

Fundamentals of Time-Based Circuits

Matt Straayer

matt.Straayer@maximintegrated.com

Maxim Integrated Products

Acknowledgements to Mike Perrott and Pavan Hanumolu for assistance with presentation content.

What are Time-Based Circuits?

Time-based circuits use *time* as the primary signal domain

Why Time-Based Circuits?

- Time-based signals translate to <u>binary</u> levels, and process technology benefits <u>binary</u> signal processing
 - > Small area
 - > Low power
 - > High speed
- Potential benefits for many applications
 - > Frequency generation
 - > Analog-to-digital conversion
 - > Switched-mode power using PWM

Why Time-Based Circuits?

- Time-based signals translate to <u>binary</u> levels, and process technology benefits <u>binary</u> signal processing
 - > Small area
 - > Low power
 - > High speed

First, we will look at basic time-based circuits and how they work

- Potential benefits for many applications
 - > Frequency generation
 - > Analog-to-digital conversion
 - > Switched-mode power using PWM

Second, we will look at application examples that leverage timebased circuits

Outline

- Introduction to Time-Based Circuits
- Basic Signal Conversion to Time-Domain
- Time-to-Digital Converters
- Applications of Time-Based Circuits
- Summary and Conclusions

Outline

- Introduction to Time-Based Circuits
- Basic Signal Conversion to Time-Domain
- Time-to-Digital Converters
- Applications of Time-Based Circuits
- Summary and Conclusions

Kinds of Time-Based Circuits

• Classical digital (0th order)

• RC-based or I/C-based (1st order)

• LC-based (2nd order)

Voltage or Current (V&I) Time Events

- X is input to a comparator that outputs time-based events
 - > Comparison is typically single threshold, can be more complex
 - > Can be discrete-time or continuous-time comparator
- *X(t)* can be any kind of voltage or current function:
 - > Random process, e.g. photon counter
 - > Periodic function, e.g. sin wave
 - > Low-frequency signal, e.g. thermal shutdown

Sampling implicitly happens at event detection

Time Events and Signals

Events:

- Are points in time
- Map to binary transitions
- Noted here in lower case 't'

Signals:

- Difference between 2 events
- Map to binary levels
- Always sampled in time

(i.e. discrete-time)

- Noted here in upper case 'T'

Time vs. Voltage/Current

	V&I signals	Time signals
Dynamic Range	Limited by supply	Limited by patience
Noise	Function of power, BW	Function of power, BW
Domain	Continuous time or discrete time	Discrete time only
Amplification	BW is function of gain	Latency is function of gain
Polarity	Bipolar	Unipolar → binary Bipolar → ternary
Simple operations	 Amplification Addition Subtraction 	 Integration Quantization Switch

Time-Based Signal Challenges

Traditional Challenges:

- Input-referred voltage noise
 - > Low power and noise especially challenging at high-speed
- Linearity
 - > Conversion process is generally non-linear
- Power supply rejection
 - > Lack of truly differential operation impacts PSRR, CMRR

Special Challenges:

• Signal wrapping and clock domain crossing

Synchronous Time-Based Systems

- Assume that *Start* is a synchronous reference clock
- Stop is then a series of events that defines the signal of interest,
 - > But not always a 1:1 mapping between *Start* and *Stop* events
 - > For a missing or extra Stop event, typically can use Start indices and assign T_{signal}[k] an appropriate value
 - > Cross domain signals require attention!

