Ν E Neuroengineering the Next Decade Dejan Marković UCLA ECE Department dejan@ucla.edu Center for **NeuroTechnology**

Low-Power Expertise, New Challenges

biome

d

MPPT

Nativ

Slice L/M

Neuroscience and therapy

Brain Disease is a Growing Problem

Socio-economic impact in US

Epilepsy monitoring: a gateway to these indications

- Chronic pain (100M people) \rightarrow \$635B / year
- Alzheimer's (5.3M people) → \$220B / year
- Depression (18M)
- Anxiety (3.3M)

- Extremely limited or no therapy
- >1,000x treatment gap
- Epilepsy (2.3M)

Limited therapy >100x treatment gap

Parkinson's (1M)
 Effective therapy
 10x treatment gap

A subset of patients (1-10%) would qualify for DBS

Can't treat complex network diseases with old tools

Existing DBS Device for Parkinson's Disease

- Long procedure, manual control
- Chest-based device, very bulky (34cc)
- Low resolution interface technology

Therapeutic Device for Epilepsy

- 8 channels, record (up to 30 min)
- Rec + stim (not simultaneously)
- Replace battery (2-5 years)

NeuroPace RNS-300

The Burden of Neurological Disease

- Pharmacological therapies are limited
- Surgical therapies are even more limited
- Existing surgical therapies
 <10% market
 penetration

Problems: Why Did Other Indications Fail?

- Same probe design in nearly all DBS applications, despite morphological and anatomical differences in target nuclei
- Mostly open-loop stimulation (on 1 or 2 contacts)
 Continuous 130-Hz stimulation (amplitude, pulse changes)
- Limited sensing (no sensing, or blank during stimulation)
 - Limited understanding of stimulation tissue response
- Limited wireless data (kbps) and power
 Limited understanding of deep-brain activity
- Bulky devices, long surgeries

UCLA Medicine and Engineering

A Challenge: Understand Memory

- Alzheimer's disease (age 65+)
 - Cost of care in 2015: \$221B [1]
 - Apple 2015 revenue: \$233B

- Younger population (0-14), US
 - Epilepsy: 5 children per day [2]
 - TBI: 1 ER visit per minute [3]

Negative effects on declarative memory

Perception and Memory Model

- Conscious recollection: uniquely human
 - Episodic (events), semantic (facts)

Studies of Human Memory Today

Epilepsy monitoring technology

- Wall-plugged instruments
- Deep intracranial probes
- Hospital environment
- Limited closed-loop

Courtesy: R. Staba (UCLA)

Human Memory Circuits

Our focus: hippocampus and entorhinal cortex

What to Measure?

- Local field potential (LFP)
 - Population activity
 - Analyze frequency bands
- Action potential (AP)
 - Individual neurons
 - Firing (time, rate)
 - ~50x higher f_{sample}

Also analyze various temporal correlations

Non-Topographic Organization of Memory Cells

- Adjacent cells encode different concepts
- Response to multiple instances of a concept
- Single units encode **specific memories**

Courtesy: Dr. Itzhak Fried (UCLA)

Why is Engineering Human Memory Hard?

- Access to deep brain areas
 - Rare clinical situations
- Need both population and single-unit activity
 - Very power hungry

• Need more channels

- And higher density...
- Study specific memories

BF probe (UCLA)

1. Sensing 2. Stimulation 3. Power & Config 4. Data 5. Status and Display 6. Update

HUPFOCAMEUS

RAM EARPIECE

12

BOR

A

0

T

		/	6. Update	2	PATIENT		
Device	Channels	Spacing	AP + LFP	Battery	Volume	RE	
Activa PC+S	2 x 4	1.5 mm	N	Y (6.3 Ah)	39 cm ³		
RNS-300	2 x 4	3.5 mm	N	Y (0.7 Ah)	13 cm ³		
Proposed	2 x 32	0.3 mm	Y	N (RF)	<1 cm ³		

RAM EARPIECE

Revolutionizing Wireless Power

- Cochlear: stable power only at a narrow distance (\rightarrow alignment magnet)
- Proposed: stable power delivery up to $3cm (\rightarrow no implant magnet)$

DARPA BTO – RAM Program

Revolutionizing Wireless Power

Our High-Precision Implantable Lead

Dynamic Range in Closed-Loop Systems?

