0
1 (O y 0
3D Grid : . :
0) 1 2




Grid Filtering (Convolution)

51



Grid Filtering (Convolution)

N N N .
NN N | N\
N AN

S S
AN . N A .
SO
N\ AN AN
\ | \—
N N NN ANEEEA N
AN AN AN N\ AN
\ \ \ |
Grid Gaussian Kernel

The grid intensities and weights are convolved with a
3x3x3 Gaussian kernel — equivalent to Bilateral
filtering in the 2D image domain
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Grid Interpolation

* Output pixel at location (X, y) Is obtained by tri-linear
Interpolation of 2x2x2 filtered grid

Wo log, (W, +w,)

(X

. Wy = Y/Gs 'j F
r o |W, =]+l -ylog W,
Linear Interpolation

r+1

F )
22> Linear

F,"L_s] Interpolation

r+l1

r

Fpn—> Linear
5, —>| Interpolation

:I Linear Ly output pixel (x, y)

Interpolation

Linear _)D_ r dimension
Interpolation

i dimension

L[ Linear _>D_
_|—> Interpolation

N

Nig

F —l :
12 Linear
F| —s] Interpolation

B — | near s ‘
F"_s| Interpolation

j dimension >3



Bilateral Filter Engine: Line Buffering

3 4 5 6

W-3 W-2 W-1

Stored in
SRAM

Temporary Buffer

A

* Grid Filtering
® Convolution kernel: 3%x3x3

®* Convolution engine begins filtering block (i, j) when
block (i+2, j+1) is being assigned

Block being assigned
Block being filtered
Blocks used for filtering
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Bilateral Filter Engine: Line Buffering

3 4 5 6 W-3 W-2 W-1

°°°°°° Stored in
...... SRAM

A A | Block being assigned
‘ Y J Block being filtered
Temporary Buffer Blocks used for filtering

| Block being interpolated

~ /) Filtered Blocks used for interpolation

* Grid Interpolation
®* Tri-linear interpolation: 2x2x2

* Interpolation engine begins interpolating block (i, J) when
block (i+2, j+1) is being filtered and block (i+4, j+2) is
being assigned
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Reconfigurable Processor

‘ YN = . . .
le —5f Weighted e Bilateral Filter Bilateral Filter
Ine =] Average ~
l R Grid L Grid L]
le, — o Assignment Assignment
)
I, — HDR >1 0 1N l © l' .=
ey — Creation - I/ 5 5
: . \am
g Convolution [ T Convolution IS
lLoR € ) k Engine L. % Engine Lo %
I < Contrast 3 l, m l, @
lrc < Reduction x _ _
lor < T L Grid | ] Grid | -
Interpolation Interpolation
| Shadow L
LLE < Correction TI-
| )/ ~

[R. Rithe, P. Raina, N. Ickes, S. Tenneti, A. P. Chandrakasan ISSCC 2013, JSSC 2013]



Processor Implementation

Iy EEERNEEEEEEEEEEEEEEEEEREEET \'; Technology 40nm CMOS
( EENENENERNRNRNENERNENRNEEE | [V P —
| : :
|
=2 Ol | ensistor 19 94 million
- = Count
| i |
= =i Bilateral Filter }- = SRAM 21.5 kB
— =i Engine 1 = —
- S | Coresupply | oy 10 0.0v
. — = —ll§ | Voltage
H =S|
=g Ol | /OSuPRlY | g gy t0 2.5v
= = Voltage
1 LIl
— E - | | Frequency 25 -98 MHz
= = Bilateral Filter { = C
=i . =it | Core Power 17.8mW (0.9V)
-] Engine 2 =l
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] -
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|
|
1
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Real-Time Demonstration System

Demonstrated
at ISSCC 2013
Demonstration
Session
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HDR Imaging Results
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Low-light Imaging Results
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Processor Performance

Processor Technology | Frequency | Power Runtime Energy

(nm) (MHz) (mW) (s) (mlJ)
Intel Atom 32 1800 870 4.96 4315
Qualcomm Snapdragon | 28 1500 760 5.19 3944
Samsung Exynos 32 1700 1180 4.05 4779
TI OMAP 45 1000 770 6.47 4981

5:2x 287x

This Work 40 98 17.8 0.77 7 13.7 7V

For 10 Mpixel image size
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Summary: Reconfigurable Computational
Photography Processor

* Multi-application processor for computational
photography — implements HDR, low-light imaging and
glare reduction

e On-chip cache (21.5kB) reduces memory bandwidth from
1.6 GB/s to 356 MB/s (78% lower) and memory power
form 175 mW to 108 mW (38% lower)