Outline

- Introduction to Time-Based Circuits
- Basic Signal Conversion to Time-Domain
- Time-to-Digital Converters
- Applications of Time-Based Circuits
- Summary and Conclusions

V&I to Time Signals

- *Start* is input to a delay function that outputs *Stop*
 - > 1:1 mapping between *Start* events and *Stop* events
- Delay is a function of *M*
 - > Can vary continuously or in discrete time
- Delay function translates signal from *M* to *T*_{signal}
 - > $M[k] \rightarrow T_{signal}[k]$ is a traditional discrete-time operation
 - > M(t) \rightarrow T_{signal}[k] is a sampling operation, windowed with Δ T_D

Example: Voltage to Time

- > When switch closes (Start = 0), capacitor is reset
 - *Stop* output is low
- > When switch is open (*Start* = 1), capacitor charge *integrates* to *M*[*k*]
 - *Stop* output transitions high after comparator trips
- > Rising delay $\Delta T_{D-rise} = T_{signal}$, simply a linear function of I, C, M[k]
 - Note: Requires large enough ramp rate for given Start waveform

Example: Time-Based Circuit Noise

- $\overline{i_{ch}}^2$ white noise integrates onto V_c as a Wiener process, W_i
 - > Brownian noise
 - > Expected value $E[W_i] = 0$
 - > Variance Var[W_i] α T_{signal}; std[W_i] α sqrt(T_{signal})
- $\overline{v_{th}}^2$ noise, independent of T_{signal} , adds to W_i

'Digital' Used to Create Time Signals

- Multiple ways to modulate delay depending on application:
 - > Supply voltage (for good or for bad)
 - > Switching current (e.g. current starved inverter)
 - > Load capacitance (e.g. varactor or switched bank)
 - > Charging resistance (e.g. array of parallel inverters)

Leveraging Integration

1) V&I to time: Integrating charge onto capacitors is a simple way to convert from traditional V&I domain to time-based domain

2) V&I to frequency: Integrating analog signals with oscillators is an inherently simple operation with multiple benefits

3) Time to V&I: Integrating binary time signals is a simple way to move between time-based circuits and traditional analog

Leveraging Integration

1) V&I to time: Integrating charge onto capacitors is a simple way to convert from traditional V&I domain to time-based domain

2) V&I to frequency: Integrating analog signals with oscillators is an inherently simple operation with multiple benefits

3) Time to V&I: Integrating binary time signals is a simple way to move between time-based circuits and traditional analog

V&I to Time With Feedback

- Voltage *M(t)* modulates *Delay* input to create *Out*
- *Out* is inverted and fedback to input of *Delay*

Simple oscillator integrates analog input in time!

Voltage-Controlled Oscillators (VCO)

Linear Voltage to Freq Model

Assume:

 M(t) is bandlimited with 1/BW << ΔT_D Sampling then looks like impulse trains
 dF_{out}/dM is approximately linear

$$F_{out}(t) \approx F_{O} + K_{VCO} \cdot M(t)$$

Recall: Phase/Frequency Relationship

- $\Phi_{out}(t) = \int_0^t F_{out}(t) \cdot dt$
- Phase wraps every 2π
 - > Use a linearized continuous-time model of a discrete-time system
 - > Easier to conceptualize linear model without wrapping

Phase and time signal relationship

Ring-oscillator VCO (or CCO)

- Ideal integration function
 - > Infinite DC gain
- Output is already in binary
 > Easy/fast to sample with digital registers
- Multiple phases can easily be added for improved resolution
 > Guaranteed monotonicity
- Benefits from scaling
 - > Power
 - > Area
 - > Speed

Leveraging Integration

1) V&I to time: Integrating charge onto capacitors is a simple way to convert from traditional V&I domain to time-based domain

2) V&I to frequency: Integrating analog signals with oscillators is an inherently simple operation with multiple benefits

3) Time to V&I: Integrating binary time signals is a simple way to move between time-based circuits and traditional analog

Time to V&I Waveforms

- Start and Stop define binary Signal
- 1-bit asynchronous DAC generates analog output
- But *U(t)* is not the same as *T_{signal}[k]*

To Be Complete...Time to V&I Signals

Equivalent to

Not very practical...

Time to V&I + Low-Pass Filter

Much more efficient...

