

Recent Developments in Transceiver SoC Design for Next Generation Optical Networks

Prof. C. Patrick Yue

Department of Electronics and Computer Engineering Hong Kong University of Science and Technology (HKUST)

Slide 2

□Motivation

BoF circuit and system design
Measured results
Summary and future work

Motivation

- Mobile data to grow >1000x over 2010 to 2020 [1]
- Expected 5G initial deployment in 2020 [1]

- New emerged mm-wave spectrum for 5G [2]
 - 26GHz, 28GHz, 32GHz, 38GHz, 70/80GHz...

[1] NTT NOCOMO 5G White Paper [2] Ericsson Mobility Report

U

Slide 4

Motivation

- Macro/pico cells widely used to extend coverage and data throughput capacity in 4G LTE and 5G cellular network
- Wired connection sometimes physically impractical or costly
- Hybrid fiber-wireless network: flexible and high performance solution for short-range backhaul links deployment

Motivation

Conventional Solution:

- Conventional fiber-wireless network composed of discrete O/E and RF components is costly and power hungry
- Redundant baseband digital processing introduces large overhead and latency

Previous Work

□ 60GHz 4Gb/s NRZ to QPSK Modulator [1]

• Work at 60GHz

U

- No power amplifier integrated -> external PA needed
- No IQ calibration -> may suffer from image tone
- No on-chip demodulation -> difficult to measure BER

[Y. Wang, ESSCIRC 2015]

Previous Work

□ 60GHz 4Gb/s NRZ to QPSK Modulator [1]

- Data rate limited to 4Gb/s
- >Unbalance I/Q performance -> May be IQ mismatch

Outline

U

BoF circuit and system design > Optical RX with integrated PD > Wideband QPSK TX > Built-in-self-test Measured results Summary and future work

Ū

The BoF System Architecture

Optical Receiver

Optical RX

Ū

- ➢ on-chip PD
- ➢ inv-based TIA
- ➢ 3-Stage CTLE

≻MA/LA

[Q. Pan, VLSI 2014]

U

P-well/Deep N-well PD Structure

- Eliminate the slow substrate diffusion current
- Deeper junction depth and lighter doping concentration
- Compatible with optical receiver design when operating in the avalanche mode

□ Measured Responsivity

Slide 12

- Input light power (-5dBm) is chosen according to sensitivity to work in the linear region
- 51mA/W @0.5V; 272mA/W @12.3V (optimal);
 1.03A/W @ 12.8V (maximum)

P-well/Deep N-well PD Structure

□ Measured Optical Frequency Response

- Normalized to DC responsivity @ avalanche mode
- Slow roll-off frequency response
- Fitting -3dB bandwidth: 500MHz

Ū

Inductive Cascode Inverter-Based TIA

 Given a 480-fF PD capacitance, boost the bandwidth and minimize the input referred noise (IRN)

Ū

Slow Roll-Up 3-Stage Cascaded CTLE

 By interpolating the poles and zeros, a slow roll-up (5~10dB/decade) response can be achieved

Slow Roll-Up 3-Stage Cascaded CTLE

Measured Electrical Frequency Response

> The gain of optical RX

- Tested by direct probing without the on-chip PD
- 33-dB CTLE tuning range

Slide 17

QPSK Transmitter

Ū

- > 2-stage PPF
- Wideband PA
- Gilbert mixer
- Ripple cancel

Wideband Power Amplifier

Ū

- Two amplification stages with neutralization cap
- Coupled resonator wideband matching network

Wideband Power Amplifier

Coupled Resonator based Wideband Matching

Transform the loading to Z_{opt} obtained from load pull simulation

$$> R_L = 50 \Omega$$
, $C_L = 25 fF$ (PAD capacitance)

How to achieve wideband impedance transformation with low insertion loss?

Coupled Resonator based Wideband Matching

- large k pushes two poles away
- central freq increases with k
- When is the flattest response?