* Reconfigurable bilateral grid for 7.2x energy-scalablity
from 1.37 mJ/Mpixel at (16 levels, 16x16 blocks) to 0.19
mJ/Mpixel at (4 levels, 128x128 blocks)

e Real-time processing of HD images with 17.8mW power
consumption at 0.9V, 280x more energy-efficient
compared to mobile CPU

* Energy scalable implementation enables efficient
integration into mobile devices
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Designing Domain Specific Architectures

e Future is about ASICs but with some
programmability
e Specialization for

— For a class of problems

— For a platform (mobile, cloud, automotive, |oT)
with different design targets (energy, throughput,
latency, accuracy)



Designing Domain Specific Architectures

e Efficiency comes from

— Modifying the algorithm (at different levels) such that it
becomes well suited for hardware implementation

— Reduced or amortized instruction overhead by doing a lot
of work per instruction by exploiting

e Data parallelism
 Complex operations

— Reducing precision and using the right data encoding
(affects both compute and memory)

— Designing a memory hierarchy that exploits locality

* Key challenges
— Algorithm-architecture co-design
— Designing a domain specific programming model
— Lowering design costs



WHAT AM | WORKING ON RIGHT
NOW?



Stanford Agile Hardware (AHA) Project

With Mark Horowitz, Pat Hanrahan, Clark Barrett, Kayvon Fatahalian and all AHA
Group Students

Coarse Grained Reconfigurable Array (CGRA)

1
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Stanford Agile Hardware (AHA) Project

With Mark Horowitz, Pat Hanrahan, Clark Barrett , Kayvon Fatahalian, and all AHA
Group Students

Coarse Grained Reconfigurable Array (CGRA) Programming Toolchain
Directed Acyclic Graph

Application (Halide) <

Compiler

CorelR Mapper

CGRA Place
and Route

Driver

—— 16 bitbus —— 1 bitbus :
Configured

. Switch box == 16 bit Connection box CGRA

mm 1 bit Connection box o



Stanford Agile Hardware (AHA) Project

With Mark Horowitz, Pat Hanrahan, Clark Barrett , Kayvon Fatahalian, and all AHA
Group Students

Coarse Grained Reconfigurable Array (CGRA) Application (Halide) | Staged generator that

captures
Logical - Logical design
Description - Physical design
(Verilog — like) - Testing/verification
- Software API
Logical
Description’
(Verilog-like)
Floorplan
Logical
. Description”
—— 16 bit bus —— 1 bit bus (Verilog-like)

B Switchbox == 16 bit Connection box Testing Collateral

m= 1 bit Connection box Logical
Description””

(Verilog-like)
Verilog Physical Design Collateral = Documentation




Stanford Agile Hardware (AHA) Project

With Mark Horowitz, Pat Hanrahan, Clark Barrett , Kayvon Fatahalian, and all AHA

Group Students

Coarse Grained Reconfigurable Array (CGRA) Application (Halide)

Logical

Description
(\/eriloo — like)

Staged generator that
captures

- Logical design

- Physical design
-__Testing/verification

_ increasing levels of fidelity

Software first approach combined with an end-to-end
hardware generator enables rapid design space
exploration over a large set of applications with

mm 1 bit Connection box Logical
Description””’

(Verilog-like)

—

Verilog Physical Design Collateral

- 69
Documentation



Halide to ASIC

With Xuan Yang, Kartik Prabhu, Mark Horowitz and Example: Image
Kayvon Fatahalian processing + DNN kernels
. ] Input Image
* Extension of Halide to CGRA/FPGA
« Hardware generation using Y
templ.ates Line buffer 1
* Questions that we want to address Template 1
— Given a set of templates and and an Kernel 2
application (graph of kernels), how do :
you automatically decide which Line buffer 2
template to use for which sub-graph? |
— How do you optimally partition
resources (figure out parameters for
the template instantiations)?
— How do you virtualize the templates Template 2

when you are resource constrained? D
— How do we find the templates? -
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Leveraging New Memory Technologies

With Haitong Li, Weier Wan, Philip Wong and
Subhasish Mitra

 Many applications are T

SRR IR

memory bound + Ou G | G

d read AP

— Avoid reading out - leverage PR R B

. ps H He

new memory technplogles for G:}\ G;,Z\ o
performing processing in 1 1 |
memory LI, Iy

— Leverage new memory
technologies that offer high
bandwidth via 3D integration



Designing Domain Specific Architectures

e Efficiency comes from

— Modifying the algorithm (at different levels) such that it
becomes well suited for hardware implementation

— Reduced or amortized instruction overhead by doing a lot
of work per instruction by exploiting

e Data parallelism
 Complex operations

— Reducing precision and using the right data encoding
(affects both compute and memory)

— Designing a memory hierarchy that exploits locality

* Key challenges
— Algorithm-architecture co-design
— Designing a domain specific programming model
— Lowering design costs