- PLL charge pumps, where U(t) is a current
- Class D amplifiers, where U(t) is a voltage

Outline

- Introduction to Time-Based Circuits
- Basic Signal Conversion to Time-Domain
- Time-to-Digital Converters
- Applications of Time-Based Circuits
- Summary and Conclusions

TDC Basics

TDC functions to quantize a time-based signal

- $e[k] = Quantized TDC output = floor(T_{signal}[k]/\Delta T_{del})$
- Δt_{del} is equivalent to:
 - > Minimum TDC delay
 - > Raw resolution
 - > Quantization step size

As the reference voltage sets ADC gain, Δt_{del} generally sets the gain for a TDC

Classic Linear TDC

- Number of delay transitions are registered and added
- Resolution is set by a gate delay (multiple picoseconds)
- Maximum range is limited
 - > Number of registers scale with 2^{N} , where N is number of bits

Linear TDC Model

- Discrete-time input (T_{signal}[k]) is the difference in time between positive transitions of Start and Stop
- Quantization noise (T_a[k]) is the measurement error
- Quantized integer output (**e[k]**) is the number of transitions

Interpolating Linear TDC

- Resolution can be improved with resistive interpolation
- Range is still limited (Scaling with ~2^{N-1})
- Interpolation technique is also applicable to FLASH ADC

Vernier TDC

- Quantization step size (resolution) is the *difference* of delays
 ΔT_{del} = Delay Delay2
- Range is still limited, area is large (Scaling with ~2^N)
- Latency increases significantly due to propagation of both edges

Two-Step TDC to Reduce Area

resolution

Two-Step TDC with Time Amplifier

Time Amplifier Example

- Time amplifier leverages latch metastability
 - > Highly non-linear (no equivalent to continuous-time feedback)
 - > Requires calibration for precise converters

Ring Oscillators Increase TDC Range

- TDC range has been improved to an arbitrarily large value
 - > Counter scales linearly with N
- But notice that quantization error is added at both the start and the stop of each measurement

Gated Ring Oscillator (GRO) Concept

- Gate the oscillator in between measurements
 - > Holds the phase in the 'off' time
 - > Subtracts the previous measurement error from current sample
- Results in first-order quantization noise shaping

Improve Resolution By Using All Oscillator Phases

- Raw resolution is set by inverter delay
- Effective resolution is dramatically improved by averaging

Gated Ring Oscillator Model

- New transfer function is equal to a 1st order difference: T_q[k] = T_{raw}[k](1-z⁻¹)
- Note:
 - > Raw error is both mismatch and quantization error
 - > Both error sources are first-order shaped

Another Oversampling TDC: Switched Ring Oscillator

- Frequency is switched between F_{high} and F_{low}
- GRO is special case of **F**_{low} = 0
- A bleeder current when 'off' can improve on/off transitions
 - > Requires a synchronous **Start**

Constant Current Improves Power Supply Coupling

- Significant current when running at **F**_{high}
 - > Causes supply bounce and ringing that affects TDC linearity
- Switching between 2 oscillators maintains constant supply
 - > Additional noise (or wasted power) for small inputs

Stochastic TDC

- Leverage advanced CMOS
 - > T_o period << accumulated delay \rightarrow uniform probability of edges
 - > Mismatch and jitter randomizes edge distribution function
- On average, $e[k] = floor(N \cdot T_{signal}/T_o)$
 - > N positive edge transitions in each T_o period, e.g. $\Delta T_{del} = T_o/N$
- Gain is proportional to clock frequency, not delay
 - > Noise is not a function of delay, either! But it is a function of T_o jitter...