Slide 20

- large Q leads to large ripple
- *Q* has little influence on peak magnitude

Wideband Power Amplifier

Coupled Resonator based Wideband Matching

- > Minimal gain ripple condition: $k^2(Q^2 + 1) = 1$
- > More accurate than previous mentioned $k^2Q^2 = 1$ [1]

Slide 22

Coupled Resonator based Wideband Matching

> The imp transformation achieved when $\frac{L_2}{L_1} = \frac{R_L}{R_s}$

Wideband Power Amplifier

PA Input/Inter-Stage Matching Network

- > Take advantage of gain ripple & bandwidth trade-off
- Use the IF low pass feature to compensate ripple

Simulated gain ripple reduces from 3.8dB to 1.3dB

Built-In-Self-Test (BIST)

Ū

- > 2-stage PPF
- Cap coupling
- Current bleeding mixer
- CML driver

Slide 25

□ On Chip Demodulator to support BER test

Built-In-Self-Test

□ Cap. Couple Instead of Ind. Couple

Cap coupling maintains the TX's wideband property

Slide 27

□BoF circuit and system design

□ Measured results

□Summary and future work

Ū

Slide 28

0.0

Continuous Wave Measured Results

□ The QPSK TX Conversion Gain

- 24.7dB at 32GHz, >24dB from 25.3 to 40.3GHz
- 3.4dB gain ripple (no include IF path LPF)
- 13.8dBm Psat at 30GHz

Continuous Wave Measured Results

□ The QPSK TX Large Signal Performance

- Measured 10.1dBm output 1dB point
- Measured 17.7dBm output IP3 point

Continuous Wave Measured Results

Slide 31

□ The QPSK TX Image Rejection Ratio (IRR) > Improved by manually tuning the PPF res array

- IRR improved from -19.8dBc to -38.8dBc
- -38.8dBc image rejection and -46.3dBc LO rejection

Slide 32

Measurement Setup

U

External phase shifter

- Manually tuning the phase for optimal sampling
- The error free sampling phase range is measured

Optical RX Measured Results

Slide 33

□ The eye and BER from RX's output

0.38UI error free sampling CLK phase range

Optical RX Measured Results

Slide 34

Optical RX sensitivity

Ū

- The minimal error free input amplitude is 21.5mVp-p
- Converts to 165uAp-p using a 80Ω input impedance

BoF Data Measured Results

Measurement Setup

Ū

Elle Control Setup Measure Calibrate Utilities Apps Help 1 2 3 4 _ =

BoF Data Measured Results

□ Measurement Setup

- On-chip probing for high speed signals
- BERT system, signal gen, subsampling osc, real time osc

BoF Data Measured Results

□ The EVM of TX's output 6.4Gb/s QPSK

(32767 symbols)

EVM=-15.6dB (32767 symbols)

- Using 2¹⁵-1 PRBS pattern, 32767 symbols collected
- Degraded due to insufficient OSC's BW

Slide 37

BoF Data Measured Results

□ The eye and BER from BIST's output

• 0.49UI error free range at 16.0Gb/s data rate

Performance Summary and Comparison

	This work	ISSCC15 [2]	ISSCC14 [3]	ISSCC13 [4]
Process	65nm CMOS	65nm CMOS	65nm CMOS	40nm LP CMOS
Freq. (GHz)	32	60	60	60
DR (Gb/s)	16.0	7	14.08/28.16	3.5/7
(Mod.)	(QPSK)	(16QAM)	(QPSK/16QAM)	(QPSK/16QAM)
TX EVM (dB)	-15.6*	-21	-20.1/-20.0	-14.8/-15.2
	(TX-to-BIST)			(TX-to-RX)
TX P _{DC} (mW)	129	17/	196	101***
Excl. LO	130	1/4	100	101
TX Eff. (pJ/b)	8.6	24.9	13.2/6.6	78.4/39.2
CG (dB)	24.7	N/A	15	31
P _{-1dB} (dBm)	10.1	6.3	10.3**	10.8***
BIST	Yes	No	No	No
BER	<10 ⁻¹²	N/A	N/A	<10-4
	(TX-to-BIST)			(TX-to-RX at 3.6m)
TX frac. BW (%)	46	N/A	N/A	10
TX Area (mm ²)	0.59	0.79	1.03	1.5*
*EVM at 12.8Gb/s	**Saturated output power ***Each TX path			

Summary

□ Wideband 32GHz QPSK with integrated optical RX and BIST is presented

□ Coupled resonator based wideband matching ≻ Ripple cancellation using IF intrinsic LPF

An error-free 16.0Gb/s data rate is achieved at 8.6pJ/b bit efficiency