- Stimulation: 0.2-0.6mA
 - 2 distal macro channels
 - 300µs per phase
 - 50Hz pulses for 1s
- Micro-channel recording (7.3mm away from the stimulation site)
- **Recording:** 30kHz sampling

This setup uses **wall-plugged electronics** to achieve sufficient input **dynamic range**

~5b of Headroom at Microwatt Power?

Headroom: $20mV / 0.5mV = 40 (32dB) \rightarrow +5bits$

Key Requirements for Implantable Amplifiers1 High DR2 High Zin3 Low HP corner4 Low power

Single-unit front-end

- Pseudo-R nonlinearity distorts V_{out}
- R<5GΩ & large caps for low HPC
- Sensitive to process and temp

[1] R. Harrison, et al., IEEE J. Solid-State Circuits, June 2003, pp 958–965.

[2] F. Zhang, et al., IEEE Trans. BioCAS, Jan. 2012, pp 344–355.

Chopper-based LFP front-end

- Electrode offset = large DC current due to reduced Z_{in}
- SoA designs: Z_{in} < 30MΩ (need >1GΩ to avoid C_{off-chip})

[3] T. Denison, et al., IEEE J. Solid-State Circuits, Dec. 2007, pp 2934–2945.
[4] Q. Fan, et al., IEEE J. Solid-State Circuits, July 2011, pp 1534–1543.

Addressing the Dynamic Range Issue (conventional receive chains are inadequate)

Voltage-to-voltage/current gain: output saturates

Voltage-to-phase gain: output does not saturate

Oscillator-based Analog Front End

(suitable for kHz-rate biosignals)

Reference	DR	THD	V _{pk}	Z _{in}	V _{n,rms}	V _{DD}	Power
Denison, JSSC'07	74dB	-60dB	2.5mV	8MΩ	1µV	1.8V	2µW
Muller, ISSCC'14	52dB	-48dB	0.5mV	28MΩ	1.3µV	0.5V	2.3µW
This Work	91dB	-87dB	100mV	>1GΩ	2µV	1.2V	3µW

W. Jiang, V. Hokhikyan, H. Chandrakumar, V. Karkare, D. Marković, ISSCC 2016, pp. 484-485.

Full-Duplex Recording and Stimulation

- Patient specific: offline learning & online adaptation
- Closed-loop: non-linear adaptive stim-artifact removal

Demo of UCLA NMU

DARPA SUBNETS Program

Demonstration of Concurrent Sensing and Stimulation

TA2 Team: Wenlong Jiang, Vahagn Hokhikyan, Dejan Rozgić, Dejan Marković (TA2 PI) Electrical Engineering Department

UCLA

Waveform Shape Agnostic Adaptive Stimulation Artifact Rejection

Measurements on adjacent channel(s)

S. Basir-Kazeruni, S. Vlaski, H. Salami, A.H. Sayed, and D. Marković, IEEE EMBS Conf. on Neural Eng., pp. 186-189, May 2017.

True Concurrent Stimulation + Sensing

System Approach to Integration & Miniaturization

Companion External (Trial) Device

LEGO-style assembly

IRB-approved for human recordings at UCLA

Modular Implant Device

- Closed-loop stimulation
- Up to 256 channels
- Wireless charging
- Wireless data

64-channel sensing and stimulation

Neuromodulator

Demonstration of Autonomous Energy

1.4mm x 1.4mm Regulated $P_{out} = 645 \mu W$

Acknowledgment: Rick Staba and Joyel Almajano (UCLA Neurology)

The Brain Basis for Group Dynamics

with Josef Parvizi and Chris Chafe (Stanford)

Seizure or No Seizure?

Hear Brains of Other People?

Technology: dense EEG array + vocal synthesis

Revolutionizing Brain Therapies

- Facilitate new clinical science
 - Translation to therapy

- Network neurotechnology
- Electrical engineering: Signal processing, control, circuits, power, data, ...