TDC Metrics

- Resolution (s)
 - > Many definitions for resolution
 - > Often misquoted and misunderstood
- Noise (s²/Hz)
 - > Includes thermal and quantization noise
- Power (W)
 - > Not necessarily linear with 1/resolution
 - > Superlinear with 1/PSD
- Sampling rate (Hz)
 - > Power is a linear function of sample rate
- Range (s)
 - > Very dependent on application, only needs to meet a minimum requirement
 - Delay thermal noise typically increases as square root of T_{signal}
 - > Power also increases linearly with time interval or range, for same resolution
- Area (mm2)
 - > Often a strong function of process, but architecture matters
- Latency (samples)
 - > For some applications low latency is critical (PLL)

TDC Metrics

- Resolution (s)
 - > Many definitions for resolution
 - > Often misquoted and misunderstood

• Noise (s²/Hz)

> Includes thermal and quantization noise

• Power (W)

- > Not necessarily linear with 1/resolution
- > Superlinear with 1/PSD

• Sampling rate (Hz)

- > Power is a linear function of sample rate
- Range (s)
 - > Very dependent on application, only needs to meet a minimum requirement
 - Delay thermal noise typically increases as square root of T_{signal}
 - > Power also increases linearly with time interval or range, for same resolution
- Area (mm2)
 - > Often a strong function of process, but architecture matters
- Latency (samples)
 - > For some applications low latency is critical (PLL)

Orange are fundamental metrics

TDC Resolution

'Raw' resolution:

- Quantization step size = fullscale range / number of levels
 - > For a linear TDC, equal to an inverter delay

'Single-shot' resolution: not commonly used

- Error bound of a single measurement, how many sigma is often not clear
 - > Includes thermal and quantization noise
 - > Does not typically include large-signal integral non-linearity
 - > More often used for detecting physical events

'Effective' resolution:

- RMS error including thermal and quantization noise (σ_{err})
 - > Nyquist TDC where bandwidth is half the sampling rate can use a histogram can be helpful to determine standard deviation Metric can be a function of input, or specific points on the transfer characteristic
 - > Oversampling TDC can use integrated Power Spectral Density

TDC Figure of Merit

Be very careful - not the same as ADCs! No agreed-upon standard for TDC FOM

Potential option #1: Quantization noise limited TDC

• FOM = $10 \cdot \log_{10}(P \cdot \sigma_{err}/BW/T_{signal}) dB W-s$

Potential option #2: Thermal noise limited TDC

• FOM = $10 \cdot \log_{10}(P \cdot \sigma_{err}^2/BW/T_{signal}) dB W - s^2$

Where σ_{err} is measured with T_{signal} input, both in seconds Note that $T_{signal} \neq$ maximum TDC input range

Outline

- Introduction to Time-Based Circuits
- Basic Signal Conversion to Time-Domain
- Time-to-Digital Converters
- Applications of Time-Based Circuits
- Summary and Conclusions

Design Tool Considerations

Time-based signals have different time resolution requirements than typical voltage or current-based circuits

- > Verilog can be challenging to integrate analog circuits
- > SPICE/Spectre take a long time, difficult to design architectures

CPPSIM accounts for timing accuracy in a very efficient way

- > Allows for fast behavioral exploration and top-down design
- > Analog can be combined with digital for a unified flow

Examples and tutorials at: http://www.cppsim.com

Outline

- Introduction to Time-Based Circuits
- Basic Signal Conversion to Time-Domain
- Time-to-Digital Converters
- Applications of Time-Based Circuits
 - > Digital PLL
 - > VCO-based ADC
 - > Buck Converters
- Summary and Conclusions

Analog and Digital PLL

Fractional-N DPLL Block Diagram

- Frac-N PLL has challenging TDC requirements:
 - > Low latency
 - > Low thermal noise
 - > Even lower quantization noise

Fractional-N DPLL Model

DPLL Closed-Loop Noise Contributions

- TDC noise dominates in-band at low frequency
 - > High-frequency TDC noise is low-pass filtered
- TDC non-linearity folds back inband and can cause limit-cycles or spurs
 - > Deadzones in TDC transfer characteristic
 - > 'Staircase' quantization
 - > Power supply coupling

TDC Transfer Characteristics

- Ideally TDC transfer characteristic is linear
- Deterministic quantization can be a problem if the thermal noise is less than the quantization step

