Energy-Efficient Circuits and Systems for Computational Imaging and Vision on Mobile Devices

Priyanka Raina

Stanford University praina@stanford.edu

SSCS Seminar Oct 18, 2018

Domain Specific Architectures

Priyanka Raina

Stanford University praina@stanford.edu

SSCS Seminar Oct 18, 2018

whoami

- Past
 - Completed my PhD from MIT in January
 - With Prof. Anantha Chandrakasan
 - Thesis: Energy-efficient circuits and systems for computational imaging and vision on mobile devices
 - Was a visiting research scientist at Nvidia
 Research from Jan Aug 2018

- Now
 - Assistant Professor at Stanford since Sep 2018

More than 1.2 trillion photos in 2018

Cellphones are the main cameras

All imaging involves heavy computation

Mobile image processing is expensive

Image Capture

1810 mAH battery Phone dead after deblurring only 10 photos!

Computation

Mobile CPU/GPU

13.6 minutes 2284 J per frame

Energy-Efficient Hardware Accelerators

Image Capture

Energy-Efficient Imaging Accelerators

Image Deblurring

[P. Raina, M. Tikekar, A. P. Chandrakasan ESSCIRC 2016, JSSC 2017]

HDR & Low Light Imaging

[R. Rithe, **P. Raina**, N. Ickes, S. Tenneti, A. P. Chandrakasan ISSCC 2013, JSSC 2013] 10x - 100x reduction in runtime 1000x lower energy

Motion Magnification

[**P. Raina**, D. Jeon, W. T. Freeman, F. Durand, A. P. Chandrakasan, In progress]

Camera Shake Blur

Image Deblurring

Blur Kernel

Image Deblurring

Target for acceleration

EM-based Image Deblurring

Random Guess

EM-based Image Deblurring

[Levin CVPR 2011]

Challenges and Techniques

- Highly sequential and iterative with nested loops
 - Extracting parallelism from matrix operations for reducing execution time
 - Sharing arithmetic units and on-chip memory between non-concurrent stages to reduce area and leakage power
- Very high memory bandwidth
 - Exploiting spatial and temporal locality of memory accesses with on-chip scratchpad buffer to reduce memory bandwidth

Deblurring Accelerator Architecture

[P. Raina, M.Tikekar, A. P. Chandrakasan, ESSCIRC 2016, JSSC 2017, ISSCC SRP 2016]

High-Throughput Image Correlator

- **M-step:** $k = \arg \min \frac{1}{2} k^T A k b^T k$; $k \ge 0$
- For an m × m kernel and n × n sharp image S, the m² × m² correlation matrix is given by

$$\mathbf{A}(mx_1 + y_1, mx_2 + y_2) = \sum_{x=m-1}^{n-1} \sum_{y=m-1}^{n-1} S(x - x_1, y - y_1) * S(x - x_2, y - y_2)$$

• Shifts $(x_1, y_1), (x_2, y_2)$ vary from (0,0) to (m - 1, m - 1)

Image Correlator

Sharp Image

n × n

Multiply and accumulate in the orange area

O(m⁴.n²) Computation Time

 9×9 Correlation Matrix for a 3×3 kernel $m^2 \times m^2$ $m \times m$

Diagonal Computation Reuse

Makes the computation of the correlation matrix O(m²n²) rather than O(m⁴n²), providing a speedup of 42× for a 13×13 kernel

6-Parallel Correlator with Image Tiling

Gradient Projection Solver

Matpixseerpolaresultipelitationsuperpensive memory

Minimize $\frac{1}{2}k^T A k - b^T k$ to get the best k, where $k \ge 0$ Large (up to 841×841 pixels)

Hardware Sharing in Gradient Projection

Sharing of floating point units between the two steps results in 56% area savings in solver hardware

Image Deblurring Accelerator

Image Deblurring Demonstration

Deblurring Results on Real Images

Deblurring Results on Real Images

Input Blurred Image (1920×1080 pixels)