Example GRO TDC

Linear transfer characteristic

Example DPLL utilizing GRO TDC

- Gated-ring-oscillator (GRO) TDC achieves low in-band noise
- All-digital quantization noise cancellation achieves low out-of-band noise

Hsu, JSSCC 2008

Outline

- Introduction to Time-Based Circuits
- Basic Signal Conversion to Time-Domain
- Time-to-Digital Converters
- Applications of Time-Based Circuits
 - > Digital PLL
 - > VCO-based ADC
 - > Buck Converters
- Summary and Conclusions

Using a VCO as an ADC

- Input: analog tuning of ring oscillator frequency
- Output: count of oscillator cycles per Ref clock period

Phase Sampling Can Be More Efficient than Counting

> Alters the number of transitions per ref clock period

• Digital circuits compute transition count at each sample

VCO-based Quantizer Shapes Delay Mismatch

- Barrel shifting through delay elements
 - > Mismatch between delay elements is first order shaped

VCO-based Quantizer Model

- VCO: nonlinear integrator
- Phase sampler: scale by 1/T
- Quantizer: adds noise
- First order diff: shapes noise

First Order

Out

Quantizer Difference

VCO

Ref

 V_{tune}

Reducing the Impact of Nonlinearity using Feedback

Leveraging Barrel Shifting

Reducing the VCO Nonlinearity with Digital Correction

- Highly digital implementation (65nm CMOS)
- Issues: calibration time, only first order noise shaping

Advantages of VCO-based Quantizers

- Highly digital implementation
- Offset and mismatch is not of critical concern
- Metastability behavior is potentially improved
- SNR improves due to quantization noise shaping

Implementation is high speed, low power, low area

Performance of VCO-based ADCs

Outline

- Introduction to Time-Based Circuits
- Basic Signal Conversion to Time-Domain
- Time-to-Digital Converters
- Applications of Time-Based Circuits
 - > Digital PLL
 - > VCO-based ADC
 - > Buck Converters
- Summary and Conclusions

Switched Mode Buck Converter with Time-based Control

- No quantization error
- Implicit PWM generation
- Area and power efficient

Time-based Type-I Buck Converter

- Behaves as a frequency-locked loop
- In steady-state $F_{FVCO} = F_{RVCO}$
 - $> \rightarrow V_{O} = V_{REF} = DV_{IN}$
- Area and power efficient

$$D = \frac{T_{ON}}{T_{ON} + T_{OFF}} = \frac{(\Phi_{CTRL} - \Phi_{REF})}{2 \cdot \pi} = \frac{V_O}{V_{IN}}$$

Time-based PID Controller

$$K^{T}{}_{P} = K_{VCDL_{1}}$$
$$K^{V}{}_{P} = G \cdot \left(1 + \frac{\omega_{z1}}{\omega_{z2}}\right) \qquad K^{T}{}_{I} = K_{VCO}$$
$$K^{V}{}_{I} = G \cdot \omega_{z1} \qquad K^{V}{}_{D} = \frac{G}{\omega_{z2}}$$

Outline

- Introduction to Time-Based Circuits
- Basic Signal Conversion to Time-Domain
- Time-to-Digital Converters
- Applications of Time-Based Circuits
- Summary and Conclusions

2017 Time-Based Circuit Presentations at ISSC, CICC

Not including 43 papers with timing applications (PLL, DLL, oscillators, etc.)

ISSCC

T5: Fundamentals of Time-Based Circuits

T8: Fundamentals of Class-D Amplifier Design

F6: Quantizing Time: Time-to-Digital Converters

5.1: A 5x80W 0.004% THD+N Automotive Multiphase Class-D Audio Amplifier with Integrated Low-Latency SD ADCs for Digitized Feedback

5.2: An 8ohm 10W 91% Power-Efficiency 0.0023% THD+N Multi-Level Class-D Audio Amplifier with Folded PWM

5.10: A 1A LDO Regulator Driven by a 0.0013mm2 Class-D Controller

9.2: A 0.6nJ -0.22/+0.19C Inaccuracy Temperature Sensor Using Exponential Subthreshold Oscillation Dependence

13.6: A 2.4GHz WLAN Digital Polar Transmitter with Synthesized Digital-to-Time Conv. in 14nm Trigate/FinFET Tech. for IoT and Wearable Applications

15.1: Large-Scale Acquisition of Large-Area Sensors Using an Array of Frequency-Hopping ZnO Thin-Film-Transistor Oscillators

15.6: A 30-to-80MHz Simultaneous Dual-Mode Heterodyne Oscillator Targeting NEMS Array Gravimetric Sensing Applications with a 300zg Mass Resolution

16.5: 5 An 8GS/s Time-Interleaved SAR ADC with Unresolved Decision Detection Achieving -58dBFS Noise and 4GHz Bandwidth in 28nm CMOS

28.2: An 11.4mW 80.4dB-SNDR 15MHz-BW CT Delta-Sigma Modulator Using 6b Double-Noise-Shaped Quantizer

28.3: A 125MHz-BW 71.9dB-SNDR VCO-Based CT ΔΣ ADC with Segmented Phase-Domain ELD Compensation in 16nm CMOS

CICC

2.2: Channel Adaptive ADC and TDC for 28Gb/s 4pj/bit PAM-4 Digital Receiver

5.4: A 256kb 6T Self-Tuning SRAM with Extended 0.38V-1.2V Operating Range using Multiple Read/Write Assists and VMIN Tracking Canary Sensors

7.1: A 6-bit 0.81mW 700-MS/s SAR ADC with Sparkle-Code Correction, Resolution Enhancement, and Background Window Width Calibration

7.7: A 73dB SNDR 20MS/s 1.28mW SAR-TDC Using Hybrid Two-Step Quantization

12.4: A Time-based Inductor for Fully Integrated Low Bandwidth Filter Applications

16.2: A 10MHz 2mA-800mA 0.5V-1.5V 90% Peak Efficiency Time-Based Buck Converter with Seamless Transition between PWM/PFM Modes

17.2: A Scalable Time-based Integrate-and-Fire Neuromorphic Core with Brain-inspired Leak and Local Lateral Inhibition Capabilities

21.3: Design of Tunable Digital Delay Cells

22.3: A 50 MHz BW 73.5 dB SNDR Two-stage Continuous-time ΔΣ Modulator with VCO Quantizer Nonlinearity Cancellation

25.3: Digitally Controlled Voltage Regulator Using Oscillator-based ADC with fast-transient-response and wide dropout range in 14nm CMOS 26.3: Time-Based Circuits for High-Performance ADC

26.4: Time-based encoders and digital signal processors in continuous time

5/17/2017

Summary

Time-Based Signals are Everywhere • Timing circuits • CMOS friendly • Sensors • Small Pulse-Width Modulation • Simple **Unique Time-based Circuit Attributes** • Ideal integration with infinite DC gain • Simple, high-speed quantization • Natural fit with oversampled systems

Alternative to V&I Circuits

Potential for Innovation

- Some analog functions can potentially be implemented smaller or in a simpler way
- Many new ideas for time-based circuits