Deblurred Image

Estimated Kernel

Energy and Runtime Reduction

78× reduction in kernel estimation time, 56× reduction in total deblurring time for FullHD image and three orders of magnitude reduction in energy w.r.t. CPU

	Size			Time	Energy (J)	
Algorithm and Platform	Kernel	Patch	Image	Kernel Estimation	Full Deblurring	Kernel Estimation
This Work (EM with Accelerator + CPU)	13 × 13	128× 128	1920× 1080	1.70	2.45	0.105
EM on Intel Core i5	13×13	128× 128	1920× 1080	134.00	134.75	467.000
EM on Samsung Exynos 5422 Cortex-A15	13×13	128× 128	1920× 1080	816.00	-	2284.800
[1] on NVIDIA Tesla C2050 GPU	15×15	-	441× 611	169.70	170.50	-

[1] M. Hirsch, C. J. Schuler, S. Harmeling and B. Schölkopf, "Fast removal of non-uniform camera shake," ICCV, pp. 463-470, 2011.

Energy Reduction with Voltage Scaling

At the minimum energy point, the energy consumption is 33% lower than at nominal, and can be used for batch processing

Energy Scalability with Iterations

Number of EM iterations can be tuned to trade off image quality with runtime giving 10x energy scalability

Energy Scalability with Kernel Size

Kernel size can be tuned to achieve energy scalability

Summary: Image Deblurring Accelerator

- First hardware accelerator for image deblurring employing techniques such as
 - Computation Reuse: Statically based on shared computation and dynamically based on sparse data updates
 - Hardware Sharing between non-concurrent stages to reduce area and leakage power
 - Memory management: On-chip scratchpad buffer to reduce memory bandwidth
- 78× reduction in kernel estimation time, and 56× reduction in total deblurring time of FullHD images
- 3 orders of magnitude reduction in energy
- 10× energy scalability allows trading off runtime with image quality in energy-constrained scenarios

Energy-Efficient Imaging Accelerators

Image Deblurring

[P. Raina, M.Tikekar, A. P. Chandrakasan ESSCIRC 2016, JSSC 2017]

HDR & Low Light Imaging

[R. Rithe, P. Raina, N. Ickes, S. Tenneti, A. P. Chandrakasan ISSCC 2013, JSSC 2013]

Reconfigurable Computational Photography Processor

Motion Magnification

[**P. Raina**, D. Jeon, W. T. Freeman, F. Durand, A. P. Chandrakasan, In progress]

Gaussian vs Bilateral Filtering

$$I_p^G = \mathop{\text{a}}\limits_{n=-N}^N G_S(n) \times I_{p-n}$$

$$I_p^B = \mathop{\text{a}}\limits_{n=-N}^N G_S(n) \times G_I(I_p - I_{p-n}) \times I_{p-n}$$

Gaussian

[Tomasi, ICCV 1998] 44

2D Image

2D Image

Grid Filtering (Convolution)

Grid Filtering (Convolution)

The grid intensities and weights are convolved with a 3×3×3 Gaussian kernel – equivalent to Bilateral filtering in the 2D image domain

Grid Interpolation

 Output pixel at location (x, y) is obtained by tri-linear interpolation of 2×2×2 filtered grid

Bilateral Filter Engine: Line Buffering

Grid Filtering

- Convolution kernel: 3×3×3
- Convolution engine begins filtering block (*i*, *j*) when block (*i*+2, *j*+1) is being assigned

Bilateral Filter Engine: Line Buffering

Grid Interpolation

- Tri-linear interpolation: 2×2×2
- Interpolation engine begins interpolating block (*i*, *j*) when block (*i*+2, *j*+1) is being filtered and block (*i*+4, *j*+2) is being assigned

Reconfigurable Processor

[R. Rithe, P. Raina, N. Ickes, S. Tenneti, A. P. Chandrakasan ISSCC 2013, JSSC 2013]