Suggested References

- V. Ramakrishnan, P.T. Balsara, "A wide-range, high-resolution, compact, CMOS time to digital converter" Proc. IEEE International Conference on VLSI Design. (Vol. 2006, pp. 197-202).
- A. M. Abas, A. Bystrov, D. J. Kinniment, O. V. Maevsky, G. Russell and A. V. Yakovlev, Time difference amplifier, in Electronics Letters, vol. 38, no. 23, pp. 1437-1438, 7 Nov 2002
- B.M. Helal, C.-M. Hsu, K. Johnson, M.H. Perrott, "A Low Jitter Programmable Clock Multiplier Based on a Pulse Injection-Locked Oscillator With a Highly-Digital Tuning Loop," IEEE J. Solid-State Circuits, vol. 44, May 2009, pp. 1391-1400
- R. B. Staszewski, D. Leipold, K Muhammad, and P. T. Balsara, "Digitally controlled oscillator (DCO)-based architecture for RF frequency synthesis in a deep-submicrometer CMOS process," IEEE Trans. on Circuits and Systems II (TCAS-II), vol. 50, no. 11, pp. 815–828, Nov. 2003.
- C.-M. Hsu, M.Z. Straayer, M.H. Perrott, "A Low-Noise Wide-BW 3.6-GHz Digital Delta-Sigma Fractional-N Frequency Synthesizer With a Noise-Shaping Time-to-Digital Converter and Quantization Noise Cancellation," IEEE J. Solid-State Circuits, vol. 43, Dec. 2008, pp. 2776-2786
- S. J. Kim, W. Kim, M. Song, J. Kim, T. Kim and H. Park, "15.5 A 0.6V 1.17ps PVT-tolerant and synthesizable time-to-digital converter using stochastic phase interpolation with 16× spatial redundancy in 14nm FinFET technology," 2015 IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, San Francisco, CA, 2015, pp. 1-3.
- M.Z. Straayer, M.H. Perrott, "A Multi-Path Gated Ring Oscillator TDC With First-Order Noise Shaping," IEEE J. Solid-State Circuits, vol. 44, April 2009, pp. 1089-1098
- U. Wismar, D. Wisland and P. Andreani, "A 0.2V 0.44 /spl mu W 20 kHz Analog to Digital /spl Sigma/Δ Modulator with 57 fJ/conversion FoM," 2006 Proceedings of the 32nd European Solid-State Circuits Conference, Montreux, 2006, pp. 187-190
- J.Kim, S.H. Cho, "A Time-Based Analog-to-Digital Converter Using a Multi-Phase Voltage-Controlled Oscillator," IEEE International Conference on Circuits and Systems (ISCAS), 2006
- E. Alon, V. Stojanovic, M. A. Horowitz, "Circuits and Techniques for High-Resolution Measurement of On-Chip Power Supply Noise," IEEE J. Solid-State Circuits, vol. 40, pp. 820-828, April 2005
- A. Iwata, N. Sakimura, M. Nagata, and T. Morie, "The architecture of delta sigma analog-to-digital converters using a VCO as a multibit quantizer," IEEE Transactions on Circuits and Systems II, vol. 46, no. 7, pp. 941-945, July 1999
- R. Naiknaware, H. Tang, and T. Fiez, "Time-referenced single-path multi-bit delta sigma ADC using a VCO-based quantizer," IEEE TCAS II, vol. 47, no. 7, pp. 596-602, July 2000.
- M.Z. Straayer, M.H. Perrott, "A 12-bit 10-MHz Bandwidth, Continuous-Time Sigma-Delta ADC With a 5-Bit, 950-MS/S VCO-based Quantizer," IEEE J. Solid-State Circuits, vol. 43, April 2008, pp. 805-814
- M. Park, M.H. Perrott, "A 78 dB SNDR 87 mW 20 MHz Bandwidth Continuous-Time Delta-Sigma ADC With VCO-Based Integrator and Quantizer Implemented in 0.13 um CMOS," IEEE J. Solid-State Circuits, vol. 44, Dec 2009, pp. 3344-3358
- G. Taylor and I. Galton, "A Mostly-Digital Variable-Rate Continuous-Time Delta-Sigma Modulator ADC," in IEEE Journal of Solid-State Circuits, vol. 45, no. 12, pp. 2634-2646, Dec. 2010.
- Kim, S. J., Khan, Q., Talegaonkar, M., Elshazly, A., Rao, A., Griesert, N., ... Hanumolu, P. K. (2015). High Frequency Buck Converter Design Using Time-Based Control Techniques. IEEE Journal of Solid-State Circuits, 50(4), 990-100