Processor Implementation

Real-Time Demonstration System

HDR Imaging Results

Low-light Imaging Results

Processor Performance

Processor	Technology (nm)	Frequency (MHz)	Power (mW)	Runtime (s)	Energy (mJ)
Intel Atom	32	1800	870	4.96	4315
Qualcomm Snapdragon	28	1500	760	5.19	3944
Samsung Exynos	32	1700	1180	4.05	4779
ΤΙ ΟΜΑΡ	45	1000	770	6.47	4981
This Work	40	98	17.8	0.77	13.7

For 10 Mpixel image size

Summary: Reconfigurable Computational Photography Processor

- Multi-application processor for computational photography – implements HDR, low-light imaging and glare reduction
- On-chip cache (21.5kB) reduces memory bandwidth from 1.6 GB/s to 356 MB/s (78% lower) and memory power form 175 mW to 108 mW (38% lower)
- Reconfigurable bilateral grid for 7.2x energy-scalablity from 1.37 mJ/Mpixel at (16 levels, 16x16 blocks) to 0.19 mJ/Mpixel at (4 levels, 128x128 blocks)
- Real-time processing of HD images with 17.8mW power consumption at 0.9V, 280x more energy-efficient compared to mobile CPU
- Energy scalable implementation enables efficient integration into mobile devices

Designing Domain Specific Architectures

- Future is about ASICs but with some programmability
- Specialization for
 - For a class of problems
 - For a platform (mobile, cloud, automotive, IoT) with different design targets (energy, throughput, latency, accuracy)

Designing Domain Specific Architectures

- Efficiency comes from
 - Modifying the algorithm (at different levels) such that it becomes well suited for hardware implementation
 - Reduced or amortized instruction overhead by doing a lot of work per instruction by exploiting
 - Data parallelism
 - Complex operations
 - Reducing precision and using the right data encoding (affects both compute and memory)
 - Designing a memory hierarchy that exploits locality
- Key challenges
 - Algorithm-architecture co-design
 - Designing a domain specific programming model
 - Lowering design costs

WHAT AM I WORKING ON RIGHT NOW?

With Mark Horowitz, Pat Hanrahan, Clark Barrett, Kayvon Fatahalian and all AHA Group Students

With Mark Horowitz, Pat Hanrahan, Clark Barrett, Kayvon Fatahalian, and all AHA Group Students

With Mark Horowitz, Pat Hanrahan, Clark Barrett, Kayvon Fatahalian, and all AHA Group Students

With Mark Horowitz, Pat Hanrahan, Clark Barrett, Kayvon Fatahalian, and all AHA Group Students

exploration over a large set of applications with increasing levels of fidelity

Halide to ASIC

With Xuan Yang, Kartik Prabhu, Mark Horowitz and Kayvon Fatahalian

- Extension of Halide to CGRA/FPGA
- Hardware generation using templates
- Questions that we want to address
 - Given a set of templates and and an application (graph of kernels), how do you automatically decide which template to use for which sub-graph?
 - How do you optimally partition resources (figure out parameters for the template instantiations)?
 - How do you virtualize the templates when you are resource constrained?
 - How do we find the templates?

Leveraging New Memory Technologies

With Haitong Li, Weier Wan, Philip Wong and Subhasish Mitra

- Many applications are memory bound
 - Avoid reading out leverage new memory technologies for performing processing in memory
 - Leverage new memory technologies that offer high bandwidth via 3D integration

Designing Domain Specific Architectures

- Efficiency comes from
 - Modifying the algorithm (at different levels) such that it becomes well suited for hardware implementation
 - Reduced or amortized instruction overhead by doing a lot of work per instruction by exploiting
 - Data parallelism
 - Complex operations
 - Reducing precision and using the right data encoding (affects both compute and memory)
 - Designing a memory hierarchy that exploits locality
- Key challenges
 - Algorithm-architecture co-design
 - Designing a domain specific programming model
 - Lowering design costs